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Popular Science Summary

Do you trust your computer? Computers may not act as intended, even
without assuming malicious intent, due to faulty software or hardware. As
automated systems make more decisions in our world, the question of trust
becomes even more relevant. If some decision or insight is essential in
the non-digital world, then we do not trust the decision blindly. Instead,
we require proof, be it a receipt in accounting for later audit, repeated
counting of ballots in an election, or a scientist who needs to write down
his ideas and convince colleagues during peer-review. Wouldn’t it be nice if
we could verify the computations of a computer in a similar way? Similar
to how a school teacher would verify the answer to an exam exercise like
the following.

“Due to a global pandemic, two small countries vaccinate their population
within three months. Together, both countries have 12 million inhabitants,
and the first country vaccinates three times as many people per month
as the second country. Can you provide the average number of people
vaccinated per month in each country?”

Now the student should start modelling the problem using variables a for
the average number of vaccinations per month in the first country and b
for the second country. And then he should extract the following equations
from the exercise

3 · b = a (1)
3 · (a+ b) = 12. (2)

While the well-behaved student starts solving the problem, the lazy student
has already finished: He just wrote “Yes, I can provide the number.” as an
answer. This answer is technically correct, the question only asked if the
student can provide an answer. However, it will be very unsatisfactory for
the teacher, who was expecting a concrete solution to verify the student’s
claim. Given the mathematical formulation of the exercise above, a solution
is a = 3, b = 1. Now the teacher can verify the “yes” answer by checking
that both equations are satisfied with this assignment without having to
compute the solution himself. (And the teacher does not need to worry that
the solution is copied due to the distance requirements during a pandemic.)

Although this is an elementary example, it allows us to introduce the fun-
damental concepts underlying this thesis, as shown in Figure 1. We will

iv
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verification
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Figure 1: A problem is solved by an algorithm that does not only produce
an answer (41) but also a certificate. Then a verifier uses the certificate to
verify the answer to the problem. However, the used algorithm contains a
failure, also known as a bug, and the verification fails.

start with a formal, mathematical formulation of a problem. Instead of a
student, we use a computer program to solve the problem, referred to as a
solver. The solver will produce an answer (in the case of a decision prob-
lem as above, the answer is “yes” or “no”) as well as a proof or certificate
that this answer is correct (in our example, the certificate is a = 3, b = 1).
Instead of a teacher, we will have a second computer program that verifies
the answer to the problem using the certificate.

Producing and checking the proof for the previous exercise was quite simple,
but how about the following extension: “Both countries together receive at
most 3 million doses of the vaccine per month. Can they still vaccinate at
least 12 million people within three months?” Using variables a and b as
before, the problem is modelled as

3 · (a+ b) ≥ 12 (3)
3 ≥ (a+ b). (4)

Providing a proof for the answer of this problem is more challenging as
the answer to this exercise is “no” because there is no solution to these
inequalities. Instead of using a solution as certificate, the certificate should
be a sequence of rules or steps that we need to agree are correct and that
are easy to check. For example, if 3 · (a+ b) ≥ 12 holds, then so does

(a+ b) ≥ 4, (5)
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which we get by dividing both sides of the inequality by 3. It is almost
obvious that there is no solution because a + b cannot be smaller than 3
and also greater than 4. To make this even more clear, we can add the
inequalities (4) and (5) to obtain 3 + (a + b) ≥ 4 + (a + b), which can
be simplified to 0 ≥ 1. We have an obvious contradiction. The rules we
used are (a) dividing by a positive number, (b) adding constraints and
(c) simplifying constraints. It can be shown that each rule guarantees to
preserve solutions, which means that if there was a solution to the set
of inequalities before applying one of these rules, then there is a solution
afterwards. However, the constraint 0 ≥ 1 is never true, which means that
the original set of constraints must have been inconsistent. The proof that
there is no solution could look something like “divide (3) by 3 and add (4)”.
This proof will derive 0 ≥ 1 as discussed above, assuming constraints are
simplified implicitly.

This thesis describes how we can obtain such certificates for various com-
puter programs and will study the following questions: How can we model
problems solved by different computer programs? What are the easily ver-
ifiable rules that we want to use? How can we prove the correctness of
the reasoning of various programs with these rules? How efficient is it to
generate and to verify these proofs?

vi
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1 Introduction

Generally speaking, users of any software have to trust that the software
is producing the correct answer. However, designing correct software is
difficult and costly, as is demonstrated repeatedly through critical failures
(also known as bugs). At the same time, we can see dramatic improve-
ments in the amount and difficulty of tasks that modern algorithms can
solve. As a result, such algorithms get deployed in high-stakes environ-
ments where bugs can lead to large financial losses, like in combinatorial
auctions [LMS17], or even where lives are at stake, for example, when
finding an optimal allocation for kidney transplants in kidney exchange
programs [MO12].

A classical approach for detecting software bugs is to use extensive testing.
However, software testing can only detect bugs but never show their ab-
sence. Another approach is formally verifying that the software adheres to a
given specification for all possible inputs. While there has been tremendous
progress in formal verification, it requires expert knowledge and tends to be
time-consuming. Therefore, formal verification for complex systems seems
out of reach. Instead, we will focus on a middle ground between testing and
formal verification with the concept of certifying algorithms [McC+11]. A
certifying algorithm does not only produce an answer to a given problem
but also a machine-verifiable certificate of correctness. An external verifier
can then verify this certificate independently of the original algorithm. Im-
portantly, the verifier is usually a much simpler software than the original
program, making it easier to implement it correctly or even to formally
verify it.

Using a certifying algorithm can be beneficial throughout the software life
cycle. The verification can ease test case creation during development be-
cause the correct answer does not need to be known. Additionally, it can
detect bugs even if the provided answer was correct but was obtained using
incorrect reasoning, for example, by ignoring corner cases. And finally, if
there is a bug, then the first incorrect step in the certificate can help locate
the origin of the bug. Once the software is deployed, checking the produced
certificates can increase the trust in the produced results and can detect
hardware failures. Additionally, the certificates can potentially be used to
audit an answer at a later point in time or to analyse and improve the
software.

Certifying algorithms are well established for determining the satisfiabil-
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ity of propositional formulas (SAT) in the form of proof logging. There
are numerous proof logging formats for SAT solving such as RUP [GN03],
TraceCheck [Bie06], and DRAT [HHW13a; HHW13b; WHH14]. Some for-
mats such as LRAT [Cru+17] and GRIT [CMS17] have formally verified
checkers. DRAT is the de facto standard used in the main track of the an-
nual SAT competition, which introduced mandatory proof logging because
some submitted solvers provided the correct answer, but were quicker on
some instances due to bugs. A novel use case of proof logging is to use
the produced proof as an analysis tool, for example, to understand the
power and benefits of different heuristics in SAT solvers [Elf+18] or to use
systematic machine learning to replace handcrafted heuristics [SKM19].

Although DRAT is a very powerful proof system, there are still techniques
in SAT solving for which it is not known if efficient proof logging is fea-
sible with DRAT . For example, reasoning with parities (equalities mod-
ulo 2) using Gaussian elimination [SNC09; HJ12], or breaking symmetries
[Dev+16]. The former is crucial for solving cryptographic problems, ap-
proximate model counting and almost-uniform sampling. The latter is
crucially used in the winning solver of the 2016 SAT competition’s no-
limits track, where no proof logging is required. While there are attempts
for DRAT proof logging of parity reasoning [PR16] and symmetry break-
ing [HHW15], the proposed proof logging is complex to implement and
comes with a considerable polynomial overhead during solving with the
result that no solver has adopted them.

When considering other combinatorial problems such as constraint pro-
gramming, clique, subgraph isomorphism, pseudo-Boolean optimisation or
mixed-integer programming, certification becomes even more challenging as
solvers for these problems assemble various algorithms. For example, it is
known how to certify a maximum matching in a bipartite graph [McC+11],
and it is easy to check that a graph is k-colourable if the colouring of the
graph is given. However, a subgraph isomorphism solver, such as the Glas-
gow Subgraph Solver [MPT20], may utilise both algorithms as subroutines:
Maximum matching is used as part of all-different constraints, and a graph
colouring can be used to obtain a bound on the size of a clique, as discussed
in Paper H.

In this work, we propose a new, multi-purpose proof format based on
pseudo-Boolean constraints (linear inequalities over 0-1 variables). The
proof format builds on the cutting planes proof system [CCT87], theoret-
ically studied in proof complexity, and extends it with rules to introduce
new variables or eliminate certain assignments. We demonstrate how to use

3



this proof format to develop certifying algorithms for various problems that
could not be certified efficiently with state-of-the-art techniques. This work
focuses on combinatorial problems, including certifying implementations
of SAT solving with parity reasoning and symmetry breaking, constraint
programming, pseudo-Boolean optimisation, subgraph isomorphism, clique
and maximum common subgraph solving.

Verified answers are achieved through a three-step process: In the first
step, a pseudo-Boolean formula is constructed to describe the problem.
Note that the satisfiability of pseudo-Boolean formulas is an NP-complete
problem [Kar72], and hence we can use standard reductions to encode a
wide range of problems into pseudo-Boolean formulas in polynomial time.
Such an encoding might not always be practical, but for the studied ap-
plications, the encoding is relatively straightforward, and we are optimistic
that this will be the case for a wide range of problems.

In the second step, the algorithm is run on the original problem but pro-
duces a proof for the pseudo-Boolean formula. The proof construction
might require some extra bookkeeping to match the algorithm’s internal
state to the variables of the pseudo-Boolean problem. However, it turns
out that for the studied algorithms, it is easy to express the made reasoning
in the proof format, using information that is already available or very easy
to obtain.

In the final step, we verify the constructed proof with the pseudo-Boolean
formula using our verifier VeriPB1. The verifier can verify a solution, the
solution’s optimality, or that there are no solutions. In principle, the ver-
ifier can also verify the enumeration of solutions and translations between
different pseudo-Boolean encodings, but the verified properties will vary
based on the choice and use of rules.

This work contains two parts. The first part consists of six sections. The
necessary preliminaries can be found in Section 2. Section 3 contains an
introduction to the proposed proof system, Section 4 contains a worked-
out example and Section 5 provides an overview of the included papers.
Related work is discussed in Section 6 and Section 7 contains the concluding
remarks. The second part consists of the papers included in this thesis.

1https://gitlab.com/MIAOresearch/VeriPB
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2 Preliminaries

2.1 Basic Notation

For a natural number n ∈ N we use [n] to denote the set { 1, 2, . . . , n }.

We assume that the reader is familiar with standard concepts of computa-
tional complexity, such as Turing machines, a language, the running time
of an algorithm and asymptotic behaviour, and will only provide a terse
description to refresh memory. A more extensive description can be found,
for example, in [AB09].

The running time of an algorithm is measured as a function from the size of
the input to the number of performed steps, where we use asymptotic no-
tation O(f(n)) = { g(n) | ∃c ∈ R+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) ≤ c · f(n) } as
well as Ω(f(n)) = { g(n) | ∃c ∈ R+ : ∃n0 ∈ N : ∀n ≥ n0 : g(n) ≥ c · f(n) }
where f and g are functions on natural numbers. A function f(n) (such as
the running time of an algorithm or Turing machine) is polynomial if there
is a polynomial function p(n) such that f(n) ∈ O(p(n)).

2.2 Graph Problems

A graph G = (V,E) is a tuple consisting of a set of nodes V and edges
E ⊆ V × V . We will only consider undirected graphs, which means that
if (u, v) ∈ E, then (v, u) ∈ E. The degree of a node v, denoted degree(v),
is the number of edges incident to v. A graph has a k-clique if there is a
subset of nodes V ′ ⊆ V of size k such that there is an edge between any
two nodes in V ′, i.e., |V ′| = k and for any u, v ∈ V ′ with u 6= v there is
an edge (u, v) ∈ E. A bipartite graph G = (V ∪ V ′, E) is a graph with two
disjoint sets of nodes V and V ′ and edges E ⊆ V ×V ′∪V ′×V . A matching
on a bipartite graph is a subset of edges E′ ⊆ E such that each node is
incident to at most one edge in E′. A maximum matching is a matching of
maximal cardinality.

2.3 Formal Definition of Proof Systems

The concept of a propositional proof systems was introduced by Cook and
Reckhow [CR79] to study the strength of different reasoning systems for
propositional formulas, a research area known as proof complexity. This sec-
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tion follows the standard definition as can be found, for example, in [BN21]
with small adjustments to better accommodate the verification of the result
of an algorithm.

An alphabet Σ is a finite set of symbols. A language L is a potentially
infinite set of finite words x over an alphabet Σ. We use |x| to denote
the number of symbols in x. Generally speaking, a set of problems is just
a language L and an answer is given in a different language LA. We are
interested in the language LCA consisting of pairs of an input x ∈ L and
a correct answer y ∈ LA, that is x|y ∈ LCA if and only if x ∈ L, y ∈ LA

and y is considered a valid answer for the problem x. We use | to denote a
delimiter that does not appear in the alphabet of L or LA and require that
for x|y ∈ LCA the size of x|y is polynomial in the size of x. A proof system
for a language LCA is a predicate P (x, y, π) that has as inputs three words:
a problem x, an answer y and a proof π (a proof may also be referred to as
a certificate), and has the following three properties:

1. Soundness: If x|y 6∈ LCA, then P (x, y, π) is false for all π.

2. Completeness: If x|y ∈ LCA, then there is a proof π such that
P (x, y, π) is true.

3. Polynomial-time verifiable: P (x, y, π) can be computed (using a de-
terministic Turing machine) in time polynomial in the size of the
inputs |x|,|y| and |π|.

A solver for a language L is an algorithm that takes a word x over the
alphabet of L, and if x ∈ L, then it produces an answer y ∈ LA. If
x 6∈ L, the solver does not produce an answer. A solver is correct within
the language L if for all x ∈ L the produced answer y ∈ LA is correct,
i.e. x|y ∈ LCA. A solver is certifying with respect to a proof system P if
it also produces a proof π such that P (x, y, π) is true. A certifying solver
is also called a proof logging solver to emphasise that the proof is usually
constructed during solving and not as a post-processing step.

The set P consists of all languages L that are efficiently solvable, i.e. that
have a correct solver running in time polynomial in the size of the input
(even if the input x is not in L). The set NP consists of languages L for
which there is a proof system P such that for any word x ∈ L, there exists
an answer y ∈ LA and a proof π, such that |π|+ |y| is polynomial in |x| and
P (x, y, π) is true. A language L ∈ NP is NP-complete if for all L′ ∈ NP
there is a polynomial-time reduction from L′ to L, i.e., a polynomial-time
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algorithm A translating any word of L′ into a word of L such that x ∈ L′

if and only if A(x) ∈ L.

2.4 Pseudo-Boolean Optimisation

In this section we introduce some standard notation used in pseudo-Boolean
optimisation and related areas. A more detailed discussion can be found
in [BN21].

A Boolean variable x can take values 0 (false) or 1 (true). A literal ℓ is
either a variable x or its negation x = 1 − x. We can also negate literals,
where ℓ = 1− ℓ and hence x = x. A (linear) pseudo-Boolean constraint C
over literals ℓ1, . . . ℓn is a linear inequality over literals of the form

C :

n∑
i=1

aiℓi ≥ A, (6)

where A ∈ Z is called the defining constant or degree of falsity and for all
i ∈ [n] the coefficient ai is in Z.

A pseudo-Boolean formula F is a set of pseudo-Boolean constraints. A
substitution ρ is a (potentially partial) function from variables to 0, 1 or a
literal. If a substitution ρ is not defined on a variable x, then we assume
ρ(x) = x. A substitution is extended to literals in the canonical way, i.e.
ρ(x) = 1 − ρ(x). A (partial) assignment is a substitution that only maps
variables to 0, 1 or itself. For a partial assignment ρ, we use ρ(ℓ) = ∗ to
emphasise that ℓ is not assigned a value, i.e., ρ(ℓ) = ℓ. A total assignment
is an assignment that assigns all variables to 0 or 1.

We can apply a substitution ρ to a pseudo-Boolean constraint C, denoted
C↾ρ, by applying the substitution to each literal individually, i.e.,

C↾ρ :
n∑

i=1

ai · ρ(ℓi) ≥ A. (7)

Note that for two substitutions ρ, ω it holds that (C↾ω)↾ρ is the same as
C↾ρ◦ω, where ρ ◦ ω(ℓ) = ρ(ω(ℓ)).

A total assignment ρ satisfies a constraint if
∑

ρ(ℓi)=1 ai ≥ A. A formula F
is satisfied by a total assignment ρ if ρ satisfies all constraints in F . Such a
substitution ρ is called a solution of F or a satisfying assignment of F . A
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formula F is satisfiable if there is a satisfying assignment to F . A formula
F implies a constraint C, written F |= C if every satisfying assignment
to F also satisfies C. A formula F implies another formula F ′ if F |= C for
all C ∈ F ′.

It is always possible to transform a negative coefficient into a positive coef-
ficient by flipping the sign of the literal. Consider a constraint of the form
−bℓ′+

∑n
i=1 aiℓi ≥ A. By adding b to both sides of the inequality, we obtain

b−bℓ′+
∑n

i=1 aiℓi ≥ A+b, which can be simplified to bℓ′+
∑n

i=1 aiℓi ≥ A+b.
Analogously, we can transform a negated variable into an unnegated vari-
able by flipping the sign of the coefficient. Consider a constraint of the
form by +

∑n
i=1 aiℓi ≥ A, which is the same as b · (1− y) +

∑n
i=1 aiℓi ≥ A

and can be simplified to −by +
∑n

i=1 aiℓi ≥ A− b.

A constraint that only has positive coefficients is in (coefficient-)normalised
form, and a constraint that only has unnegated variables is in variable-
normalised form. Any pseudo-Boolean constraint can be transformed into
coefficient- or variable-normalised form as described above. It is easy to
see that any assignment satisfying the constraint before the transforma-
tion also satisfies the constraint after the transformation. Therefore, we
will consider a constraint to be the same no matter in which form it is. If
not stated otherwise, we will think of constraints in coefficient-normalised
form, but depending on the context, it can also be advantageous to think
of constraints in their variable-normalised form. It can also be convenient
not to have all literals on the left-hand side or to allow multiple occurrences
of a literal. However such a constraint can always be brought into the form
of (6) by rearranging terms, which does not change satisfying assignments.
Additionally, we do not need to limit ourselves to greater-than-or-equal
constraints as it is easy to see that an equality

∑n
i=1 aiℓi = A can be repre-

sented as two inequalities
∑n

i=1 aiℓi ≥ A and
∑n

i=1−aiℓi ≥ −A. Likewise,
a greater-than constraint

∑n
i=1 aiℓi > A is the same as

∑n
i=1 aiℓi ≥ A+ 1,

because we only operate over integers.

The negation ¬C of a pseudo-Boolean constraint C :
∑n

i=1 aiℓi ≥ A is given
by

∑n
i=1 aiℓi < A, which can be rearranged to

¬C :
n∑

i=1

−aiℓi ≥ −A+ 1. (8)

For a constraint C :
∑n

i=1 aiℓi ≥ A in its coefficient-normalised form (ai ≥
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0) and a partial assignment ρ, we define

slack(
n∑

i=1

aiℓi ≥ A, ρ) =
∑

i∈[n]:ρ(ℓi )̸=0

ai −A. (9)

If slack(C, ρ) < 0, then C cannot be satisfied by any extension of the
assignment ρ and hence ρ falsifies C. If slack(C, ρ) < ai for some i ∈ [n]
such that ρ(ℓi) = ∗, then C can only be satisfied by assigning ℓi to true and
we say that C propagates ℓi. For a formula F and a (potentially empty)
assignment ρ, unit propagation is the process of extending ρ by { ℓ 7→ 1 } if
there is a constraint C ∈ F that propagates ℓ until either ρ can no longer
be extended through propagation or there is a constraint falsified by ρ. The
latter is called a conflict.

For (linear) optimisation problems, we have an objective function of the
form

f :
n∑

i=1

aiℓi (10)

with ai ∈ Z for i ∈ [n]. We can apply a substitution ρ to an objective func-
tion f , denoted f↾ρ, by applying the substitution to each literal individually
as for constraints. Given an objective function f and a formula F , the goal
of the optimisation problem

min f (11)
such that F (12)

is to find a total assignment ρ satisfying F that is minimal with respect to
f , i.e., there is no assignment ρ′ such that ρ′ satisfies F and f↾ρ′ < f↾ρ. Note
that it is sufficient to consider minimisation problems as every maximization
problem can simply be expressed as a minimisation problem by negating
the coefficients.

The answer for a pseudo-Boolean optimisation problem is either an optimal
objective value v ∈ Z or v = UNSAT , stating that there is no satisfying
assignment to F .

A cardinality constraint over literals ℓ1, . . . , ℓn is a pseudo-Boolean con-
straint of the form

n∑
i=1

ℓ ≥ A. (13)
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A clause is a disjunction (∨, “or”) of literals, which is the same as saying
that at least one of the literals in the clause is true and hence a clause is
the same as a cardinality constraint with A = 1. A formula in conjunctive
normal form (CNF) is a pseudo-Boolean formula consisting only of clauses.
The problem of finding a satisfying assignment to a CNF is also known as
SAT, and a tool solving this problem is known as a SAT solver. We will say
that some algorithm or encoding is clausal if it only operates on clauses.
The MaxSAT problem is an optimisation variant of SAT, where the goal is
to satisfy as many clauses as possible. Constraint programming is a more
general formalism, in which we cannot only use pseudo-Boolean constraints
and Boolean variables, but variables with larger domains and various kinds
of constraints.
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3 Description of the Proposed Proof System

Given a formula F and an objective function f , a proof for a pseudo-Boolean
optimisation problem (f, F ) with answer v consists of two parts. The first
part is an assignment ρ∗ satisfying F such that f↾ρ∗ = v if v 6= UNSAT
or ρ∗ = ∅ otherwise. The second part is a sequence of m pseudo-Boolean
constraints π = (D1, D2, . . . , Dm) such that Dm is of the form f ≥ v
if v 6= UNSAT or 0 ≥ 1 otherwise. Furthermore, Di is derived from
F ∪ {D1, . . . , Di−1 } using one of the rules below. To allow verification
of the derivation in polynomial time, each step contains an annotation
stating the used rule as well as additional information necessary for effi-
cient verification. Each of these rules will preserve the value of an optimal
assignment by guaranteeing that at least one optimal solution is left. This
is stated more formally in the following invariant.

Invariant 1. If there is an optimal assignment ρ satisfying the formula F ∪
{D1, . . . , Di−1 }, then there is an assignment ρ′ satisfying F ∪{D1, . . . , Di }
such that f↾ρ′ = f↾ρ.

This invariant guarantees that whenever we are able to derive a constraint
of the form f ≥ A for some A ∈ N, then this constraint is a lower bound that
must be satisfied by all optimal solutions to F . Note that the invariant holds
vacuously if there is no solution to F , in which case adding any constraint
is sound. Therefore, we will only discuss the case that there is an optimal
solution ρ as described in the invariant. For most rules below, showing the
invariant will be very simple: If not stated otherwise, we can choose ρ′ = ρ
and the invariant follows trivially as ρ satisfies the premises of the rule and
will satisfy the new constraint in an obvious way.

Let us now discuss the rules available in the proof system.

Literal Axioms. For each literal ℓ we can derive that the literal is at least
zero

ℓ ≥ 0 . (14)

Addition. We can add two constraints by adding their left-hand side and
right-hand side respectively. When considering two constraints over vari-
ables x1, . . . , xn in their variable-normalised form (potentially with some
zero coefficients) we get the rule∑n

i=1 aixi ≥ A
∑n

i=1 bixi ≥ B∑n
i=1(ai + bi)xi ≥ A+B .

(15)
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An addition step is annotated by the two constraints that are added. (In the
actual proof format, each constraint is associated with a numeric identifier,
and, instead of annotating a rule with a constraint, it is only annotated
with the corresponding identifier.)

Multiplication. We can multiply a constraint by a positive integer α ∈ N.∑n
i=1 aiℓi ≥ A∑n

i=1 α · aiℓi ≥ α ·A .
(16)

A multiplication step is annotated by the constraint multiplied and the
used factor α.

Division. We can divide a constraint by a positive integer α ∈ N, if all
coefficients ai are divisible by α. The resulting constraint will only have
integer values on the left-hand side and hence we can round up the right-
hand side, which might not be an integer, resulting in the rule∑n

i=1 aiℓi ≥ A ∀i ∈ [n] : α divides ai∑n
i=1(ai/α)ℓi ≥ dA/αe .

(17)

Note that by adding literal axioms, it is always possible to make coefficients
divisible, without changing the degree. This is the same as rounding up
the coefficients. To avoid ambiguities we will consider constraints in their
coefficient-normalised form, resulting in the rule∑n

i=1 aiℓi ≥ A ∀i ∈ [n] : ai ≥ 0∑n
i=1 dai/αeℓi ≥ dA/αe .

(18)

A division step is annotated by the divided constraint and the used divisor
α. The proof system defined so far is known as cutting planes [CCT87] and
is studied extensively in proof complexity (see [BN21] for an introduction).

Saturation. If we have a constraint with a coefficient that is larger than
what is necessary to satisfy the constraint, no matter how the other literals
are assigned, then we can reduce that coefficient. This is easiest to express
for a constraint in its coefficient-normalised form, resulting in the rule∑n

i=1 aiℓi ≥ A ∀i ∈ [n] : ai ≥ 0∑n
i=1min(A, ai)ℓi ≥ A .

(19)

A saturation step is annotated by the saturated constraint. The saturation
rule is also used in pseudo-Boolean solvers based on [CK05].
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Dominance-based strengthening (simplified). So far, all rules pre-
serve solutions. That is, if an assignment satisfies the premises, then it
also satisfies the conclusion. However, we only need to maintain optimal
solutions, and hence we can add a constraint Di that is falsified by non-
optimal solutions. To check that a constraint only removes non-optimal
solutions, we can verify that any satisfying assignment to F falsifying Di

can be mapped to another satisfying assignment of F with a better ob-
jective value. This mapping is defined through a substitution ω, and ρ is
mapped to ρ ◦ ω, as we will see shortly. This results in the dominance rule

F ∪ {¬Di } |= F↾ω ∪ { f > f↾ω }
Di .

(20)

If this rule holds and we have an assignment ρ satisfying F but falsifying
Di, then we know that ρ must satisfy the right hand side of the implication
and hence (F↾ω ∪ { f > f↾ω })↾ρ is true. By rearranging the substitutions,
we get that F↾ρ◦ω ∪ { f↾ρ > f↾ρ◦ω } must also be true. Hence, ρ ◦ ω is a
solution to F that has a better objective value than ρ.

A dominance step is annotated with the used substitution ω, and for each
C ∈ F↾ω∪{ f > f↾ω } a proof that F ∪{¬Di }∪{¬C } is unsatisfiable, from
which the premises follows.

Invariant 1 holds by choosing ρ′ = ρ, as an optimal assignment cannot
falsify Di: Let ρ be an optimal assignment as in Invariant 1. If ρ would
falsify Di, then, as discussed above, ρ ◦ ω would be a solution to F with
better objective value than ρ. This contradicts the fact that the ρ is an
optimal assignment.

Redundancy-based strengthening (simplified). It is even possible to
add a constraint Di that is falsified by optimal solutions as long as not all
optimal solutions are removed. To ensure that at least one optimal solution
remains, let us consider an assignment ρ with the following property. The
assignment ρ satisfies all previously added constraints

Gi = F ∪ {D1, . . . , Di−1 } , (21)

but ρ falsifies the constraint Di. Now assume that we can obtain another
assignment ρ′ = ρ ◦ ω using a witness substitution ω such that ρ′ satisfies
Gi and Di while also having an objective value that is at least as good as
that of ρ. If we have such a witness ω, then clearly we didn’t remove all
optimal solutions. The redundancy rule is a formalization of this idea:
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Gi ∪ {¬Di } |= (Gi ∪ {Di })↾ω ∪ { f ≥ f↾ω }
Di .

(22)

A redundancy step is annotated with the used witness substitution ω, and
for each C ∈ (Gi ∪{Di })↾ω ∪{ f ≥ f↾ω } a proof that Gi ∪{¬Di }∪ {¬C }
is unsatisfiable, from which the premises follows. The redundancy rule
is a generalization from the clausal redundancy rule [HKB17; BT19] to
a pseudo-Boolean optimisation setting and can be used to introduce new
variables (see Paper A).

Invariant 1 holds by choosing ρ′ = ρ if ρ satisfies Di and otherwise ρ′ = ρ◦ω.
In the latter case, it is easy to see that we still have a satisfying assignment
as ρ satisfies Gi ∪ {¬Di } and hence ((Gi ∪ {Di })↾ω ∪ { f ≥ f↾ω })↾ρ evalu-
ates to true, which is the same as (Gi ∪{Di })↾ρ′ ∪{ f↾ρ ≥ f↾ρ′ }. Therefore
ρ′ is a solution with an objective value that is as least as good as an optimal
solution and hence optimal itself.

Reverse Unit Propagation. It is often “obvious” that some constraint
Di follows from the current set of constraints, but annoying to write down
an explicit proof. In such cases, it is useful to have methods for auto-
matically proving that Di can be derived, such as reverse unit propaga-
tion [GN03]. The idea of reverse unit propagation is that we perform unit
propagation on the current set of constraints Gi = F ∪{D1, . . . , Di−1 } to-
gether with the negation of Di. If the unit propagation results in a conflict,
then we know that there is no assignment satisfying Gi but falsifying Di,
and hence every assignment satisfying Gi must also satisfy Di. This gives
the rule

F ∪ {D1, . . . , Di−1 } ∪ {¬Di } propagates to conflict
Di .

(23)

As unit propagation can be performed efficiently, it is sufficient to state the
constraint Di to be derived, and no further annotation is necessary. Invari-
ant 1 holds choosing ρ′ = ρ because if F ∪ {D1, . . . , Di−1 } ∪ {¬Di } prop-
agates to conflict, then it is unsatisfiable and hence F ∪{D1, . . . , Di−1 } |=
Di.

To show soundness of the proof system, assume for sake of contradiction
that the given answer v is incorrect, but we have a valid proof. This means
that if v = UNSAT , then there is an optimal solution ρ0 to F , because we
assumed that the answer is incorrect. If v 6= UNSAT , then either there
is no solution to F or v is not the optimal value, and hence there is an
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optimal solution ρ0 with a different objective value. As the proof provides
a solution ρ∗ to F with f↾ρ∗ = v it must be the case that there is an optimal
solution ρ0 with f↾ρ0 < v.

Let ρ0 be an assignment as described in the two cases above. Using In-
variant 1 we can maintain a solution ρi to the current set of constraints
F∪{D1, . . . , Di }, and hence will end with the assignment ρm satisfying Dm.
There are two cases to consider for ρm. If v = UNSAT , then Dm is 0 ≥ 1,
and hence we reach a contradiction because this constraint is not satisfied
by ρm. If v 6= UNSAT , then Dm is f ≥ v, and hence we reach a contra-
diction because this constraint is not satisfied by ρm as f↾ρm ≤ f↾ρ0 < v by
construction.

To show completeness of the proof system, we need to demonstrate that a
valid proof can always be constructed for a correct answer. This follows
directly from the fact that if F |= C, then C can be derived using cutting
planes [Chv73] (this property is called implicational completeness). There-
fore, if the formula F is unsatisfiable, then it holds that F |= 0 ≥ 1 and
0 ≥ 1 can be derived. If the formula is satisfiable and has objective value v,
then there is an optimal solution ρ∗ with objective value v. As there is no
better solution, it holds that F |= f ≥ v, and hence f ≥ v can be derived.

For all rules, except for the dominance rule and the redundancy rule, it is
easy to see that the rule can be verified in time polynomial in the size of the
proof (including annotations). The dominance rule and the redundancy rule
can contain another proof as annotation, and hence are recursive. There-
fore we need an inductive argument. The proof (including annotations) is
finite, and hence as a base case, we have a proof that does not contain the
dominance or the redundancy rule, which can be checked in polynomial
time. By induction, we know that all sub-proofs can be checked in polyno-
mial time with respect to the size of the sub-proof. After checking that all
necessary sub-proofs are provided and are valid, it is clear that the premise
of the rule holds, and hence we are done checking the rule.

Some of the rules were simplified to provide a more gentle introduction to
the proof system while preserving the main ideas. The full proof system,
which also contains some additional rules, can be found in Paper B. There
are three main differences: Firstly, the deletion rule is missing, which is
important for efficient verification of the reverse unit propagation rule and
memory efficiency. Secondly, the dominance rule does not have to improve
the objective function, instead, we allow to define an arbitrary order on
assignments to be improved. And finally, when a solution ρ to the current
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set of constraints is found, then the constraint f < f↾ρ is added. Either this
constraint enforces that the next solution needs to be better or this con-
straint can be used to derive contradiction, showing that no better solution
exists.
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4 A Worked-Out Example

Let us consider a simplified variant of a kidney exchange program. The
idea is that a person, let us call him Frank, needs a kidney, and a friend of
Frank, let us call her Sam, wants to donate a kidney to Frank. However,
their blood type is not compatible, and hence Sam cannot donate her kidney
to Frank directly. Maybe there is another pair of people (Susan and Max)
having the same problem, and Sam’s kidney is compatible with Susan, and
Max’s kidney is suitable for Frank, so they could make a cross-exchange.
While such a pairing seems unlikely at first, if enough people register in a
database for kidney exchanges, we will be able to find such pairings. This
is the concept of kidney exchange programs as used in many countries.

The first step is to describe this problem in a formal model. Let us use
a bipartite graph G = (U ∪ V,E) to represent the possible exchanges, as
shown in Figure 2 (on the next page), where we use letters for donors on
the left and numbers for recipients on the right. There is an edge between
two nodes if a donated kidney is compatible with the recipient. For the
example in Figure 2, donor A can donate a kidney to recipients 2 and 4. If
a donor u donates his kidney to recipient v we will say that the edge (u, v)
is matched. We want that each donor donates at most one kidney, and
similarly, each recipient receives at most one kidney. This means we want a
matching, i.e., a set of edges M such that each node is incident to at most
one edge in M . Not having a working kidney is potentially life-threatening.
Hence we want to find a maximum matching, i.e., a matching with as many
matched edges as possible. The edges marked in Figure 2 form a maximum
matching, but how can we ensure that there is no larger matching?

4.1 Verifying Optimality

Given that lives are at stake, we use a certifying algorithm to ensure that
the found value is optimal. We start by focusing on the pseudo-Boolean
formula and a proof of optimality that a matching algorithm could create.
We will later discuss an algorithm producing this certificate, but for our
initial purpose of verifying optimality, the inner workings of the algorithm
are irrelevant.

To encode the matching problem into a pseudo-Boolean problem, we repre-
sent each edge (u, v) ∈ E as Boolean variable xu,v, which is true if and only
if (u, v) is in the matching. We want to maximise the number of variables
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Figure 2: Maximum matching (highlighted in red) of a bipartite graph.

set to true, which is the same as minimising the variables set to false, i.e.,∑
(u,v)∈E xu,v. To enforce that no left node u ∈ U has two matched edges,

we add for every pair of edges (u, v) ∈ E and (u, v′) ∈ E the constraint
xu,v + xu,v′ ≥ 1. Analogously, we can enforce that no right node has two
matched edges.

For the example in Figure 2 we have the objective function

min :
∑

i∈{ 2,4 }

xA,i + xC,i + xE,i +
∑

i∈{ 1,3,5 }

xB,i + xD,i (24)

and the formula

xA,2+xA,4 ≥ 1 (25a)
xB,1+xB,3 ≥ 1 (25b)
xB,1+ xB,5 ≥ 1 (25c)

xB,3+xB,5 ≥ 1 (25d)
xC,2+xC,4 ≥ 1 (25e)

xD,1+xD,3 ≥ 1 (25f)
xD,1+ xD,5 ≥ 1 (25g)

xD,3+xD,5 ≥ 1 (25h)
xE,2+xE,4 ≥ 1 (25i)

xB,1+xD,1 ≥ 1 (25j)
xA,2+xC,2 ≥ 1 (25k)
xA,2+ xE,2 ≥ 1 (25l)

xC,2+xE,2 ≥ 1 (25m)
xB,3+xD,3 ≥ 1 (25n)

xA,3+xC,3 ≥ 1 (25o)
xA,3+ xE,3 ≥ 1 (25p)

xC,3+xE,3 ≥ 1 (25q)
xB,5+xD,5 ≥ 1. (25r)

At this point we should take a moment and double check that the pseudo-
Boolean problem corresponds to the problem in the real world that we want
to solve, because the choice of the pseudo-Boolean formula is not machine
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verified. We need to convince ourself that any assignment satisfying this
formula corresponds to a valid matching and vice versa. Note that in
practice we would not only want that the formula encodes the matching
problem represented by a graph as in Figure 2, but also that this graph
is modelling the actual kidney donors and recipients that take part in the
exchange program.

Let us now look at a proof that the matching in Figure 2 is optimal. The
proof starts by using the addition rule with the constraints (25b)-(25d) to
obtain the constraint 2xB,1+2xB,3+2xB,5 ≥ 3. Applying the division rule
with divisor 2 (and rounding up) yields

xB,1 + xB,3 + xB,5 ≥ 2. (26)

This constraint says that all except one variable needs to be false, or put
differently, at most one of the variables can be true (hence such a constraint
is also known as an at-most-one constraint). We could have used this
constraint directly to encode that each node should have at most one edge
in the matching instead of encoding that no node should have two matched
edges. However, this demonstrates that we can also use the proof system
to re-encode the problem into something more convenient for proof logging.
We can perform a similar derivation to obtain at-most-one constraints for
the nodes D, 2 and 4, i.e.,

xD,1 + xD,3 + xD,5 ≥ 2 (27)
xA,2 + xC,2 + xE,2 ≥ 2 (28)
xA,4 + xC,4 + xE,4 ≥ 2. (29)

By adding the constraints (26)-(29), we obtain∑
i∈{ 2,4 }

xA,i + xC,i + xE,i +
∑

i∈{ 1,3,5 }

xB,i + xD,i ≥ 8, (30)

which is a bound on the objective function (24).

The matching shown in Figure 2 assigns xA,2, xB,3, xC,4 and xD,5 to 1 and
all other variables to 0. This assignment is part of the proof. To verify the
proof, we first need to check that this assignment satisfies the constraints in
the formula (25) and hence is a solution, which is an easy task to perform.
Then we need to confirm that the objective value of the solution matches
the derived lower bound. The objective function (24) contains only negated
variables, and because 4 out of 12 variables in the objective function are
set to true, the objective value is 8. We have a solution with an objective

19



value of 8 and a lower bound on the objective function (30) with the same
value. Therefore, the solution (and hence the matching) must be optimal.

To check the derived lower bound (30), it suffices to verify the correct
application of the rules in the proof system. Therefore, we do not need to
check the proof manually but can use an automated tool such as VeriPB to
take care of verification. All this verifier does is check each rule application
individually. The verifier does not need to understand how the algorithm
used to produce the matching works nor why it is correct. Furthermore,
no knowledge about graph theory is needed to verify optimality.

This simplified variant of a kidney exchange program could already be
verified with the methods described in [McC+11]. However, the advantage
of our multi-purpose approach is that, in principle, it can deal with more
complex formulations. For example, donor A might only be willing to
donate a kidney if his friend recipient 1 receives a kidney, which can be
enforced by adding the constraint xA,2+xA,3 ≤ xB,1+xD,1 to the formula.

4.2 Developing a Certifying Algorithm

Before we discuss an algorithm for finding a maximum matching and how
we can construct a proof, we need some basics from graph theory. Let
G = (U ∪V,E) be a bipartite graph and let M ⊆ E be a matching. We will
say that a node u is matched if u is incident to an edge in the matching M .
If a node is not matched, it is unmatched. An alternating path is a sequence
of nodes p = (v1, . . . , vk) of length k ∈ N such that v1 is unmatched and
every other edge along the path is in the matching, i.e., for all even i ∈ [k]
the edge (vi−1, vi) is in E but not in the matching M and (vi, vi+1) is in M
unless i = k. We use edges(p) to denote the set of edges along the path p.
An augmenting path is an alternating path that ends with an unmatched
node. If there is an augmenting path p then the matching M is not optimal,
as we can construct a larger matching by flipping whether an edge along
the path p is in the matching, i.e., M ′ = M \ edges(p) ∪ edges(p) \ M .
This changes v1 and vk from unmatched nodes to matched nodes while
maintaining the status for all other nodes and increasing the size of the
matching by 1.

Consider the following standard algorithm. We start with the empty match-
ing and then greedily increase the size of the matching by finding augment-
ing paths starting at unmatched nodes in U . If there is no further aug-
menting path, the algorithm terminates and returns the last matching. For
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finding an augmenting path, the algorithm computes the set R of nodes
reachable via an alternating path starting at an unmatched node in U (for
example, via a modified breath-first search).

To provide proof logging for this algorithm, we consider the set W = (U \
R)∪(V ∩R). For each node u in W we derive an at-most-one constraint over
the variables corresponding to its incident edges. Then we use the addition
rule to add all of these at-most-one constraints together. Additionally, we
add literal axioms xu,v ≥ 0 for any u, v ∈ W with an edge (u, v) ∈ E.
We will discuss later why this results in a lower bound to the objective
function matching the found solution. Finally, the algorithm writes the
assignment to the Boolean variables corresponding to the found matching
into the proof file.

For the example in Figure 2, the only unmatched node in U is E, and
nodes reachable via an alternating path are R = {A,C,E, 2, 4 }. There is
no node v ∈ V on the right that is reachable and unmatched, and hence
the algorithm does not find an augmenting path and terminates. For proof
logging, it computes W = {B,D }∪{ 2, 4 }. The at-most-one constraints to
be derived and added together are (26)-(29). There are no edges between
nodes in W , and hence the derivation of the objective bound is completed.
The solution written to the proof file assigns xA,2, xB,3, xC,4 and xD,5 to 1
and all other variables to 0.

With this description, it is possible to implement the algorithm, run it
and verify the produced proof to check if the result is correct. Somewhat
surprisingly, this means that we can verify that a result of the algorithm
is valid on some specific input without even knowing why this algorithm is
correct.

Now, let us discuss why the described algorithm and proof logging will
always produce a valid bound on the objective. For this, we need Kőnigs
theorem, stating that for any maximum matching M in a bipartite graph,
there is a vertex-cover W , i.e., a set of nodes such that every edge in the
graph is incident to a node in W , such that |M | = |W |. For each node
in the graph we can construct an at-most-one constraint over the variables
corresponding to the incident edges. If we add the at-most-one constraint
of each node in a vertex cover W , then we get a constraint stating that
at most |W | of the variables in the constraint are true. Because W is a
vertex cover, every variable must appear at least once in the constraint. If
a variable appears more than once, we can add the literal axiom xu,v ≥ 0,
which is the same as −xu,v ≤ 0, to reduce the variable’s coefficient to 1
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while maintaining an at-most-|W | constraint. The result is a constraint
that gives a bound on the objective function with the same value as the
size of the maximum matching found.

The set W = (U \ R) ∪ (V ∩ R) used for proof logging in the algorithm is
the same set used to prove Kőnigs theorem. We only have to show that W
is indeed a vertex-cover with the same size as the found matching M . Let
us consider an edge (u, v) ∈ E with u ∈ U and v ∈ V . We first observe
that if u is in R then v is in R: Indeed, if u is in R and (u, v) is in the
matching, then u is matched and can only have been reached from its
matched neighbour v. And if (u, v) is not in the matching, then we can
reach v from u by extending the alternating path that reached u. Using
this observation, we can show that for every edge (u, v) ∈ E with u ∈ U
and v ∈ V either u or v is in W : On the one hand, if u 6∈ W , then u ∈ R
and as observed, it follows that v ∈ R and hence v ∈ W . On the other
hand, if v 6∈ W , then v 6∈ R and thus u 6∈ R by the observation above,
and we have u ∈ W . Therefore, W is a vertex cover. Clearly |M | ≤ |W |,
because W is a vertex cover and hence we have at least one node of each
matched edge in W . Furthermore, U \ R only contains matched nodes
because every unmatched node in U is contained in R and V ∩ R only
contains matched nodes, or there would be an augmenting path and the
algorithm would not have terminated. There cannot be an edge (u, v) in
the matching M with both endpoints in the vertex cover, i.e., u ∈ U \ R
and v ∈ V ∩ R, because then u is reachable by extending the alternating
path reaching v, and u would be in R. Therefore, we have a different
matched edge for each node in W and hence |W | ≤ |M |.
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5 Main Results of the Research Papers

This section gives a short overview of the papers included in this thesis.
The proof system described in the Section 3 was developed and improved
as an ongoing effort while studying different applications. As Section 3
already contains an overview of the rules in the proof system, this section
focuses on the applications studied.

The included papers can roughly be divided into four groups. The first
group focuses on important techniques in SAT and MaxSAT solving that
are challenging to certify efficiently or cannot be certified using the de-facto
standard DRAT . Paper A investigates parity reasoning and Paper B stud-
ies symmetry breaking in SAT solving. Paper D studies the translation of
pseudo-Boolean problems into SAT problems, and in Paper C we take a first
step towards proof logging techniques used in MaxSAT, which is an opti-
mization version of SAT, by lifting MaxSAT techniques to a pseudo-Boolean
setting. The second group of papers studies constraint programming, an
area that does not have an established proof format. While basic search
algorithms in constraint programming are usually similar to SAT solving
and hence proof logging techniques are transferable, the challenge is pro-
viding proof logging for the various algorithms for propagating constraints.
An important constraint is the all-different constraint for which we study
proof logging in Paper E, and in Paper F we discuss proof logging for a
wider range of basic constraints. The third group of papers studies proof
logging for different graph problems demonstrating the versatility of the
proposed proof format. Paper G investigates subgraph isomorphism, and
Paper H studies maximum clique as well as maximum common subgraph.
Finally, the last group, containing only Paper I, is not an application of
proof logging but studies the division and saturation rule in more depth.

5.1 Summary of Paper A
“Certifying Parity Reasoning Efficiently Using Pseudo-Boolean Proofs”

A parity or XOR-constraint is a linear equality modulo 2. For a set of par-
ity constraints it is possible to efficiently determine satisfiability, as well
as propagation of variables, via systematic addition of parity constraints
through Gaussian elimination. This is crucial for the performance of SAT
solvers on instances that encode such parity constraints into CNF. It was
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observed in [DGP04] that with the right encoding, addition of parity con-
straints can be performed using cutting planes. In Paper A we use this
observation to provide full proof logging for parity reasoning by first trans-
lating a standard CNF encoding of parities into a pseudo-Boolean encoding.
With this encoding we can easily certify the addition of parities, which is
used to derive parities that cause a propagation. As the SAT solver only
understands clauses, we also describe how to derive a clause that has the
same propagation as a given parity constraint.

An important step to allow for the translation from the CNF encoding into
the pseudo-Boolean encoding was adding the redundancy-based strength-
ening rule to the proof system, which allows for the introduction of auxiliary
variables. With this rule our proof format is a generalisation of DRAT and,
therefore, allows reusing of previously existing proof logging for DRAT ,
such as SAT pre- and in-processing.

The evaluation demonstrates a dramatic improvement in proof logging and
verification performance compared to previous work, certifying parity rea-
soning using DRAT .

To improve the efficiency of a SAT solver with parity reasoning, clauses can
be constructed lazily [SGM20], i.e., only when they are needed in the solver.
The same technique improves proof logging and verification performance
by producing certificates only for clauses that are needed.

5.2 Summary of Paper B
“Certified Symmetry and Dominance

Breaking for Combinatorial Optimisation”

A formula F has a syntactic symmetry if we can permute literals without
changing the formula, i.e., if there is a substitution ρ that only permutes
literals such that F↾ρ = F . Symmetry breaking adds constraints to the
formula that are falsified by most but not all assignments that are sym-
metric. This technique can improve a solver’s performance drastically by
eliminating symmetric parts of the search space while guaranteeing correct-
ness as at least one assignment is left in each equivalence class of symmetric
assignments.

Symmetry breaking was studied previously for DRAT [HHW15], but the
approach can require iterating over the broken symmetries multiple times,
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with each iteration introducing a linear number of variables. Thus the
method is only practical for small symmetries that can interact in simple
ways. With our proof system, we can consider multiple symmetries in-
dependently using the dominance-based strengthening rule introduced in
Paper B. In contrast to the approach for DRAT , the pseudo-Boolean sym-
metry breaking constraints can be added without introducing new vari-
ables. An evaluation of SAT competition benchmarks demonstrates the
practicability of our system.

As described in Paper B, this rule can be used for symmetry breaking for
CNF formulas and constraint programming as well as dominance breaking
for finding a maximum clique. A surprising observation in this paper is that,
carefully defining the deletion rule becomes crucial when the dominance rule
is used. If deletion were possible without limitation, then the proof system
would become unsound and allow to derive a contradicting constraint from
a satisfiable formula.

5.3 Summary of Paper C
“Cutting to the Core of Pseudo-Boolean Optimization:

Combining Core-Guided Search with Cutting Planes Reasoning”

As the proof format can handle optimisation problems, it is a natural ques-
tion to ask if it can be used to design certifying MaxSAT algorithms. While
encoding a MaxSAT problem into a pseudo-Boolean problem is straightfor-
ward, it is more challenging to translate the algorithms from one formalism
to the other. Doing so, however, is not only a step towards proof logging
for MaxSAT but also opens the possibility to explore a generalization of
these algorithms in a pseudo-Boolean setting.

In Paper C we translate a technique known as core-guided solving from
MaxSAT to a pseudo-Boolean setting and implement it into the solver
RoundingSat [RS]. Interestingly, using a pseudo-Boolean solver instead
of a SAT solver as a subroutine has multiple advantages: Firstly, it can
use cardinality constraints directly and does not require re-encoding. Sec-
ondly, the solver subroutine can return not only a clause as an answer but
also a general pseudo-Boolean constraint. These constraints allow stronger
bounds on the objective function and improve solver performance. The
evaluation demonstrates that we can significantly improve the performance
of RoundingSat on optimisation instances.
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5.4 Summary of Paper D
“Certified CNF Translations for Pseudo-Boolean Solving”

A crucial technique in SAT-based pseudo-Boolean and MaxSAT solving
is translating pseudo-Boolean constraints into clausal form. In Paper D,
we describe how to certify the translation to three different encodings. A
significant challenge is that there are many different encodings, making it
laborious to provide proof logging for all of them. We develop a unifying
framework to streamline proof logging for a wide range of encodings. The
framework utilises the fact that many encodings can be viewed as a CNF
encoding of a circuit computing an integer representation of the sum of
the variables in the constraint. To support different encodings for the
integer representation, we provide proof logging for a set of basic building
blocks that can then be put together to provide proof logging for different
encodings.

To demonstrate the approach, we combine our tool for translating pseudo-
Boolean constraints with a state-of-the-art SAT solver into a fully certified
pseudo-Boolean solver. This results in the first SAT-based pseudo-Boolean
solver that supports verification of the full workflow instead of just verifying
the SAT solver and trusting the translation. The evaluation demonstrates
that the approach is viable for most problems in the last pseudo-Boolean
competition [PB16], although there is still room for improvement in the
asymptotic behaviour on large constraints.

5.5 Summary of Paper E
“Justifying All Differences Using Pseudo-Boolean Reasoning”

Given a set of variables V and for each variable X ∈ V a set of values
domain(X) that this variable can take, the all-different constraint enforces
that each value in

∪
X∈V domain(X) is assigned to at most one variable

in V . In Paper E we provide proof logging for the all-different constraint
to evaluate if our proof format can also be used to design certifying algo-
rithms that do not operate on Boolean variables. Studying propagation for
the all-different constraint is especially interesting as it has been a challeng-
ing barrier to providing proof logging for constraint programming. Most
state-of-the-art all-different propagators are based on finding an optimal
matching in a bipartite graph, where the variables correspond to the left
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and the values to the right partition, and there is an edge if a value can
be assigned to a variable. A matching in this graph corresponds to a valid
assignment of variables to values. While certifying algorithms for matching
have been studied in [McC+11], they use problem-specific certificates, and
it is unclear if and how such certificates could be integrated into a larger
system that is using matching only as a subroutine, as is the case in a
constraint programming solver.

Our proof format allows certifying maximum matchings, and it is easy to
integrate the resulting certificate into a larger system such as a constraint
programming solver. An important insight of Paper E is that having a
reverse unit propagation rule is crucial for ease of use. Reverse unit prop-
agation reduces the burden on the implementer of the solver to produce
a proof manually: Instead of carefully constructing a derivation, it is suf-
ficient to claim that a certain constraint is implied, as long as it can be
checked automatically, i.e., using reverse unit propagation.

A key benefit of our proof system is that the resulting proof logging is
much simpler and more efficient than what would be possible with a clausal
proof system: Note that matching is a generalisation of a problem known
as the pigeonhole principle. The pigeonhole principle requires exponen-
tial sized [Hak85] resolution proofs, which is a simple clausal proof system.
Hence proof logging in a clausal format would require more sophisticated
techniques, like introducing auxiliary variables, which might result in pro-
hibitive overhead.

5.6 Summary of Paper F
“An Auditable Constraint Programming Solver”

In Paper E we already provided proof logging for the all-different constraint.
In Paper F we extend this to a full constraint programming solver with
support for bounded integer variables and a reasonable range of constraints
such as linear inequalities, table constraints and (2D) element constraints.
From a proof logging perspective, an obstacle is that different encodings
are desirable for the same variable depending on the constraints. This is
resolved by encoding the problem into a pseudo-Boolean formula using one
encoding and then introducing the other encodings on demand via rules in
the proof system. With the implemented constraint programming solver we
demonstrate that, with some careful design choices, it is reasonably simple
to implement proof logging for constraint programming.
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One limitation of this approach is that we cannot verify the correctness of
the specification of the problem given as pseudo-Boolean formula. Instead,
we need to rely on extensive testing of the encoding on a constraint by
constraint basis.

5.7 Summary of Paper G
“Subgraph Isomorphism Meets Cutting

Planes: Solving With Certified Solutions”

Preliminaries. Given a pattern graph G1 and a target graph G2 the (non-
induced) subgraph isomorphism problem is to find a total injective mapping
π from nodes in G1 to nodes in G2 such that edges in G1 map to edges
in G2.

Paper G shows that in hindsight it is not too complicated to provide certifi-
cation for a state-of-the-art subgraph isomorphism solver. This is surprising
as our proof format does not know what a graph is, let alone does it un-
derstand any concepts from graph theory such as the degree of a node or
the neighbourhood of a node. However, the studied subgraph isomorphism
solver heavily relies on these concepts. For example, a pattern node u can-
not be matched to a target node v if the degree of node u is larger than the
degree of node v. Another example is that if there are k ∈ N paths from a
node u to a node v in the pattern graph, then there needs to be at least k
paths between π(v) and π(u) in the target graph.

5.8 Summary of Paper H
“Certifying Solvers for Clique and Maximum

Common (Connected) Subgraph Problems”

Preliminaries. For two graphs G1 = (V1, E1) and G2 = (V2, E2), a com-
mon (induced) subgraph is implicitly given through a partial injective map-
ping π from V1 to V2 such that edges in G1 map to edges in G2 and non-edges
map to non-edges, i.e., if π is defined for u and v then (u, v) ∈ E1 if and
only if (π(u), π(v)) ∈ E2. For the maximum common induced subgraph
problem, the goal is to map as many nodes as possible. A common induced
subgraph is connected if all mapped nodes in G1 (and hence in G2) are
connected through a sequence of edges. A graph G = (V,E) is k-colourable
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if there is a way to colour each node with a colour such that at most k
colours are used, and if there is an edge (u, v) ∈ E then u and v have a
different colour.

In Paper H we provide proof logging for the optimisation problems maxi-
mum clique and maximum (common) subgraph.

An essential technique for solving maximum clique, that we can now certify,
is to derive an upper bound on the size of a clique using a graph colouring:
If a graph is k-colourable, then it cannot contain a (k+1)-clique, as each
member of a clique needs to get a different colour. A fascinating insight
is that we can derive a valid bound in our proof system from any valid
colouring, and hence it does not matter how the graph colouring is obtained.
Therefore, if the graph colouring algorithm changes, the proof logging does
not need to be adjusted.

Additionally, Paper H studies proof logging for two different approaches for
solving the maximum common subgraph problem, and depending on which
approach is used, a different pseudo-Boolean specification of the problem
is desirable for proof logging. The first approach is to find a mapping
between the graphs directly. The second approach is to reduce the problem
to clique, that is, to construct a graph such that a clique in the graph
corresponds to a solution of the subgraph isomorphism problem and vice
versa. After reducing the problem to clique, a clique solver and its proof
logging can be used without modification. For this to be possible, it is
necessary to have a different pseudo-Boolean formula, depending on the
chosen algorithm. However, a specification should be chosen based on its
simplicity and should not vary based on the used algorithm. So, instead of
using different pseudo-Boolean formulas based on the used algorithm, the
paper describes how to derive all constraints needed for proof logging the
clique algorithm from the specification of the pseudo-Boolean encoding of
the subgraph isomorphism problem.

Another challenge solved in Paper H is that certifying a maximum common
connected subgraph requires defining connectedness. However, our proof
system does not understand any graph theory. Instead, we add constraints
to the pseudo-Boolean formula that are designed to only be satisfied by
assignments of the Boolean variables that correspond to a connected sub-
graph.
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5.9 Summary of Paper I
“On Division Versus Saturation in Pseudo-Boolean Solving”

An important consideration when designing a proof format is which rules
should be available. The goal is, on the one hand, to have as few and
as simple rules as possible to make the verifier easier to implement and
more trustworthy. On the other hand, we want the format to be expressive
enough, such that constructing concise proofs is easy for the solver. These
two conflicting goals become already relevant in the context of pseudo-
Boolean solvers that reason with pseudo-Boolean constraints natively. Such
solvers can use either the saturation rule or the division rule, which raises
the question if the proof format should support both of these rules or if it
is sufficient to support only one. In Paper I we study the power of division
and saturation from a proof complexity point of view, where we ask what
are the shortest refutations for an unsatisfiable formula. In [Vin+18] it was
already shown that division is stronger than saturation on constraints with
coefficients of polynomial magnitude, and we were able to generalize this
result to any cutting planes derivation with saturation, no matter the size
of the coefficients involved.

Proposition 1. There is a family of PB formulas {Fn }n∈N+
with O(n)

variables and constraints that can be refuted in length O(n) in cutting
planes with division, but for which any saturation refutation has length
Ω(exp(n)).

This means that the saturation rule cannot be used to replace the division
rule in a proof system. While it was shown in [Vin+18] that saturation
can be replaced with multiple division steps, we show that the number of
division steps required to replace a single saturation depends on the size of
the saturated coefficient.

Proposition 2. From 2Rx +
∑2R

i=1 zi ≥ R saturation can derive Rx +∑2R
i=1 zi ≥ R in one step, while any cutting planes derivation with division

requires at least Ω(
√
R) steps.

Note that R is exponential in the bit-size used to represent the coefficient R
in the constraint, and hence replacing a single saturation step can require
a large number of division steps. While this result is not as strong as the
previous result, in particular because the constraint already contains R
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variables, it is clear that it is desirable to also include the saturation rule
as part of a practical proof system.

These results are not only relevant for proof logging but also for solver
design, where a choice is made between using the saturation or division
rule. Therefore Paper I is also emphasising another aspect of the rules:
Pseudo-Boolean solvers such as RoundingSat and Sat4j [SAT4j] will only
perform the addition of constraints C and D if there is a literal ℓ that
appears in C and appears negated in D. Before the addition, the constraints
are multiplied such that the resulting constraint no longer contains ℓ. The
presented results also translate to this restricted form of cutting planes, and
hence we are able to present formulas that should in principle be able to
discriminate between solvers that only use division or only use saturation.
However, these formulas were hard for both kinds of solvers, which indicates
that further improvements to the used heuristics are necessary.
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6 Related Work

There are various proof formats that target a single application. The
practical algebraic calculus (PAC) [RBK18; KFB20; Kau+22] operates
on polynomial equations. It is designed to verify algebraic circuits, e.g.,
for multiplication, and allows the integration of basic SAT solving tech-
niques [KBK20]. There is a proof format for basic integer programming
techniques [CGS17] supporting addition and rounding as well as branch
and bound, but lacking support for more advanced techniques such as pre-
processing. For basic constraint programming techniques, a format was
proposed in [VS10] with the intention that it can be extended by addi-
tional rules for each used algorithm or propagator. There are numerous
proof logging formats for SAT such as RUP [GN03], TraceCheck [Bie06],
DRAT [HHW13a; HHW13b; WHH14], GRIT [CMS17], LRAT [Cru+17],
and FRAT [BCH21]. All of the mentioned formats were specifically de-
signed for a single application, such as SAT solving. However, it is con-
ceivable that some formats, such as DRAT , could also be utilised as a
multi-purpose proof format.

There are two concerns when designing a multi-purpose proof format. The
first concern is how the problem to be solved is specified. The CNF input
format used for SAT solving is not suited to describe optimisation problems.
Consequently, a proof format designed for CNF, such as DRAT , cannot
verify optimality. Our approach builds on pseudo-Boolean optimisation and
hence can deal with optimisation, but it would be an ill fit for quantified
Boolean formulas. The second concern is how to express the reasoning of
a wide range of algorithms within the rules of the proof system.

There are two main ideas for supporting various algorithms. The first idea
is to make the proof format extensible [VS10; BCH21], i.e., to allow the
addition of new rules based on the used algorithms. While this approach is
very flexible, it increases the complexity of the verifier with each new rule,
and there might be subtle interactions between different rules threatening
the soundness of the proof format. The second idea is to design a proof
system that is powerful enough outright. From a theoretical perspective,
this is surprisingly easy: By allowing the introduction of new variables,
proof systems such as cutting planes and resolution become as powerful
as any extended Frege proof system, i.e., a proof system having an arbi-
trary but finite number of rules over Boolean circuits. This approach is
followed by many proof systems such as DRAT , PAC and our proof sys-
tem. However, applying this theoretical result in practice can result in
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a considerable polynomial overhead. This overhead can be ignored from
a theoretical perspective when studying super polynomial differences in
proof size, but already a small polynomial overhead can quickly become
prohibitive in practice. Therefore, it is crucial for a multi-purpose proof
format that simple problems are easy to express, while more sophisticated
algorithms can also exhibit more sophisticated proof logging. In this spirit,
an argument for choosing cutting planes as the basis of our proof system is
that refuting the pigeonhole principle, asking if n ∈ N pigeons can fit into
n− 1 holes, is easy in cutting planes but requires proofs of exponential size
in resolution [Hak85] and polynomial calculus [Raz98; IPS99]. Resolution
can be seen as the foundation of clausal proof systems such as DRAT , and
respectively polynomial calculus is the foundation of PAC . Hence, refuting
a problem as simple as the pigeonhole principle in these proof systems re-
quires some sophistication already, while it is straightforward in our proof
system.
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7 Discussion and Conclusion

This thesis proposes a new proof system based on pseudo-Boolean con-
straints and the cutting planes proof system to certify the answer of com-
binatorial algorithms. To the best of our knowledge, it is the first multi-
purpose proof system, certifying a wide range of different problems and
algorithms. The result is the verifier VeriPB, which can verify SAT and
pseudo-Boolean problems as well as constraint programming and graph
problems such as cliques, subgraph isomorphisms, and common connected
subgraphs. The focus of the proof system is to verify the optimality of solu-
tions or that no solution exists. Still, it can, in principle, be used for other
tasks, such as enumerating solutions or verifying the translation between
different pseudo-Boolean encodings.

With the help of this new proof system, we can design and implement
certifying versions of multiple algorithms for which no such implementa-
tion existed or previous certifying algorithms were only practical for simple
instances. Importantly, adding proof logging to the algorithms does not
require substantial changes. The information already available to the algo-
rithm is sufficient to construct the necessary proofs.

We achieved the goal of not blindly trusting the solver by using certifying
algorithms, but this raises the question if we should trust the verifier more
than the solver. The proof system checked by the verifier only has a few
rules that are easy to verify and it should be easier to implement the ver-
ifier correctly than the solver. Although this is left for future work, it is
within reach and currently work in progress to produce a formally verified
version of the verifier, as is done for other proof formats [CMS17; Cru+17;
Kau+22]. However, even if we choose not to believe that the verifier is
always correct, we can trust a solution more after verification: On the one
hand, it is less likely that the verifier and the solver have a bug for the
same problem. On the other hand, the verifier will be thoroughly tested
over time as the same verifier can verify multiple, completely different al-
gorithms through the multi-purpose nature of the proof format. Therefore,
fixing a bug in the verifier that was found for one of the applications also
benefits the others.

It would be desirable to verify the solvers formally. However, this still
seems to be out of reach for complex and efficient solvers, with the notable
exception of IsaSAT [Bla+18; Fle19]. The reason is that formal verification
usually proves that the solver is producing a correct answer on all possible
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inputs. Therefore, it is necessary to formalise and prove the correctness
of all used data structures and algorithms. With certifying algorithms,
on the other hand, the verifier only verifies that an answer to a single
problem is correct. Notably, the verifier can prove the correctness of the
answer without knowing the underlying data structures and algorithms,
let alone why these algorithms are correct. For example, the algorithm
for all-different constraints utilises graph theory results, such as finding
a maximum matching via the alternating paths algorithm. However, the
verifier does not even know what a graph is nor why the alternating paths
algorithm produces a maximum matching. Instead, it only works on a
simple pseudo-Boolean representation with a few rules, which is sufficient
to verify the correctness of the answer provided by the solver. Additionally,
even for formally verified solvers, it could be beneficial to use proof logging
as this could detect hardware bugs and failures.

The overhead in running time for proof logging and verification can be a lim-
iting factor to the success of certifying algorithms. The observed overhead
varies widely between being negligible to orders of magnitude, depending
on the studied applications and concrete problem instances. For some use
cases, this is not necessarily a problem. For example, verifying problems
with easy to medium difficulty can already help to find bugs during de-
velopment. However, improved performance would be desirable. The first
concern is the amount of data that must be written to disk for the pseudo-
Boolean formula and the proof file. The file size could be improved through
on-the-fly compression, which reduces file size but increases computational
cost, or by using a binary format instead of a textual format, which has
been used successfully for DRAT-trim [HHW13a]. Furthermore, the file
size of the proof file can be reduced by only producing proof logging for
necessary constraints, as is done, for example, in Paper A. However, it
might not be possible or it might require additional book keeping for the
solver to determine apriori which constraints will be used. An alternative
approach is to trim the proof afterwards, as is done in DRAT-trim. While
this has no effect on the overhead of proof logging, it can reduce the time
spent verifying a proof. Finally, it could be interesting to investigate if and
how verification can be parallelised to utilise multiprocessor architectures.

For future work, besides providing a formally verified verifier and improving
the performance of proof logging and of the verifier, it would be desirable to
establish proof logging for more algorithms. Another interesting use case of
certifying algorithms that could be investigated is to utilise the generated
proofs to analyse and improve solvers as in [Elf+18; SKM19].
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Abstract

The dramatic improvements in combinatorial optimization al-
gorithms over the last decades have had a major impact in ar-
tificial intelligence, operations research, and beyond, but the
output of current state-of-the-art solvers is often hard to ver-
ify and is sometimes wrong. For Boolean satisfiability (SAT)
solvers proof logging has been introduced as a way to cer-
tify correctness, but the methods used seem hard to general-
ize to stronger paradigms. What is more, even for enhanced
SAT techniques such as parity (XOR) reasoning, cardinal-
ity detection, and symmetry handling, it has remained be-
yond reach to design practically efficient proofs in the stan-
dard DRAT format. In this work, we show how to instead
use pseudo-Boolean inequalities with extension variables to
concisely justify XOR reasoning. Our experimental evalua-
tion of a SAT solver integration shows a dramatic decrease
in proof logging and verification time compared to existing
DRAT methods. Since our method is a strict generalization
of DRAT , and readily lends itself to expressing also 0-1 pro-
gramming and even constraint programming problems, we
hope this work points the way towards a unified approach for
efficient machine-verifiable proofs for a rich class of combi-
natorial optimization paradigms.

1 Introduction
Since around the turn of the millennium, combinatorial op-
timization has been successfully applied to solve an ever
increasing range of problems in e.g., resource allocation,
scheduling, logistics, and disaster management (Pardalos,
Du, and Graham 2013), and more recent applications in
biology, chemistry, and medicine (Archibald et al. 2019)
include, e.g., protein analysis and design (Allouche et al.
2014; Mann, Will, and Backofen 2008) and kidney trans-
plants (Manlove and O’Malley 2012). Yet other examples
are government auctions generating billions of dollars in
revenue (Leyton-Brown, Milgrom, and Segal 2017), as well
as allocation of education and work opportunities (Manlove
2016; Manlove, McBride, and Trimble 2017) and matching
of adoptive families with children (Delorme et al. 2019).

As more and more such problems are dealt with using
combinatorial optimization solvers, an urgent question is
whether we can trust that the solutions computed by such

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithms are correct and complete. The answer, unfor-
tunately, is currently a clear “no”: State-of-the-art solvers
sometimes return “solutions” that do not satisfy the con-
straints or erroneously claim optimality (Cook et al. 2013;
Akgün et al. 2018; Gillard, Schaus, and Deville 2019). This
can be fatal for applications such as, e.g., chip design, com-
piler optimization, and combinatorial auctions, where cor-
rectness is absolutely crucial, not to speak about when hu-
man lives depend on finding the best solutions.

Conventional software testing has made little progress in
addressing this problem, and formal verification techniques
cannot handle the level of complexity of modern solvers. In-
stead, the most successful approach to date has been that
of proof logging in the Boolean satisfiability (SAT) commu-
nity, where solvers are required to certify (McConnell et al.
2011) their answer by outputting also a simple, machine-
verifiable proof that this answer is correct. This does not
certify the correctness of the solver itself, but it does mean
that if it ever produces an incorrect answer (even if due to
hardware errors), then this can be detected. A number of
different proof logging formats such as RUP (Goldberg and
Novikov 2003), TraceCheck (Biere 2006), DRAT (Heule,
Hunt Jr., and Wetzler 2013a,b; Wetzler, Heule, and Hunt Jr.
2014), GRIT (Cruz-Filipe, Marques-Silva, and Schneider-
Kamp 2017), and LRAT (Cruz-Filipe et al. 2017) have been
developed, with DRAT now established as the standard in
the SAT competitions (www.satcompetition.org).

A quite natural, and highly desirable, goal would be to ex-
tend these proof logging techniques to stronger paradigms
such as pseudo-Boolean (PB) optimization, MaxSAT solv-
ing, mixed integer programming, and constraint program-
ming, but such attempts have had limited success. Either the
proofs require trusting in powerful and complicated rules
(as in, e.g., (Veksler and Strichman 2010)), defeating sim-
plicity and verifiability, or they have to justify such rules
by long explanations, leading to an exponential slow-down
(see (Gange and Stuckey 2019)). In fact, even for SAT
solvers a long-standing problem is that more advanced tech-
niques reasoning with parity constraints (XORs), cardinal-
ity constraints, and symmetries have remained out of reach
for efficient proof logging. Although in theory there should
be no problems—DRAT is extremely powerful, and can in
principle justify such reasoning and much more with at
most a polynomial amount of work (Sinz and Biere 2006;
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Heule, Hunt Jr., and Wetzler 2015; Philipp and Rebola-
Pardo 2016)—in practice the overhead seems completely
prohibitive. Thus, a key challenge on the road to efficient
proof logging for more general combinatorial optimization
solvers would seem to be to design a method that can capture
the full range of techniques used in modern SAT solvers.

Our Contribution
In this work, we present a new, efficient proof logging
method for parity reasoning that is—perhaps somewhat
surprisingly—based on pseudo-Boolean reasoning with 0-1
linear inequalities. Though such inequalities might seem ill-
suited to representing XOR constraints, this can be done
elegantly by introducing auxiliary so-called extension vari-
ables (Dixon, Ginsberg, and Parkes 2004). Using this obser-
vation, we strengthen the VeriPB tool recently introduced
in (Elffers et al. 2020), which can be viewed as a gen-
eralization to pseudo-Boolean proofs of RUP (Goldberg
and Novikov 2003). Borrowing inspiration from (Heule,
Kiesl, and Biere 2017; Buss and Thapen 2019), we develop
stronger, but still efficient, rules that can handle also exten-
sion variables, making VeriPB, in effect, into a strict gener-
alization of DRAT .

We have implemented our method for representing XOR
constraints and performing Gaussian elimination in a library
with a simple, clean interface for SAT solvers. As a proof
of concept, we have also integrated it in MiniSat (Eén and
Sörensson 2004), which still serves as the foundation of
most state-of-the-art SAT solvers. Our library also provides
DRAT proof logging for XORs as described in (Philipp and
Rebola-Pardo 2016), but with some optimizations, to allow
for a comparative evaluation. Our experiments show that the
overhead for proof logging, the size of the produced proofs,
and the time for verification all go down by orders of mag-
nitude for our method compared to DRAT . Furthermore,
the fact that PB reasoning forms the basis for solvers like
Sat4j (Le Berre and Parrain 2010) and RoundingSat (Elffers
and Nordström 2018) means that our library can also em-
power such pseudo-Boolean solvers to reason with parities.

Since cardinality constraints are just a special case of PB
constraints, it is clear that our method should suffice to jus-
tify the cardinality reasoning used in SAT solvers. Symme-
try reasoning remains a challenge, but at least our method
can subsume anything done by DRAT . More excitingly, the
original VeriPB tool has already been shown to be capable
of efficiently justifying a number of constraint programming
techniques (Elffers et al. 2020; Gocht, McCreesh, and Nord-
ström 2020; Gocht et al. 2020). Our optimistic interpretation
is that pseudo-Boolean reasoning with extension variables
shows great potential as a unified method of proof logging
for SAT solving, pseudo-Boolean optimization, constraint
programming, and maybe even mixed integer programming.

Organization of This Paper After some brief background
in Section 2, we introduce the key technical notions needed
in Section 3 and show how they can be used to justify parity
reasoning in Section 4 with a worked out example in Sec-
tion 5. We present an experimental evaluation in Section 6
and provide some concluding remarks in Section 7.

2 Preliminaries
Let us start by quickly reviewing the required material
on pseudo-Boolean reasoning, referring the reader to, e.g.,
(Buss and Nordström 2021) for more context. A literal `
over a Boolean variable x is x itself or its negation
x = 1− x, where variables take values 0 (false) or 1 (true).
The set of all literals is denoted Lits. For notational con-
venience, we define x = x. A pseudo-Boolean (PB) con-
straint C is a 0-1 linear inequality∑

iai`i ≥ A , (1)

which without loss of generality we always assume to be in
normalized form; i.e., all literals `i are over distinct variables
and the coefficients ai and the degree (of falsity) A are non-
negative integers. We will use equality∑

iai`i = A (2a)

as syntactic sugar for the pair of inequalities∑
iai`i ≥ A (2b)∑

i − ai`i ≥ −A (2c)

(but rewritten in normalized form) and the negation ¬C
of (1) is (the normalized form of)∑

i − ai`i ≥ −A+ 1 . (3)

A pseudo-Boolean formula is a conjunction F =
∧
j Cj of

PB constraints. Note that a clause `1∨· · ·∨`k is equivalent to
the constraint `1 + · · ·+ `k ≥ 1, so formulas in conjunctive
normal form (CNF) are special cases of PB formulas.

A (partial) assignment is a (partial) function from vari-
ables to { 0, 1 } and a substitution is a (partial) function from
variables to Lits∪{ 0, 1 }. For an assignment or substitution ρ
we will use the convention ρ(x) = x for x not in the domain
of ρ, denoted x 6∈ dom(ρ), and define ρ(x) = 1− ρ(x). We
also write x 7→ b instead of ρ(x) = b for b ∈ Lits ∪ { 0, 1 }
when ρ is clear from context or is immaterial. Applying ρ to
a constraint C as in (1), denoted C�ρ, yields the constraint
obtained by substituting values for all assigned variables,
shifting constants to the right-hand side, and adjusting the
degree appropriately, i.e.,

C�ρ =
∑
iaiρ(`i) ≥ A (4)

with appropriate normalization, and for a formula F we de-
fine F�ρ =

∧
j Cj�ρ. The constraint C is satisfied by ρ if∑

ρ(`i)=1 ai ≥ A (or, equivalently, if the restricted con-
straint (4) has a non-positive degree and is thus trivial). A PB
formula is satisfied by ρ if all constraints in it are, in which
case it is satisfiable. If there is no satisfying assignment, the
formula is unsatisfiable. Two formulas are equisatisfiable if
they are both satisfiable or both unsatisfiable.

Cutting planes as defined in (Cook, Coullard, and Turán
1987) is a method for iteratively deriving new constraints C
implied by a PB formula F . If C and D are previously
derived constraints, or are axiom constraints in F , then
any positive integer linear combination of these constraints
can be added. We can also add literal axioms `i ≥ 0 at
any time. Finally, from a constraint in normalized form
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∑
i ai · `i ≥ A we can use division by a positive integer d

to derive
∑
idai/de`i ≥ dA/de, dividing and rounding up

the degree and coefficients.
For PB formulas F , F ′ and constraints C, C ′, we say that

F implies or models C, denoted F |= C, if any assignment
satisfying F must also satisfy C, and we write F |= F ′

if F |= C ′ for all C ′ ∈ F ′. It is not hard to see that any
collection of constraints F ′ derived (iteratively) from F by
cutting planes are implied in this sense, and so it holds that
F and F ∧ F ′ are equisatisfiable. A piece of terminology
that we will use is that C ′ is implied syntactically by C if C ′
can be derived from C using only addition of literal axioms.

A constraint C is said to unit propagate the literal ` un-
der ρ if C�ρ cannot be satisfied unless ` 7→ 1. During unit
propagation on F under ρ, we extend ρ iteratively by any
propagated literals ` 7→ 1 until an assignment ρ′ is reached
under which no constraint C ∈ F is propagating, or under
which some constraintC propagates a literal that has already
been assigned to the opposite value. The latter scenario is
referred to as a conflict, since ρ′ violates the constraint C in
this case, and ρ′ is called a conflicting assignment.

Using the generalization of (Goldberg and Novikov 2003)
in (Elffers et al. 2020), we say that F implies C by reverse
unit propagation (RUP), and write RUP(F,C), if F ∧ ¬C
unit propagates to conflict under the empty assignment. It
is not hard to see that RUP(F,C) implies F |= C, but the
opposite direction is not necessarily true.

3 Substitution Redundancy
In order to provide proof logging for parity reasoning, we
need the ability not only to perform cutting planes reason-
ing, but also to introduce fresh variables not occurring in
the formula F under consideration. In particular, we want to
be able to use a fresh variable y to encode the reification of
a constraint

∑
i ai`i ≥ A, i.e., that y is true if and only if the

constraint is satisfied. We will use the shorthand

y ↔
∑
iai`i ≥ A (5)

for the two constraints

Ay +
∑
iai`i ≥ A (6a)(

−A+1+
∑
iai
)
· y +

∑
iai`i ≥ −A+ 1 +

∑
iai (6b)

enforcing this condition. By way of a concrete example, the
reification of the constraint

x1 + x2 + x3 ≥ 2 (7)

using y is encoded as

2y + x1 + x2 + x3 ≥ 2 (8a)
2y + x1 + x2 + x3 ≥ 2 (8b)

in pseudo-Boolean form. Note that introducing such con-
straints maintains equisatisfiability provided that y does
not appear in any other constraint, since depending on
whether (7) is satisfied or not we can assign y freely to sat-
isfy (8a) or (8b) as needed.

More generally, it would be convenient to allow the
“derivation” of any constraint C from F such that F and

F ∧ C are equisatisfiable—in which case we say that C is
redundant with respect to F—regardless of whether F |= C
holds or not. A moment of thought reveals that such a com-
pletely generic rule would be too good to be true—for any
unsatisfiable formula F we would then be able to “derive”
contradiction (say, 0 ≥ 1) in just one step, and this clearly
would not be efficiently verifiable. What we need, therefore,
is a sufficient criterion for redundancy of pseudo-Boolean
constraints that is simple to verify. To this end, we general-
ize the characterization of redundancy in (Heule, Kiesl, and
Biere 2017; Buss and Thapen 2019) from CNF formulas to
PB formulas as follows.
Proposition 1 (Substitution redundancy). A PB con-
straint C is redundant with respect to the formula F if and
only if there is a substitution ω, called a witness, for which
it holds that

F ∧ ¬C |= (F ∧ C)�ω .

Proof. (⇒) Suppose C is redundant. If F is unsatisfiable,
then for any constraint C ′ it vacuously holds that F |= C ′.
Hence, any substitution ω fulfils the condition. If F is satis-
fiable, then F ∧C must also be satisfiable as C is redundant
by assumption. If we choose ω to be a satisfying assignment
for F∧C, the implication in the proposition again vacuously
holds since (F ∧ C)�ω is fixed to true.

(⇐) Suppose now that ω is such that
F ∧ ¬C |= (F ∧ C)�ω . If F is unsatisfiable, then ev-
ery constraint is redundant and there is nothing to check.
Otherwise, let α be a (total) satisfying assignment for F . If
α also satisfies C, then clearly the constraint is redundant.
Now consider the case that α does not satisfy C. If so, α
must satisfy ¬C and hence, by the assumed implication,
also (F ∧ C)�ω . But then the assignment β defined by

β(x) =

{
α(x) if x 6∈ dom(ω),
ω(x) otherwise,

(9)

satisfies both C and F (since (F ∧ C)�β = ((F ∧ C)�ω)�α
by construction), so F ∧ C is satisfiable.

We remark that this proof does not make use of that we
are operating with a pseudo-Boolean constraint C—we only
need that the negation ¬C is easy to represent in the same
formalism. Thus, the argument generalizes to other types of
constraints with this property.

Let us return to our example reification of the constraint
in (7) and show how this can be derived using substitution
redundancy. Let us write C8a for the constraint in (8a) and
C8b for (8b), where y is fresh with respect to the current
formula F . To show that C8b is substitution redundant with
respect to F we choose the witness ω = { y 7→ 1 }, which
clearly satisfies C8b. Since y does not appear in F we have
F�ω = F , and so the implication F ∧ ¬C8b |= (F ∧ C)�ω
vacuously holds. Showing that C8a is substitution redundant
with respect to F ∧ C8b is a bit more interesting. For this
we choose ω = { y 7→ 0 }, which satisfies C8a and again
leaves F unchanged. Thus, the only implication for which
we need to do some work is F ∧C8b ∧¬C8a |= C8b�ω . The
negation of C8a is

−2y − x1 − x2 − x3 ≥ −1 , (10)
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Algorithm 1 Checking substitution redundancy
1: procedure REDUNDANCYCHECK(F,C, ω)
2: . C, ω are given in the proof log to be verified
3: if RUP(F,C) then return pass
4: for D ∈ (F ∧ C)�ω do
5: if (not (D ∈ F or ¬C |= D syntactically)
6: and not RUP(F ∧ ¬C,D)) then
7: return fail
8: return pass

or, converted to normalized form,

2y + x1 + x2 + x3 ≥ 4 (11)

using the rewriting rule ` = 1− `. Adding the literal axiom
y ≥ 0 twice to ¬C8a, and using rewriting again to cancel
y + y = 1, we obtain

x1 + x2 + x3 ≥ 2, (12)

which is C8b�ω . Hence, ¬C8a syntactically implies C8b�ω ,
and so F ∧C8b ∧¬C8a |= C8b�ω , completing the proof that
C8a is redundant with respect to F ∧ C8b.

So far, we have not discussed how the implications are
verified. Arbitrary implication checks are as hard as deter-
mining satisfiability, and hence a certificate that the impli-
cation is correct is necessary for efficient verification. One
way of providing a certificate could be to exhibit a cutting
planes derivation establishing the validity of the implication,
as in the example just presented. A more convenient alterna-
tive from a proof logging point of view is to follow the lead
of DRAT and only allow constraints for which the implica-
tion can be verified using unit propagation. We describe our
pseudo-Boolean version of this method in Algorithm 1. This
algorithm is very similar to what is used for checking DRAT ,
except that our unit propagation is on PB constraints rather
than clauses and that we need an extra syntactic check on
line 5. To see why this check is necessary, note that only
unit propagation would fail to certify the correctness of our
example above. Assuming for simplicity that F = ∅, if we
try to verify C8b ∧ ¬C8a |= C8b�ω by reverse unit propaga-
tion we get the constraints

2y + x1 + x2 + x3 ≥ 2 [C8b in (8b)] (13a)
2y + x1 + x2 + x3 ≥ 4 [¬C8a in (11)] (13b)

x1 + x2 + x3 ≥ 2 [¬(C8b�ω)] (13c)

and although visual inspection shows that this collection of
constraints is inconsistent, since it requires a majority of the
variables {x1, x2, x3 } to be true and false at the same time,
unit propagation is too myopic to see this contradiction and
only yields y 7→ 1. Using Algorithm 1, however, allows us to
introduce extension variables encoding reifications y ↔ C,
which is straightforward to prove by carrying out the same
argument as in our example above but for (6a) and (6b) in-
stead of (8a) and (8b).
Proposition 2. Let F be a PB formula and C be a PB con-
straint, and y is a fresh variable that does not appear in F
or C. Then the constraints (6a) and (6b) encoding y ↔ C
can be added to F and checked as redundant by Algorithm 1.

4 Proof Logging for XOR Constraints
An XOR or parity constraint, i.e., an equality modulo 2, over
k variables is written as

x1 ⊕ x2 ⊕ · · · ⊕ xk = b (14)
where b ∈ { 0, 1 }. Note that we can assume that there is no
parity constraint with a negated variable x, because we can
always substitute x = x⊕ 1.

Systems of XOR constraints can arise in a solver during
Gaussian elimination (Soos, Nohl, and Castelluccia 2009;
Han and Jiang 2012; Laitinen, Junttila, and Niemelä 2012)
or conflict analysis (Laitinen, Junttila, and Niemelä 2012).
To provide proof logging for these approaches we need four
ingredients:
1. An efficient encoding of XORs to pseudo-Boolean con-

straints.
2. A way to derive that encoding for a new XOR constraint

from the encodings of existing XORs.
3. A method to translate to this efficient encoding from CNF

(which is where we will need to go beyond cutting planes
by using extension variables).

4. The ability to provide so-called reason clauses from the
PB encoding that can be used by a SAT solver during con-
flict analysis.

In the example in Section 5, we will see how these ingredi-
ents come together for propagations from parity constraints.

It was observed by (Dixon, Ginsberg, and Parkes 2004)
that XOR constraints can be encoded and refuted efficiently
in pseudo-Boolean form by rewriting (14) as∑

i∈[k]xi = b+
∑
i∈[bk/2c]2yi (15)

for fresh variables yi (where we recall that equality (2a) is a
shorthand for (2b) and (2c)). Since the variables yi are oth-
erwise unconstrained, the right-hand side can take any even
(odd) value for b = 0 (b = 1) in the range from 0 to k, which
are exactly the values that we want to allow for

∑
i∈[k] xi.

In fact, we can generalize this by observing that if we letB
denote any integer linear combination of variables, possibly
also with a constant term, then the two inequalities∑

i∈[k]xi ≥ b+ 2B (16a)∑
i∈[k] − xi ≥ −b− 2B , (16b)

forming the equality
∑
i∈[k] xi = b+ 2B, imply the parity

x1 ⊕ x2 ⊕ · · · ⊕ xk = b . (16c)
We will make repeated use of this observation below.

XOR Reasoning
Whenever we want to combine two XOR constraints to de-
rive a new XOR constraint, as is done during Gaussian elim-
ination, we only need to add the equalities that imply it. For
example, suppose that we want to do the derivation

x1 ⊕ x2 ⊕ x3 = 1 x2 ⊕ x3 ⊕ x4 = 1
x1 ⊕ x4 = 0

(17)

and assume the XORs are represented in pseudo-Boolean
form as x1+x2+x3 = 2y1+1 and x2+x3+x4 = 2y2+1.
Then adding both equalities together we obtain x1 + 2x2 +
2x3 + x4 = 2y1 + 2y2 + 2, which implies the desired XOR
by the observation we just made above for (16c).
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Reason Generation
Modern SAT solvers built on conflict-driven clause learning
(CDCL) (Bayardo Jr. and Schrag 1997; Marques-Silva and
Sakallah 1999; Moskewicz et al. 2001) operate with clauses.
If we want to use XOR constraints to propagate forced vari-
able assignments or derive contradiction, then we need to
provide reason clauses that justify such derivation steps. We
next show how to derive such reason clauses from pseudo-
Boolean encodings of XOR constraints.

Suppose we have a parity constraint encoded by inequali-
ties of the form (16a) and (16b), and let ρ be an assignment
to the k variables xi that is inconsistent with (16a) and (16b),
because it falsifies the implied XOR (16c). We want to de-
rive a clause that is falsified under ρ.

Let T be the variables that are set to true under ρ, and F
the variables set to false. Using literal axioms we can derive
(the normalized form of) the trivially true constraint∑

x∈Fx+
∑
x∈T − x ≥ −|T | , (18)

which when added to (16a), yields∑
x∈F2x ≥ b− |T |+ 2B . (19)

Observe that b − |T | is always odd, as otherwise ρ would
not falsify the XOR implied by (16a) and (16b), while ev-
erything else is divisible by 2. Hence we can divide by 2,
and rounding up will increase the degree. If we now multi-
ply by 2 again, then we get∑

x∈F2x ≥ b− |T |+ 1 + 2B . (20)

We continue by adding (16b) to get∑
x∈Fx−

∑
x∈T x ≥ 1− |T | , (21)

which is equivalent to the normalized constraint∑
x∈Fx+

∑
x∈T x ≥ 1 . (22)

This constraint, which is a disjunctive clause, is falsified un-
der ρ as desired, and is the reason clause that we need to give
to the solver to show why the assignment ρ is inconsistent.

Translating to the Pseudo-Boolean XOR Encoding
An XOR as in (14) can be encoded into CNF by having a
clause for each of the 2k−1 assignments that falsify the con-
straint. For example, for k = 3 and b = 1 we get the clauses

x1 + x2 + x3 ≥ 1 (23a)
x1 + x2 + x3 ≥ 1 (23b)
x1 + x2 + x3 ≥ 1 (23c)
x1 + x2 + x3 ≥ 1 (23d)

(in pseudo-Boolean form). Since the number of clauses in
this canonical CNF encoding of an XOR constraint scales
exponentially with the number of variables, it is only feasi-
ble to encode short XORs into CNF in this way. However,
it is possible to split up a long XOR into multiple constant-
size XORs using auxiliary variables zi. For example, (14)
can be represented as x1 ⊕ x2 ⊕ z2 = 0, z2 ⊕ x3 ⊕ z3 = 0,
. . . , zk−2 ⊕ xk−1 ⊕ xk = b. If a parity constraint is split

(a) A 1-bit full adder. (b) Chain of 1-bit full adders.

Figure 1: The output of 1-bit full adders is used to encode
new auxiliary Boolean variables, which represent the sum
of all Boolean input variables.

up in this way, we only need to re-encode these small par-
ity constraints from CNF into the pseudo-Boolean encoding.
Deriving the original long XOR constraint can then be done
by XOR reasoning as described earlier.

The translation to the pseudo-Boolean XOR encoding
from CNF is done in two steps. The first step is to derive
the constraint∑

i∈[k]xi =
∑
i∈[bk/2c]2yi + y′, (24)

where yi and y′ are all fresh variables. Note that adding (24)
to any formula does not change satisfiability because we can
always assign the fresh variables so that the equality holds.

Although the constraint is redundant, we cannot use
Proposition 1 directly, because we can not construct a wit-
ness assignment ω that is independent of the existing xi vari-
ables, and if ω contains any existing variables then the re-
dundancy check in Algorithm 1 may not be strong enough
in general. Instead we introduce each fresh variable individ-
ually, analogously to what was done in Section 3.

The second step is to brute-force all possible assignments
for the variables xi, which together with the CNF encoding
of the XOR allows us to derive y′ = b, meaning that we
have a constraint of the desired form (24). We remark that
this brute-force step is polynomial in the number of clauses
of the CNF encoding. We now describe this process in detail.

Step 1a. To derive (24) we will construct a chain of 1-bit
full adders (see Figure 1b). But let us start first by showing
how the encoding of a single 1-bit full adder can be derived.
A 1-bit full adder (Figure 1a) computes the sum of three
variables x1 to x3 and returns the result as a binary number.
This can be encoded using the pseudo-Boolean equality

2y + z = x1 + x2 + x3. (25)
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To obtain (25) we start by deriving the reifications

y ↔ x1 + x2 + x3 ≥ 2 (26a)
z ↔ x1 + x2 + x3 − 2y ≥ 1, (26b)

for fresh variables y and z using substitution redundancy as
described in Proposition 2. Writing the constraints in nor-
malized form yields

x1 + x2 + x3 + 2y ≥ 2 (27a)
x1 + x2 + x3 + 2y ≥ 2 (27b)

x1 + x2 + x3 + 2y + 3z ≥ 3 (27c)
x1 + x2 + x3 + 2y + 3z ≥ 3. (27d)

To derive the less-than-or-equal part of (25), which in nor-
malized form is

x1 + x2 + x3 + 2y + z ≥ 3 , (28)

we add Equation (27c) and 2 times Equation (27a) followed
by division by 3. In a similar fashion, to derive the greater-
than-or-equal part of (25), which in normalized form is

x1 + x2 + x3 + 2y + z ≥ 3 , (29)

we add Equation (27d) and 2 times Equation (27b) followed
by division by 3.

Step 1b. To derive Equation (24) we use a chain of 1-bit
full adders (Figure 1b). The xi variables are used as input
and x2k+1, which is used in the topmost adder, will only oc-
cur if the number of variables is odd, otherwise the topmost
adder will only have x2k and x2k−1 as input. The variables
yi, y

′ encode the sum of the input variables as required for
Equation (24). The zi variables are intermediate parity bits.
For the topmost adder in Figure 1b we thus have

2yk + zk = x2k+1 + x2k + x2k−1 , (30)

for the intermediate adders we have, for i ∈ { 2, . . . , k − 1 },
2yi + zi = zi+1 + x2i + x2i−1 , (31)

and for the bottom adder we have

2y1 + y′ = z2 + x2 + x1 . (32)

By adding the encoding of all 1-bit adders, i.e., Equa-
tions (30) to (32), we obtain

k∑
i=1

2yi + y′ +
k∑
i=2

zi =
k∑
i=2

zi +
2k+1∑
i=1

xi . (33)

Note that
∑k
i=2 zi appears on both sides of the equation and

hence Equation (33) is equivalent to Equation (24). Indeed,
we do not need to remove

∑k
i=2 zi explicitly during proof

logging because it will disappear automatically due to con-
straint normalization.

Step 2. The final step is to obtain the value of y′ by
brute-forcing all values of xi. Consider an assignment ρwith
ρ(y′) = 1 − b that additionally assigns all variables xi and
no other variables. Note that there are 2k such assignments.
Either ρ falsifies one of the clauses that encode the XOR, or
else

∑
i∈[k] ρ(xi) mod 2 = b 6= ρ(y′), meaning that Equa-

tion (33) is falsified so that we can derive a clause falsified

under ρ as described above in our discussion of reason gen-
eration. Combining these 2k clauses together we can obtain
a clause that forces y′ to take value b, which we can add to
Equation (33) to replace y′ with a constant value. This con-
cludes the derivation of the pseudo-Boolean encoding (15)
of the XOR constraint from a CNF encoding.

5 A Worked-Out Proof Logging Example
Consider the two parity constraints x1 ⊕ x2 ⊕ x3 = 0 and
x2 ⊕ x3 ⊕ x4 = 1, which are encoded as clauses by writing

* #variable= 4 #constraint= 8
+1 ~x1 +1 x2 +1 x3 >= 1 ;
+1 x1 +1 ~x2 +1 x3 >= 1 ;
+1 x1 +1 x2 +1 ~x3 >= 1 ;
+1 ~x1 +1 ~x2 +1 ~x3 >= 1 ;
+1 x2 +1 x3 +1 x4 >= 1 ;
+1 x2 +1 ~x3 +1 ~x4 >= 1 ;
+1 ~x2 +1 x3 +1 ~x4 >= 1 ;
+1 ~x2 +1 ~x3 +1 x4 >= 1 ;

using the standard OPB file format1. The solver reads this
formula and runs an algorithm to detect clausal encodings
of parities. Once a parity is detected, a proof is generated
that translates the parity from the clausal encoding into the
PB encoding. For this translation it is necessary to introduce
fresh variables via substitution redundancy. The proof log
contains a line of the form

red [constraint C] ; [assignment omega]

where red identifies the line as a substitution redundancy
step, followed by the constraint C to be added and the wit-
ness substitution ω, where each variable to be substituted is
listed followed by its substitution. A variable and its substi-
tution can optionally be separated by ‘->’.

The translation from clausal to PB encoding starts with
the reification y1 ↔ x1 + x2 + x3 ≥ 2 for the fresh vari-
able y1. In the proof format this is done by the two lines

red 1 x1 1 x2 1 x3 2 ~y1 >= 2 ; y1 -> 0
red 1 ~x1 1 ~x2 1 ~x3 2 y1 >= 2 ; y1 -> 1

which can be checked using Algorithm 1 as discussed in
Section 3. After the check passes, the verifier adds these
two new constraints to the database and assigns them ids 9
and 10 (the ids 1 to 8 are used for the constraints from
the input formula). Similarly, we can do another reification
y2 ↔ x1 + x2 + x3 − 2y1 ≥ 1 using the proof lines

red 1 x1 1 x2 1 x3 2 ~y1 3 ~y2 >= 3 ; y2 0
red 1 ~x1 1 ~x2 1 ~x3 2 y1 3 y2 >= 3 ; y2 1

The variables y1, y2 now correspond to the output bits of
a single full adder. Because the parity is only over three
variables, we do not need to derive a chain of multiple full
adders. Note that the constraints arising from reification do
not need to be added to the database of the solver—they are
only used for the proof log—but the solver should stay clear
of using the variables y1, y2 for other purposes.

The next step is to combine the constraints we just derived
(ids 9 to 12) via a sequence of cutting planes steps, which are

1http://www.cril.univ-artois.fr/PB16/format.pdf
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written down in reverse polish notation (using the p-rule in
VeriPB), also known as postfix notation

p 11 9 2 * + 3 d
p 12 10 2 * + 3 d

The first line starts with the constraint with id 11 and adds
two times the constraint with id 9 and then divides by 3 and
rounds up. The same operations are done in the second line
but with the constraints with ids 12 and 10. The two lines
derive the constraints

(ID: 13) x1 + x2 + x3 + 2y1 + y2 ≥ 3 (34a)
(ID: 14) x1 + x2 + x3 + 2y1 + y2 ≥ 3 , (34b)

which correspond to (24). The constraints in (34a) and (34b)
do not correspond to a parity constraint yet, as they can al-
ways be satisfied by setting the fresh variables y1, y2 to the
right value. To get a proper PB encoding of the first parity
we need to fix the value of y2, which can be done by gen-
erating a brute-force proof via p-rules that derives y2 ≥ 1,
which gets id 15 and can be used to remove y2 from (34b).
To remove y2 from (34a) we can simply use the literal ax-
iom y2 ≥ 0 which is obtained by writing the literal y2 in the
p-rule. Both steps together can be written as

p 13 y2 +
p 14 15 +

deriving the inequalities encoding the first parity, namely

(ID: 16) x1 + x2 + x3 + 2y1 ≥ 2 (35a)
(ID: 17) x1 + x2 + x3 + 2y1 ≥ 3 , (35b)

which correspond to (15). Analogously, we can derive the
pseudo-Boolean encoding for the second parity

(ID: 25) x2 + x3 + x4 + 2y3 ≥ 3 (36a)
(ID: 26) x2 + x3 + x4 + 2y3 ≥ 4 . (36b)

This concludes the proof logging done after detecting pari-
ties. Note that the detection of parities and the proof genera-
tion for translating from clausal to PB encoding is only done
once in our implementation at the start of the solver.

Let us now assume that the solver decides x1 = 0.
Note that adding the two parities of the formula yields
x1 ⊕ x4 = 1, and hence x4 should propagate to 1, which is
detected by the XOR propagator via Gaussian elimination.
The proof for this step is to perform the same addition of the
parities, but on their PB representations

p 16 25 +
p 17 26 +

which yields new constraints

(ID: 27) x1 + 2x2 + 2x3 + x4 + 2y1 + 2y3 ≥ 5 (37a)
(ID: 28) x1 + 2x2 + 2x3 + x4 + 2y1 + 2y3 ≥ 7. (37b)

These two constraints imply the parity x1 ⊕ x4 = 1 by the
observation made in connection with (16a)–(16c).

The reason clause x1 + x4 ≥ 1 provided by the XOR
propagator must be derived in the proof. The assignment
falsifying the reason clause is ρ = {x1 7→ 0, x4 7→ 0 }. Fol-
lowing the approach in (18)–(22), we derive x1 + x4 ≥ 0
and combine it with the constraints representing the parity

Instance MiniSat + XOR PR2DRAT
(PBP) (DRAT)

Urquhart-s5-b1 76.8 3033.1 3878.4
Urquhart-s5-b2 79.8 2844.4 3575.2
Urquhart-s5-b3 116.9 7584.0 7521.0
Urquhart-s5-b4 94.7 5058.6 5271.5

Table 1: Proof sizes (KiB) for previous Tseitin formulas.

p 27 x1 x4 + + 2 d 2 * 28 +

which derives the constraint x1 + x4 ≥ 1 as desired. The
solver can continue using this clause in the same way as any
other clause in its database. These steps for XOR reasoning
and reason generation are repeated for every propagation.

6 Implementation and Evaluation
As just illustrated in Section 5, we have added a rule to
VeriPB2 and its pseudo-Boolean proof format (PBP) to sup-
port redundancy checks as described in Algorithm 1, and
have implemented our proof logging approach for XOR rea-
soning in a library together with an XOR engine using Gaus-
sian elimination mod 2 to detect XOR propagations.3 We
integrated this library into MiniSat to call the XOR propaga-
tion method every time propagation reached fix point. If the
library detects a propagation or conflict a callback is used
to notify MiniSat, but the reason clause is only generated
when needed in conflict analysis. This lazy reason genera-
tion technique (Soos, Gocht, and Meel 2020) is crucial, since
it avoids generating proofs for reasons that are not used. For
comparison, our library also provides DRAT proof logging
for XORs as described in (Philipp and Rebola-Pardo 2016).

Importantly, our goal was not to investigate whether XOR
reasoning is useful—this is already known—but to provide
efficient proof logging for such reasoning. Therefore, we fo-
cused on SAT competition benchmarks from the last 5 years
that could be solved by MiniSat with our XOR propagator
but not by Kissat, the winner of the 2020 SAT competition.
There were 39 such instances, and they could be solved in
0.03 seconds on average by MiniSat with the XOR propa-
gator. With our new proof logging the average running time
increased to 0.05 seconds and unsatisfiability could be veri-
fied in 1.71 seconds on average. For DRAT proof logging, on
the other hand, the average solving time jumped to 7.72 sec-
onds and verification took 3291 seconds on average.

In order to get systematic measurements for the perfor-
mance of our new proof logging technique, we ran exper-
iments on so-called Tseitin formulas, including some that
have been studied before in the context of proof logging.
Tseitin formulas consist of a large inconsistent set of par-
ity constraints, and can thus be viewed as a worst case for
XOR reasoning. To the best of our knowledge, the short-
est DRAT proofs4 for these formulas obtained so far are
based on hand-crafted so-called propagation redundancy

2https://gitlab.com/miao%5Fresearch/veripb
3https://gitlab.com/miao%5Fresearch/xorengine
4The proofs and instances can be found at https://github.com/

marijnheule/drat2er-proofs
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(PR) proofs which have been translated to DRAT using the
tool PR2DRAT (Kiesl, Rebola-Pardo, and Heule 2018). Ta-
ble 1 shows the disk space required for the proofs of Tseitin
formulas in (Kiesl, Rebola-Pardo, and Heule 2018). The
pseudo-Boolean proofs obtained by MiniSat with the XOR
propagator are dramatically smaller than the DRAT proofs
it produces, and the size of our DRAT proofs are similar to
that of the best previously known DRAT proofs.

To get a sense of the asymptotic behaviour of the proof
logging we generated 50 new, larger Tseitin formulas with
up to 500 XORs and up to 1250 variables. In Figure 2
we compare the proof size of the proofs as generated. No-
tice that both proof logging approaches result in a straight
line in the log-log plot, which is a strong indication that
both approaches are polynomial. Studying the slopes of the
lines yields the estimates that DRAT produces quadratic-size
proofs while the proof size of the pseudo-Boolean proof is
linear in the size of the formula. In Figure 3 we compare the
running time (system time + user time) of solving and pro-
ducing the proof, as well as time spend for verification. It
is clear that the larger proof size required for DRAT proofs
does not only increase verification time, but also causes a
clearly increased time overhead during solving. All running
times were measured on an Intel® Core™ i3-7100U CPU
@ 2.40GHz×2 with a memory limit of 8GB, disk write
speed of 154 MB/s and read speed of 518 MB/s. The used
tools, benchmarks, data and evaluation scripts are available
at https://doi.org/10.5281/zenodo.4569840.

7 Conclusion
In this work, we present an efficient method for proof
logging parity reasoning in conflict-driven clause learning
(CDCL) solvers, which has been a long-standing challenge
in SAT solving. Our method circumvents the prohibitive
overhead of current DRAT-based methods by instead using
pseudo-Boolean inequalities with extension variables. An
experimental evaluation shows that this makes the proof log-
ging overhead, the size of the proof, and the time required
for verification all go down by an order of magnitude or
more compared to DRAT . While there is certainly ample
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Figure 3: Solving and verification time for Tseitin formulas.

room for further improvements, our first proof-of-concept
implementation already shows the power of this approach.

It is clear that the same method can also be used to solve
another task that has remained very challenging for DRAT ,
namely efficient proof logging for cardinality detection and
reasoning. We have not investigated this in this paper, since
this is mostly an engineering issue rather than a research
problem, given the methods that have already been devel-
oped in (Biere et al. 2014; Elffers and Nordström 2020).

Dealing with symmetries appears to be much more chal-
lenging, but our method can do at least as well as (Heule,
Hunt Jr., and Wetzler 2015) since it is a strict generalization
of DRAT . We would therefore propose that the current ex-
tension of the VeriPB method in (Elffers et al. 2020) should
be an allowed proof logging format in the SAT competitions.
This would make it possible for solvers making use of these
advanced techniques to take part in the main track of the
SAT competitions, where proof logging is mandatory.

However, we believe that the potential benefit of PB proof
logging with extension variables goes well beyond the SAT
competitions. The original VeriPB method is capable of effi-
cient justification of important constraint programming tech-
niques (Elffers et al. 2020), and can also provide proof log-
ging for a wide range of graph problem solvers (Gocht,
McCreesh, and Nordström 2020; Gocht et al. 2020). The
pseudo-Boolean rules for reasoning with 0-1 linear con-
straints provide a simple yet very expressive formalism, and
it does not seem out of the question to hope that they could
be extended to deal with mixed integer programming (MIP).
Thus, we believe that the ultimate goal of this line of re-
search should be to design a unified proof logging approach
for as wide as possible a range of combinatorial optimiza-
tion paradigms. In addition to furnishing efficient machine-
verifiable proofs of correctness, proof logging could also
serve as a valuable tool for debugging and empirical perfor-
mance analysis during solver development. Furthermore, the
proofs produced could in principle provide auditability by
third parties using independently developed software, and/or
be a stepping stone towards explainability by showing, e.g.,
why certain solutions are optimal.
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Abstract

Symmetry and dominance breaking can be crucial for solving hard combinatorial search and optimisa-
tion problems, but the correctness of these techniques sometimes relies on subtle arguments. For this rea-
son, it is desirable to produce efficient, machine-verifiable certificates that solutions have been computed
correctly. Building on the cutting planes proof system, we develop a certification method for optimisation
problems in which symmetry and dominance breaking are easily expressible. Our experimental evaluation
demonstrates that we can efficiently verify fully general symmetry breaking in Boolean satisfiability (SAT)
solving, thus providing, for the first time, a unified method to certify a range of advanced SAT techniques
that also includes XOR and cardinality reasoning. In addition, we apply our method to maximum clique
solving and constraint programming as a proof of concept that the approach applies to a wider range of
combinatorial problems.

1 Introduction
Symmetries pose a challenge when solving hard combinatorial problems. For example, consider the Crystal
Maze puzzle1 shown in Figure 1, which is often used in introductory constraint modelling courses. A human
modeller might notice that the puzzle is the same under a vertical mirror symmetry, and could introduce the
constraintA < G to eliminate this. Or, they may notice a horizontal mirror symmetry, which could be broken
with A < B. Alternatively, they might spot that the values are symmetrical, and that we can interchange 1
and 8, 2 and 7, and so on; this can be eliminated by saying thatA ≤ 4. In each case a constraint is being added
that preserves satisfiability overall, but that restricts a solver to finding (ideally) just one witness from each
equivalence class of solutions—the hope is that this will improve solver performance. However, although
we may be reasonably sure that any of these three constraints is correct individually, are combinations of
these constraints valid simultaneously? What if we had said F < C instead of A < B? And what if we
could use numbers more than once? Getting symmetry elimination constraints right can be error-prone even
for experienced modellers, and when dealing with larger problems with many constraints and interacting
symmetries it can be hard to tell whether an instance is genuinely unsatisfiable, or was made so by an
incorrect symmetry constraint.

1https://theconversation.com/what-problems-will-ai-solve-in-future-an-old-british-gameshow-can-help-explain-49080
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Despite these difficulties, symmetry elimination using both manual and automatic techniques has been
key to many successes across modern combinatorial optimisation paradigms such as constraint programming
(CP) [Garcia de la Banda et al., 2014], Boolean satisfiability (SAT) [Biere et al., 2021], and mixed-integer
programming (MIP) [Achterberg and Wunderling, 2013]. As these optimisation technologies are increas-
ingly being used for high-value and life-affecting decision-making processes, it becomes vital that we can
trust their outputs—and unfortunately, current solvers do not always produce the correct answer [Brum-
mayer et al., 2010, Cook et al., 2013, Akgün et al., 2018, Gillard et al., 2019]. The most promising way to
address this problem appears to be to use certification, or proof logging, where a solver must produce an
efficiently machine-verifiable certificate that the solution given is correct [Alkassar et al., 2011, McConnell
et al., 2011]. This approach has been successfully used in the SAT community, with numerous proof log-
ging formats such as RUP [Goldberg and Novikov, 2003], TraceCheck [Biere, 2006], DRAT [Heule et al.,
2013a,b, Wetzler et al., 2014], GRIT [Cruz-Filipe et al., 2017b], and LRAT [Cruz-Filipe et al., 2017a]. How-
ever, currently used methods work only for decision problems, and do not support the full range of SAT
solving techniques, let alone CP and MIP solving. As a case in point, there is no efficient proof logging for
symmetry breaking, except for limited cases with small symmetries which can interact only in simple ways
[Heule et al., 2015]. Tchinda and Djamégni [2020] recently proposed a proof logging method DSRUP for
symmetric learning of variants of derived clauses, but this format does not support symmetry breaking (in
the sense just discussed) and is also inherently unable to support pre- and inprocessing techniques, which
are crucial in state-of-the-art SAT solvers.

In this work, we develop a proof logging method for optimisation problems, where we are given a for-
mula F and an objective function f , that can deal with dominance, a generalization of symmetry. Dominance
breaking starts from the observation that we can strengthen F by imposing a constraint C if every solution
of F that does not satisfy C is dominated by another solution of F . This technique is used in many fields of
combinatorial optimisation [Walsh, 2006, 2012, Gent et al., 2006, McCreesh and Prosser, 2016, Jouglet and
Carlier, 2011, Gebser et al., 2011, Bulhões et al., 2018, Hoogeboom et al., 2020, Baptiste and Pape, 1997,
Demeulemeester and Herroelen, 2002]. The core idea of our method is to present an explicit construction
of the dominating solution, so that a verifier can check that this construction strictly improves the objective
value and preserves satisfaction of F . This constructed solution might itself be dominated, and hence not
satisfy C, but since the objective value decreases with every application, the process must eventually ter-
minate. Importantly, verification does not require construction of an assignment satisfying C, and can be
performed efficiently even when multiple constraints are to be added; this resolves a practical issue with
earlier approaches like [Heule et al., 2015], which struggle with large or overlapping symmetries. Following
preliminaries in Section 2, we describe this method in full detail in Section 3.

We have developed a proof format and verifier on top of VeriPB [Elffers et al., 2020, Gocht and Nord-
ström, 2021, Gocht et al., 2020b,a]. The pseudo-Boolean constraints and cutting planes proof system [Cook
et al., 1987] used by VeriPB are convenient to express and reason with dominance inequalities, and more-

A B

C D E F

G H

Figure 1: The Crystal Maze puzzle. Place numbers 1 to 8 in the circles, with every circle getting a different
number, so that adjacent circles do not have consecutive numbers.
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over also make it possible to certify XOR and cardinality reasoning [Gocht and Nordström, 2021], two other
advanced techniques which previous SAT proof logging methods have not been able to support efficiently.
In Section 4, we demonstrate that our new verifier can efficiently check automated static symmetry breaking
in SAT, manual static symmetry breaking in CP, and automated dynamic dominance handling in maximum
clique solving. While the latter two applications are proofs of concept, for static symmetry breaking we
show in full generality, and for the first time, that proof logging is practical by running experiments on SAT
competition benchmarks. We conclude the paper with some brief remarks in Section 5.

2 Preliminaries
Let us briefly review some standard material, referring the reader to, e.g., Buss and Nordström [2021] for
more details. A literal ` over a Boolean variable x is x itself or its negation x = 1− x, where variables take
values 0 (false) or 1 (true). A pseudo-Boolean (PB) constraint is a 0–1 linear inequality

C
.
=
∑
iai`i ≥ A , (1)

where ai andA are integers (and .
= denotes syntactic equality). We can assume without loss of generality that

PB constraints are normalized; i.e., that all literals `i are over distinct variables and that the coefficients ai
and the degree (of falsity) A are non-negative, but most of the time we will not need this. Instead, we will
write PB constraints in more relaxed form as

∑
i ai`i ≥ A +

∑
j bj`j or

∑
i ai`i ≤ A +

∑
j bj`j when

convenient, or even use equality
∑
i ai`i = A as syntactic sugar for the pair of inequalities

∑
i ai`i ≥ A

and
∑
i−ai`i ≥ −A, assuming that all constraints are implicitly normalized if needed. The negation ¬C of

the constraint C in (1) is
¬C .

=
∑
i − ai`i ≥ −A+ 1 . (2)

A pseudo-Boolean formula is a conjunction F .
=
∧
j Cj of PB constraints, which we can also think of as

the set
⋃
j{Cj} of constraints in the formula, choosing whichever viewpoint seems most convenient. Note

that a (disjunctive) clause `1 ∨ · · · ∨ `k is equivalent to the PB constraint `1 + · · ·+ `k ≥ 1, so formulas in
conjunctive normal form (CNF) are special cases of PB formulas.

A (partial) assignment is a (partial) function from variables to {0, 1}; a substitution can also map vari-
ables to literals. We extend an assignment or substitution ρ from variables to literals in the natural way
by respecting the meaning of negation, and for literals ` over variables x not in the domain of ρ, denoted
x 6∈ dom(ρ), we use the convention ρ(`) = `. (That is, we can consider all assignments and substitution to
be total, but to be the identity outside of their specified domains. Strictly speaking, we also require that all
substitutions be defined on the truth constants {0, 1} and be the identity on these constants.) We sometimes
write x 7→ b when ρ(x) = b, for b a literal or truth value.

We write ρ ◦ ω to denote the composed substitution resulting from applying first ω and then ρ, i.e.,
ρ ◦ ω(x) = ρ(ω(x)). As an example, for ω = {x1 7→ 0, x3 7→ x4, x4 7→ x3} and ρ = {x1 7→ 1, x2 7→
1, x3 7→ 0, x4 7→ 0} we have ρ ◦ ω = {x1 7→ 0, x2 7→ 1, x3 7→ 1, x4 7→ 0}. Applying ω to a constraint C as
in (1) yields

C�ω
.
=
∑
iaiω(`i) ≥ A , (3)

substituting literals or values as specified by ω. For a formula F we define F�ω
.
=
∧
j Cj�ω .

Since we will sometimes have to make fairly elaborate use of substitutions, let us discuss some further
notational conventions. If F is a formula over variables ~x = {x1, . . . , xm}, we can write F (~x) when we want
to stress the set of variables over which F is defined. For a substitution ω with domain (contained in) ~x, the
notation F

(
~x�ω
)

is understood to be a synonym of F�ω . For the same formula F and ~y = {y1, . . . , ym}, the
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notation F (~y) is syntactic sugar for F�ω with ω denoting the substitution (implicitly) defined by ω(xi) = yi
for i = 1, . . . , n. Finally, for a formula G = G(~x, ~y) over ~x ∪ ~y and substitutions α and β defined on
~z = {z1, . . . , zn} (either of which could be the identity), the notation G(~z�α, ~z�β) should be understood as
G�ω for ω defined by ω(xi) = α(zi) and ω(yi) = β(zi) for i = 1, . . . , n.

The (normalized) constraint C in (1) is satisfied by ρ if
∑
ρ(`i)=1 ai ≥ A. A PB formula F is satisfied

by ρ if all constraints in it are, in which case it is satisfiable. If there is no satisfying assignment, F is
unsatisfiable. Two formulas are equisatisfiable if they are both satisfiable or both unsatisfiable. We also
consider optimisation problems, where in addition to F we are given an integer linear objective function f .

=∑
i wi`i and the task is to find an assignment that satisfies F and minimizes f . (To deal with maximization

problems we can just negate the objective function.)
Cutting planes [Cook et al., 1987] is a method for iteratively deriving constraints C from a pseudo-

Boolean formula F . We write F ` C for any constraintC derivable as follows. Any axiom constraint C ∈ F
is trivially derivable, as is any literal axiom ` ≥ 0. If F ` C and F ` D, then any positive integer linear
combination of these constraints is derivable. Finally, from a constraint in normalized form

∑
i ai`i ≥ A we

can use division by a positive integer d to derive
∑
idai/de`i ≥ dA/de, dividing and rounding up the degree

and coefficients. For a set of PB constraints F ′ we write F ` F ′ if F ` C for all C ∈ F ′.
For PB formulas F , F ′ and constraintsC,C ′, we say that F implies or modelsC, denoted F |= C, if any

assignment satisfying F also satisfies C, and write F |= F ′ if F |= C ′ for all C ′ ∈ F ′. It is easy to see that if
F ` F ′ then F |= F ′, and so F and F ∧F ′ are equisatisfiable. A constraint C is said to literal-axiom-imply
another constraint C ′ if C ′ can be derived from C by addition of literal axioms ` ≥ 0.

A constraint C unit propagates the literal ` under ρ if C�ρ cannot be satisfied unless ` 7→ 1. During
unit propagation on F under ρ, ρ is extended iteratively by any propagated literals until an assignment ρ′

is reached under which no constraint C ∈ F is propagating, or under which some constraint C would
propagate a literal had it not already been assigned to the opposite value. The latter scenario is referred to as
a conflict, since ρ′ violates the constraint C in this case, and ρ′ is called a conflicting assignment. Using the
generalization of [Goldberg and Novikov, 2003] in [Elffers et al., 2020], we say that F implies C by reverse
unit propagation (RUP), and that C is a RUP constraint with respect to F , if F ∧ ¬C unit propagates to
conflict under the empty assignment. If C is a RUP constraint with respect to F , then it can be proven that
there is also a derivation F ` C. More generally, it can be shown that F ` C if and only if F ∧ ¬C ` ⊥,
where ⊥ is a shorthand for the trivially false constraint 0 ≥ 1. Therefore, we will extend the notation
and write F ` C also when C is derivable from F by RUP or by contradiction. It is worth noting here
again that, as shown in (2), the negation of any PB constraint can also be expressed syntactically as a PB
constraint—this fact will be convenient in what follows.

3 A Proof System for Dominance Breaking
We proceed to develop our formal proof system for verifying dominance breaking, which we have imple-
mented on top of the version of VeriPB in [Gocht and Nordström, 2021]. We remark that for applications
it is absolutely crucial not only that the proof system be sound, but that all proofs be efficiently machine-
verifiable. There are significant challenges involved in making proof logging and verification efficient, but
in this section we mostly ignore these aspects of our work and focus on the theoretical underpinnings.

Our foundation is the cutting planes proof system described in Section 2. However, in a proof in our sys-
tem for (F, f), where f is a linear objective function to be minimized under the pseudo-Boolean formula F
(or where f .

= 0 for decision problems), we also allow strengthening F by adding constraints C that are
not implied by the formula. Pragmatically, adding C should be in order as long as we keep some optimal
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solution, i.e., a satisfying assignment to F that minimizes f , which we will refer to as an f -minimal solution
of F . We will formalize this idea by allowing the use of an additional pseudo-Boolean formula O�(~u,~v)
that, together with a sequence of variables ~z, defines a relation α � β to hold between assignments α and β
if O�(~z�α, ~z�β) evaluates to true. We require (a cutting planes proof) that O� is such that this defines a
preorder, i.e., a reflexive and transitive relation. Adding new constraints C will be valid as long as we guar-
antee to preserve some f -minimal solution that is also minimal with respect to �. In other words, � can be
combined with f to define a preorder �f on assignments by

α �f β if α � β and f�α ≤ f�β , (4)

and we require that all derivation steps in the proof should preserve some solution that is minimal with
respect to �f . The preorder defined by O�(~u,~v) will only become important once we introduce our new
dominance-based strengthening rule later in this section. For simplicity, up until that point the reader can
assume that the pseudo-Boolean formula is O>

.
= ∅ inducing the trivial preorder relating all assignments,

though all proofs presented below work in full generality for the orders that will be introduced later.
A proof for (F, f) in our proof system consists of a sequence of proof configurations (C ,D ,O�, ~z, v),

where

• C is a set of pseudo-Boolean core constraints;

• D is another set of pseudo-Boolean derived constraints;

• O� is a PB formula encoding a preorder and ~z a set of literals on which this preorder will be applied;
and

• v is the best value found so far for f .

The initial configuration is (F, ∅,O>, ∅,∞). The distinction between C and D is only relevant when a
nontrivial preorder is used; we will elaborate on this when discussing dominance. The intended semantics
of f and v is that if v < ∞, then there exists a solution α satisfying F such that f�α ≤ v, and in this case
the proof can make use of the constraint f ≤ v − 1 in the search for better solutions. As long as the optimal
solution has not been found, it should hold that f -minimal solutions of C ∪ D have the same objective
value as f -minimal solutions of F . The precise relation is formalized in the notion of valid configurations
as defined next.

Definition 1. A configuration (C ,D ,O�, ~z, v) is (F, f)-valid if the following conditions hold:

1. If v <∞, then there is a total assignment ρ satisfying F such that f�ρ ≤ v.

2. For every v′ < v, it holds that the sets F ∪ {f ≤ v′} and C ∪ {f ≤ v′} are equisatisfiable.

3. For every total assignment ρ satisfying the constraints C ∪ {f ≤ v − 1}, there exists a total assign-
ment ρ′ �f ρ satisfying C ∪D ∪ {f ≤ v − 1}.

We will show that (F, f)-validity is an invariant of our proof system, i.e., that it is preserved by all
derivation rules. Note that the two last items together imply that if the configuration (C ,D ,O�, ~z, v) is such
that v is not yet the value of an optimal solution, then f -minimal solutions of F and of C ∪D have the same
objective value, just as desired.

A proof in our proof system ends when the configuration (C ,D ,O�, ~z, v∗) is such that C ∪D contains
contradiction ⊥ .

= 0 ≥ 1. In that case, either v∗ = ∞ and F is unsatisfiable, or v∗ is the optimal value (or
v∗ = 0 for a satisfiable decision problem). We state this as a formal theorem (but due to space constraints,
proofs of all statements in this section can be found in Appendix B).
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Theorem 2. Let F be a pseudo-Boolean formula and f an objective function. If (C ,D ,O�, ~z, v∗) is an
(F, f)-valid configuration with {0 ≥ 1} ⊆ C ∪D , then

• F is unsatisfiable if and only if v∗ =∞; and

• if F is satisfiable, then there is an f -minimal solution α of F with objective value f�α = v∗.

We are now ready to give a formal description of the rules in our proof system.

Implicational Derivation Rule
If we can exhibit a derivation of the pseudo-Boolean constraint C from C ∪D ∪{f ≤ v−1} in our (slightly
extended) version of cutting planes as described in Section 2 (i.e., in formal notation, if C∪D∪{f ≤ v−1} `
C), then we can go from the configuration (C ,D ,O�, ~z, v) to the configuration (C ,D ∪ {C},O�, ~z, v) by
the implicational derivation rule. By the soundness of the cutting planes proof system, this means that
C ∪ D ∪ {f ≤ v − 1} |= C, and so (F, f)-validity is preserved, but, more importantly, the cutting planes
derivation provides a simple and efficient way for an algorithm to verify that this implication holds. This
is a key feature of all rules in our proof system—not only are they sound, but the soundness of every rule
application can be efficiently verified by checking a simple, syntactic object.

When doing proof logging, the solver would need to specify by which sequence of cutting planes deriva-
tion rules C was obtained. For practical purposes, though, it greatly simplifies matters that in many cases
the verifier can figure out the required proof details automatically, meaning that the proof logger can just
state the desired constraint without any further information. One important example of this is when C is a
reverse unit propagation (RUP) constraint with respect to C ∪D ∪ {f ≤ v − 1}. Another case is when C is
literal-axiom-implied by some other constraint.

Objective Bound Update Rule
The objective bound update rule allows improving the estimate of what value can be achieved for the objec-
tive function f . We can go from (C ,D ,O�, ~z, v) to (C ,D ,O�, ~z, v′) if we know an assignment α satisfying
C such that f�α = v′ < v. When actually doing proof logging, the solver would specify such an assign-
ment α, which would then be checked by the proof verifier (in our case VeriPB).

To argue that this rule preserves (F, f)-validity, we note that the last two items are trivially satisfied
(they are weaker after applying the rule than before). The first item is satisfied since item 2 guarantees the
existence of an α′ satisfying F with an objective value that is at least as good as v′. Note that we have no
guarantee that α′ will be a solution to F . However, although we will not emphasize this point here, it follows
from our formal treatment below that the proof system guarantees that such an f -minimal solution α′ to the
original formula F can be efficiently reconstructed from the proof (where efficiency is measured in the size
of the proof).

Redundance-Based Strengthening Rule
The redundance-based strengthening rule allows deriving a constraintC from C ∪D even ifC is not implied,
provided that it can be shown that any assignment α that satisfies C ∪ D can be transformed into another
assignment α′ �f α that satisfies both C ∪ D and C (in case O� = O>, the condition α′ �f α just
means that f�α′ ≤ f�α). This rule is borrowed from [Gocht and Nordström, 2021], which in turn relies
heavily on [Heule et al., 2017, Buss and Thapen, 2019]. We extend this rule here from decision problems to
optimization problems in the natural way.
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Formally, we say that C can be derived from (C ,D ,O�, ~z, v) by redundance-based strengthening, or
just redundance for brevity, if there is a substitution ω (which we will refer to as the witness) such that

C ∪D ∪ {¬C} `
(C ∪D ∪ C)�ω ∪ {f�ω ≤ f} ∪ O�(~z�ω, ~z) .

(5)

Intuitively, (5) says that if some assignment α satisfies C ∪D but falsifiesC, then α′ = α◦ω still satisfies C ∪
D and also satisfies C. In addition, the condition f�ω ≤ f ensures that α ◦ ω achieves an objective function
value that is at least as good as that for α. This together with the constraints O�(~z�ω, ~z) guarantees that
α′ �f α. For proof logging purposes, the witness ω as well as any non-immediate cutting planes derivations
of constraints on the right-hand side of (5) would have to be specified, but, e.g., all RUP constraints or
literal-axiom-implied constraints can be left to the verifier to check.

Proposition 3. If C is derivable from an (F, f)-valid configuration (C ,D ,O�, ~z, v) by redundance-based
strengthening, then (C ,D ∪ {C},O�, ~z, v) is (F, f)-valid as well.

Deletion Rule
We also need to be able to delete previously derived constraints. From a configuration (C ,D ,O�, ~z, v) we
can transition to (C ′,D ′,O�, ~z, v) using the deletion rule if

1. D ′ ⊆ D and

2. C ′ = C or C ′ = C \{C} for some constraintC derivable via the redundance rule from (C ′, ∅,O�, ~z, v).

This last condition above perhaps seems slightly odd, but it is there since deleting arbitrary constraints could
violate (F, f)-validity in two different ways. Firstly, it would allow finding better-than-optimal solutions.
Secondly, and perhaps surprisingly, in combination with the dominance-based strengthening rule, which we
will discuss below, arbitrary deletion is unsound, as it can turn satisfiable instances into unsatisfiable ones.
This is illustrated in Example 5 further below.

To see that deletion preserves (F, f)-validity, it is clear that item 1 remains satisfied by deletion, as does
the direction of item 2 that claims satisfiability of C ∪ {f ≤ v′}. For the other direction of item 2 and for
item 3, intuitively the redundance rule guarantees that solutions of the configuration after deletion can be
mapped to solutions of the configuration before deletion that are at least as good.

An alternative to condition 2 would be to enforce the more restrictive demand C ′ ` C . However, this
would prevent the use of some SAT preprocessing techniques such as bounded variable elimination [Eén and
Biere, 2005].

Transfer Rule
Constraints can always be moved from the derived set D to the core set C using the transfer rule, which
allows a transition from (C ,D ,O�, ~z, v) to (C ′,D ,O�, ~z, v) if C ⊆ C ′ ⊆ C ∪ D . This clearly preserves
(F, f)-validity.

The transfer rule together with deletion allows replacing constraints in the original formula with stronger
constraints. For example, assume that x+ y ≥ 1 is in C and that we derive x ≥ 1. Then we can move x ≥ 1
from D to C and then delete x + y ≥ 1. The required redundance check {x ≥ 1,¬(x+ y ≥ 1)} ` ⊥ is
immediate.

The rules discussed so far do not change O�, and so any derivation using these rules only will operate
with the trivial preorder O> imposing no conditions. The proof system defined in terms of these rules is a
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straightforward extension of VeriPB as developed in [Elffers et al., 2020, Gocht et al., 2020b,a, Gocht and
Nordström, 2021] to an optimization setting. We next discuss the main contribution of this paper, namely
the new dominance rule making use of the preorder O�.

Dominance-Based Strengthening Rule
Any preorder � induces a strict order ≺ defined by α ≺ β if α � β and β 6� α. The relation ≺f obtained
in this way from the preorder (4) coincides with what Chu and Stuckey [2015] call a dominance relation
in the context of constraint optimisation. Our dominance rule allows deriving a constraint C from C ∪ D
even if C is not implied, similar to the redundance rule. However, for the dominance rule an assignment α
satisfying C ∪ D but falsifying C need only to be mapped to an assignment α′ that satisfies C , but not
necessarily D or C. On the other hand, the new assignment α′ should satisfy the strict inequality α′ ≺f α
and not just α′ �f α as in the redundance rule. To show that this new dominance rule preserves (F, f)-
validity, we will prove that it is possible to construct an assignment that satisfies C ∪D ∪{C} by iteratively
applying the witness of the dominance rule, in combination with (F, f)-validity of the configuration before
application of the dominance rule. As our base case, if α′ satisfies C ∪ D ∪ {C}, we are done. Otherwise,
since α′ satisfies C , by (F, f)-validity we are guaranteed the existence of an assignment α′′ satisfying C ∪D
for which α′′ ≺f α′ ≺f α holds. If α′′ still does not satisfy C, we can repeat the argument. In this way, we
get a strictly decreasing sequence (with respect to≺f ) of assignments. Since the set of possible assignments
is finite, this sequence will eventually terminate.

Formally, we can derive C by dominance-based strengthening provided that there exists a substitution ω
such that

C ∪D ∪ {¬C} `
C�ω ∪ O�(~z�ω, ~z) ∪ ¬O�(~z, ~z�ω) ∪ {f�ω ≤ f} ,

(6)

where O�(~z�ω, ~z) and ¬O�(~z, ~z�ω) together state that α ◦ ω ≺ α for any assignment α. A minor techni-
cal problem is that the pseudo-Boolean formula O�(~z, ~z�ω) may contain multiple constraints, so that the
negation of it is no longer a PB formula. To get around this, we split (6) into two separate conditions and
shift ¬O�(~z, ~z�ω) to the premise of the implication, which eliminates the negation. Thus, the formal version
of our dominance-based strengthening rule, or just dominance rule for brevity, says that we can go from
(C ,D ,O�, ~z, v) to (C ,D ∪ {C},O�, ~z, v) if there is a substitution ω such that the conditions

C ∪D ∪ {¬C} ` C�ω ∪ O�(~z�ω, ~z) ∪ {f�ω ≤ f} (7a)
C ∪D ∪ {¬C} ∪ O�(~z, ~z�ω) ` ⊥ (7b)

are satisfied. Just as for the redundance rule, the witness ω as well as any non-immediate derivations would
have to be specified in the proof log.

Proposition 4. If C is derivable from an (F, f)-valid configuration (C ,D ,O�, ~z, v) by dominance-based
strengthening, then (C ,D ∪ {C},O�, ~z, v) is also (F, f)-valid.

When introducing the deletion rule, we already mentioned that deleting arbitrary constraints can be
unsound in combination with dominance-based strengthening. We now illustrate this phenomenon.

Example 5. Consider the formula F = {p ≥ 1} with objective f .
= 0 and the configuration

(C1 = {p ≥ 1},D1 = {p ≥ 1},O�, {p},∞) , (8)

where O�(u, v) is defined as {v + u ≥ 1}. This configuration is (F, f)-valid and C ∪ D is satisfiable. If
we were allowed to delete constraints arbitrarily from C , we could derive a configuration with C2 = ∅ and
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D2 = {p ≥ 1}. However, now the dominance rule can derive C .
= p ≥ 1, using the witness ω = {p 7→ 0}.

To see that all conditions for applying dominance-based strengthening are indeed satisfied, we notice that
conditions (7a)–(7b) simplify to

∅ ∪ {p ≥ 1} ∪ {p ≥ 1} ` ∅ ∪ {p+ 1 ≥ 1} ∪ ∅ (9a)
∅ ∪ {p ≥ 1} ∪ {p ≥ 1} ∪ {0 + p ≥ 1} ` ⊥ (9b)

respectively. Both claims clearly hold, meaning that we arrive at a configuration that contains both p ≥ 1
and p ≥ 1.

Preorder Encodings
As mentioned before, O� is shorthand for a pseudo-Boolean formula O�(~u,~v) over two sets of formal
placeholder variables ~u = {u1, . . . , un} and ~v = {v1, . . . , vn} of equal size, which should also match the
size of ~z in the configuration. To use O� in a proof, it is required to show that this formula encodes a preorder.
This is done by providing (in a proof preamble) cutting planes derivations establishing

∅ ` O�(~u, ~u) (10a)
O�(~u,~v) ∪ O�(~v, ~w) ` O�(~u, ~w) (10b)

where (10a) formalizes reflexivity and (10b) transitivity (and where notation like O�(~v, ~w) is shorthand for
applying to O�(~u,~v) the substitution ω that maps ui to vi and vi to wi, as discussed in Section 2). These
two conditions guarantee that the relation � defined by α � β if O�(~z�α, ~z�β) forms a preorder on the set
of assignments.

By way of example, to encode the lexicographic order u1u2 . . . un �lex v1v2 . . . vn, we can use a single
constraint

O�lex
(~u,~v)

.
=
∑n
i=12

n−i · (vi − ui) ≥ 0 . (11)

Reflexivity is vacuously true since O�lex
(~u, ~u)

.
= 0 ≥ 0, and transitivity also follows easily since adding

O�lex
(~u,~v) and O�lex

(~v, ~w) yields O�lex
(~u, ~w).

A potential concern with encodings such as (11) is that coefficients can become very large as the number
of variables in the order grows. It is perfectly possible to address this by allowing order encodings using
auxiliary variables in addition to ~u and ~v. We have chosen not to develop the theory for this in the current
paper, however, since we feel that it makes the exposition unnecessarily complicated without adding anything
of real significance to the scientific contribution.

Order Change Rule
The final proof rule that we need is a rule for introducing a nontrivial order, and it turns out that it can also
be convenient to be able to use different orders at different points in the proof. Switching orders is possible,
but to maintain soundness it is important to first clear the set D (after transferring the constraints we want
to keep to C ). The reason for this is simple: if we allow arbitrary order changes, then the third item of
(F, f)-validity would no longer hold, but when D = ∅, it is trivially true.

Formally, provided that O�2 has been established to be a preorder (via cutting planes proofs for (10a)
and (10b)), and provided that ~z2 is a list of variables of the size required by this order, it is allowed to go
from the configuration (C , ∅,O�1 , ~z1, v) to the configuration (C , ∅,O�2 , ~z2, v) using the order change rule.
As explained above, it is clear that this rule preserves (F, f)-validity.
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This concludes the presentation of our proof system. Each rule has been shown to preserve (F, f)-
validity, and the initial configuration is clearly (F, f)-valid. Therefore, by Theorem 2 our proof system is
sound: whenever we can derive a configuration (C ,D ,O�, ~z, v) such that C ∪ D contains 0 ≥ 1, it holds
that v is the value of f in any f -minimal solution of F (or, for a decision problem, we have v <∞ precisely
when F is satisfiable). As mentioned above, in this case the full sequence of configurations (C ,D ,O�, ~z, v)
together with annotations about the derivation steps—including, in particular, any witnesses ω—contains all
information needed to efficiently reconstruct such an f -minimal solution of F . It is also straightforward to
show that our proof system is complete: after using the bound update rule to log an optimal solution v∗,
it follows from the implicational completeness of cutting planes that contradiction can be derived from
F ∪ {f ≤ v∗ − 1}.

4 Applications
We now exhibit three applications that have not previously admitted efficient certification, and demonstrate
that our new method can support simple, practical proof logging in each case. We first show that, by enhanc-
ing the BreakID tool for SAT solving [Devriendt et al., 2016] with VeriPB proof logging, we can cover the
entire solving toolchain when symmetries are involved. We then revisit the Crystal Maze example from the
introduction. Finally, we discuss how dominance-based strengthening can be used to support vertex domi-
nation reasoning in a maximum clique solver. All code for our implementations and experiments, as well as
data and scripts for all plots, can be found at https://doi.org/10.5281/zenodo.6373986.

Symmetry Breaking in SAT Solvers
Symmetry handling has a long and successful history in SAT solving, with a wide variety of techniques
considered by, e.g., Aloul et al. [2006], Benhamou and Saı̈s [1994], Benhamou et al. [2010], Devriendt et al.
[2012, 2017], Metin et al. [2019], Sabharwal [2009]. These techniques were used to great effect in, e.g.,
the 2013 and 2016 editions of the SAT competition,2 where the SAT+UNSAT hard combinatorial track and
the no-limit track, respectively, were won by solvers employing symmetry breaking. However, the victory
in 2013 can partly be explained by a small parser bug. For reasons such as this, proof logging is now
obligatory in the main track of the SAT competition. While it is hard to overemphasize the importance of
this development, it unfortunately means that symmetry breaking can no longer be used, since there is no
way of efficiently certifying the correctness of such reasoning in DRAT . We will now explain how pseudo-
Boolean reasoning with the dominance rule can provide proof logging for the static symmetry breaking
techniques of Devriendt et al. [2016].

Let π be a permutation of the set of literals in a given CNF formula F (i.e., , a bijection on the set of
literals), extended to (sets of) clauses in the obvious way. We say that π is a symmetry of F if it commutes
with negation, i.e., π(`) = π(`), and preserves satisfaction of F , i.e., α◦π satisfies F if and only if α does. A
syntactic symmetry in addition satisfies that π(F ) .

= F�π
.
= F . As is standard, we only consider syntactic

symmetries.
The most common way of breaking symmetries is by adding lex-leader constraints [Crawford et al.,

1996]. We here use �lex to denote the lexicographic order on assignments induced by the sequence of
variables x1, . . . , xm. Given a set G of symmetries of F , a lex-leader constraint is a formula ψLL such that
α satisfies ψLL if and only if α �lex α ◦ π for each π ∈ G. Let {xi1 , . . . , xin} be the support of π (i.e., all

2www.satcompetition.org

10

68



variables x such that π(x) 6= x), ordered so that ij ≤ ik if and only if j ≤ k. Then the constraints

y0 ≥ 1 (12a)
yj−1 + xij + π(xij ) ≥ 1 1 ≤ j ≤ n (12b)

yj + yj−1 ≥ 1 1 ≤ j < n (12c)

yj + π(xij ) + xij ≥ 1 1 ≤ j < n (12d)

yj + yj−1 + xij ≥ 1 1 ≤ j < n (12e)

yj + yj−1 + π(xij ) ≥ 1 1 ≤ j < n (12f)

form a lex-leader constraint for π, where each yj is a fresh variable representing that α and α ◦ π are equal
up to xij , and where (12b) does the actual breaking.

To derive this in our proof system, assume that we have a configuration (C ,D ,O�, ~x, v) where assign-
ments are compared lexicographically on ~x = {x1, . . . , xm} according toO� as in (11). Let π be a syntactic
symmetry of C (i.e., such that C�π

.
= C ) with support contained in ~x. In this case

CLL
.
=
∑m
i=1 2

m−i · (π(xi)− xi) ≥ 0 (13)

expresses that π(~x) is greater than or equal to ~x. Noting that SAT problems lack an objective function,
we can apply the dominance rule with ω = π to derive CLL. To see that (7a) holds, we note that ¬CLL

expresses that ~x is strictly larger than π(~x), and hence this implies O�(~x�π, ~x). Clearly, (7b) is true as well,
since its premise contains both CLL and its negation. Since the y-variables are fresh, we can also derive the
constraints (12a) and (12c)–(12f) as explained by Gocht and Nordström [2021]. It remains to show how to
deduce the constraints (12b) from CLL.

As before, assume that the support of π is {xi1 , . . . , xin} with ij ≤ ik if and only if j ≤ k. Note first
that for all xi that are not in the support of π, the term π(xi)−xi disappears since π(xi) = xi and thus CLL

simplifies to ∑n
j=1 2

m−ij · (π(xij )− xij ) ≥ 0 , (14)

which can only hold if the term with the largest coefficient is non-negative. It follows that CLL implies
π(xi1)− xi1 ≥ 0 by reverse unit propagation (RUP), and hence can be derived from our current configura-
tion with the implicational rule, also yielding the weaker constraint (12b) with j = 1.

To deal with j > 1, we define

CLL(0)
.
= CLL (15a)

CLL(k)
.
= CLL(k − 1) + 2m−ik · (12d [j = k]) (15b)

where (12d [j = k]) denotes substitution of j by k in (12d). Simplifying CLL(k) yields∑k
i=1 2

m−iyj +
∑m
i=k+1 2

m−i · (π(xi)− xi) ≥ 0 , (16)

which, in combination with all constraints (12c), directly entails (12b) with j = k. To see this, note that if
yk is false, then (12b) is trivially true for j = k + 1. On the other hand, if yk is true, then so are all the
preceding y-variables, and the dominant term in CLL(k) becomes π(xik) − xik , which implies (12b) for
j = k analogously to the case for j = 1.

It is important to note here that the order is set once and is the same for all symmetries π ∈ G to be
broken. Since constraints are added only to D , dominance rule applications for different symmetries will not
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Figure 2: On the left, performance overhead due to proof logging symmetry breaking. In the center, perfor-
mance of verifying symmetry breaking. On the right, performance of verifying symmetry breaking and SAT
solving. Points behind the vertical dashed line indicate timeouts (left) and out of memory (right).

interfere with each other. Furthermore, contrary to the symmetry logging approach of Heule et al. [2015],
handling a symmetry once is enough to guarantee complete breaking. See Appendix C for a worked-out
VeriPB example of symmetry breaking together with explanations of how the proof logging syntax matches
rules in our proof system.

To validate our approach, we implemented VeriPB proof logging for the symmetry breaking method in
BreakID, and modified Kissat3 to output VeriPB-proofs (since the redundance rule is a generalization of
the RAT rule, this required only minor changes). We used a simpler version of the deletion rule that only
guarantees to prove a lower bound on the objective value—if this lower bound is infinity, this certifies that
decision problems are unsatisfiable (see the discussion of weak (F, f)-validity in Appendix B).

Out of all the benchmark instances from all the SAT competitions since 2016, we selected all instances
in which at least one symmetry was detected; there were 1089 such instances in total. We performed our
experiments on machines with dual Intel Xeon E5-2697A v4 processors with 512GBytes RAM and solid-
state drive (SSD), running Ubuntu 20.04. We ran twenty instances in parallel on each machine, limiting each
instance to 16GBytes RAM, and with a timeout of 5,000s for solving and 100,000s for verification.

The left plot in Figure 2 displays the performance overhead for symmetry breaking, comparing for each
instance the running time with and without proof logging. For most instances, the overhead is negligible
(99% of instances are at most 32% slower). The other two plots in Figure 2 display the relationship between
the time needed to generate a proof (both for SAT and UNSAT instances) and to verify the correctness
of this proof. When only considering verification of the symmetry breaking (middle plot), 1058 instances
out of 1089 could be verified, 2 timed out, and 29 terminated due to running out of memory. 75% of the
instances could be verified within 3.2 times the solving time and 95% within a factor 20. The time needed
for verification is thus considerably longer than solving time, but still practical in the majority of cases. After
symmetry breaking, 721 instances could be solved with the SAT solver (right plot) and we could verify 671
instances, while for 33 instances verification timed out and for 17 instances the verifier ran out of memory.
Notably, 84 instances could only be solved with symmetry breaking, out of which we could verify 81.

Symmetries in Constraint Programming
In the general setting considered in constraint programming, we must deal with variables with larger (non-
Boolean) domains and with rich constraints supported by propagation algorithms. One might think that a

3http://fmv.jku.at/kissat/
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proof system based upon Boolean variables and linear inequalities would not be suitable for this larger class
of problem. However, Elffers et al. [2020] showed how to use VeriPB for constraint satisfaction problems by
first encoding variables and constraints in pseudo-Boolean form, and then constructing cutting planes proofs
to justify the behaviour of propagators such as alldifferent. Similarly, the work we present here can also be
applied to constraint satisfaction and optimisation problems.

Recall the symmetry breaking constraints proposed for the Crystal Maze puzzle in the introduction.
Given the difficulties in knowing which combinations of constraints are valid, it would be desirable if these
constraints could be introduced as part of a proof, rather than taken as axioms. This would give a modeller
immediate feedback as to whether the constraints have been chosen correctly. Our proof system is indeed
powerful enough to express all three of the examples we presented, and we have implemented a small tool
which can write out the appropriate proof fragments; this allows the entire Crystal Maze example to be
verified with VeriPB. Interestingly, although symmetries can be broken in different ways in high-level CP
models (including through lexicographic and value precedence constraints), when we encode the problem in
pseudo-Boolean form these differences largely disappear, and after creating a suitable order we can re-use
the SAT techniques just discussed. So, although a full proof-logging constraint solver does not yet exist, we
can confidently claim that symmetries no longer block this goal.

Lazy Global Domination in Maximum Clique
Gocht et al. [2020a] showed how VeriPB can be used to implement proof logging for a wide range of
maximum clique algorithms, observing that the cutting planes proof system is rich enough to justify a wide
range of bound and inference functions used by various solvers (despite cutting planes not knowing what
a graph or clique is). However, there is one clique-solving technique in the literature that is not amenable
to cutting planes reasoning. In order to solve problem instances that arise from a distance-relaxed clique-
finding problem, McCreesh and Prosser [2016] enhanced their maximum clique algorithm with a lazy global
domination rule that works as follows. Suppose that the solver has constructed a candidate clique C and is
considering to extend C by two vertices v and w, where the neighbourhood of v excluding w is a (non-strict)
superset of the neighbourhood of w excluding v. Then if the solver first tries v and rejects it, there is no need
to branch on w as well.

In principle, it should be possible to introduce additional constraints justifying this kind of reasoning in
advance using redundance-based strengthening, without the need for the full dominance breaking framework
in Section 3 (with some technicalities involving consistent orderings for tiebreaking). However, due to the
prohibitive cost of computing the full vertex dominance relation in advance, McCreesh and Prosser instead
implement a form of lazy dominance detection, which only triggers following a backtrack.

To provide proof logging for this, we must instead be able to introduce vertex dominance constraints
precisely when they are used. It is hard to see how to achieve this with the redundance rule, but it is possible
using dominance-based strengthening: we have implemented this in the proof logging maximum clique
solver in [Gocht et al., 2020a], as discussed in more detail in Appendix E.

5 Conclusion
In this paper, we show that the pseudo-Boolean proof logging method in VeriPB [Gocht and Nordström,
2021] can be extended with a rule for dominance breaking so as to efficiently certify unlimited symmetry
breaking in SAT solving, even when combined with XOR and cardinality reasoning. A natural next ques-
tion is whether our method is strong enough to capture other techniques such as those used for MaxSAT;
several such techniques, such as the dominating unit-clause rule [Niedermeier and Rossmanith, 2000] and
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group subsumed label elimination [Leivo et al., 2020], appear to be special cases of dominance, making this
a promising direction. Our work also contributes towards extending proof logging techniques from SAT to
other combinatorial solving paradigms such as constraint programming and dedicated graph solving algo-
rithms.
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A Introduction to the Technical Appendices
In this collection of technical appendices, we provide some material that had to be omitted in the main text
due to space constraints.

In Appendix B, we provide the missing proofs in the formal exposition of our cutting planes proof
system with dominance. In Appendix C, we provide details about how our proof logging technique for SAT
symmetry breaking works, including a discussion of various optimizations of the basic symmetry breaking
algorithm and how we deal with them. In Appendix D we discuss how the methods developed in our work
can be used to certify the correctness of added symmetry breaking constraints in constraint programming,
and Appendix E contains a fairly detailed discussion of how to certify vertex dominance breaking in a
maximum clique solver.

B A Proof System for Dominance Breaking
In this appendix, we give a full, formal presentation of our proof system for verifying dominance breaking,
which we have implemented on top of the tool VeriPB as developed in the sequence of papers [Elffers et al.,
2020, Gocht et al., 2020b,a, Gocht and Nordström, 2021]. In order to give a self-contained presentation, this
section essentially copies the material from Section 3, inserting all formal proofs where they belong.

We remark that for applications it is absolutely crucial not only that the proof system be sound, but
that all proofs be efficiently machine-verifiable. There are significant challenges involved in making proof
logging and verification efficient, but in this section we mostly ignore these aspects of our work and focus
on the theoretical underpinnings.

Our foundation is the cutting planes proof system described in Section 2. However, in a proof in our sys-
tem for (F, f), where f is a linear objective function to be minimized under the pseudo-Boolean formula F
(or where f .

= 0 for decision problems), we also allow strengthening F by adding constraints C that are
not implied by the formula. Pragmatically, adding C should be in order as long as we keep some optimal
solution, i.e., a satisfying assignment to F that minimizes f , which we will refer to as an f -minimal solution
of F . We will formalize this idea by allowing the use of an additional pseudo-Boolean formula O�(~u,~v)
that, together with a sequence of variables ~z, defines a relation α � β to hold between assignments α and β
if O�(~z�α, ~z�β) evaluates to true. We require (a cutting planes proof) that O� is such that this defines a
preorder, i.e., a reflexive and transitive relation. Adding new constraints C will be valid as long as we guar-
antee to preserve some f -minimal solution that is also minimal with respect to �. In other words, � can be
combined with f to define a preorder �f on assignments by

α �f β if α � β and f�α ≤ f�β , (17)

and we require that all derivation steps in the proof should preserve some solution that is minimal with
respect to �f . The preorder defined by O�(~u,~v) will only become important once we introduce our new
dominance-based strengthening rule later in this section. For simplicity, up until that point the reader can
assume that the pseudo-Boolean formula is O>

.
= ∅ inducing the trivial preorder relating all assignments,

though all proofs presented below work in full generality for the orders that will be introduced later.
A proof for (F, f) in our proof system consists of a sequence of proof configurations (C ,D ,O�, ~z, v),

where

• C is a set of pseudo-Boolean core constraints;

• D is another set of pseudo-Boolean derived constraints;
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• O� is a PB formula encoding a preorder and ~z a set of literals on which this preorder will be applied;
and

• v is the best value found so far for f .

The initial configuration is (F, ∅,O>, ∅,∞). The distinction between C and D is only relevant when a
nontrivial preorder is used; we will elaborate on this when discussing dominance. The intended semantics
of f and v is that if v < ∞, then there exists a solution α satisfying F such that f�α ≤ v, and in this case
the proof can make use of the constraint f ≤ v − 1 in the search for better solutions. As long as the optimal
solution has not been found, it should hold that f -minimal solutions of C ∪ D have the same objective
value as f -minimal solutions of F . The precise relation is formalized in the notion of valid configurations
as defined next.

Definition 6. A configuration (C ,D ,O�, ~z, v) is (F, f)-valid if the following conditions hold:

1. If v <∞, then there is a total assignment ρ satisfying F such that f�ρ ≤ v.

2. For every v′ < v, it holds that the sets F ∪ {f ≤ v′} and C ∪ {f ≤ v′} are equisatisfiable.

3. For every total assignment ρ satisfying the constraints C ∪ {f ≤ v − 1}, there exists a total assign-
ment ρ′ �f ρ satisfying C ∪D ∪ {f ≤ v − 1}.

We will show that (F, f)-validity is an invariant of our proof system, i.e., that it is preserved by all
derivation rules. Note that the two last items together imply that if the configuration (C ,D ,O�, ~z, v) is such
that v is not yet the value of an optimal solution, then f -minimal solutions of F and of C ∪D have the same
objective value, just as desired.

A proof in our proof system ends when the configuration (C ,D ,O�, ~z, v∗) is such that C ∪D contains
contradiction ⊥ .

= 0 ≥ 1. In that case, either v∗ = ∞ and F is unsatisfiable, or v∗ is the optimal value (or
v∗ = 0 for a satisfiable decision problem). We state this as a formal theorem.

Theorem 7. Let F be a pseudo-Boolean formula and f an objective function. If (C ,D ,O�, ~z, v∗) is an
(F, f)-valid configuration with {0 ≥ 1} ⊆ C ∪D , then

• F is unsatisfiable if and only if v∗ =∞; and

• if F is satisfiable, then there is an f -minimal solution α of F with objective value f�α = v∗.

Proof. If F is unsatisfiable, then we must have v∗ =∞ due to item 1 of (F, f)-validity.
If F is satisfiable, let α be an f -optimal assignment of F . We will show that v∗ = f�α. Clearly, v∗ ≥ f�α,

otherwise item 1 of (F, f)-validity would yield a strictly better assignment than α, contradicting optimality.
If v∗ > f�α, then α satisfies F ∪ {f ≤ v∗ − 1}. Hence, item 2 yields an α′ that satisfies C ∪ {f ≤ v∗ − 1}
and item 3 an α′′ that satisfies C ∪ D ∪ {f ≤ v∗ − 1}, which contradicts the assumption that 0 ≥ 1 is in
C ∪D . It follows that v∗ ≤ f�α and thus v∗ = f�α, as desired.

We are now ready to give a formal description of the rules in our proof system and argue that these rules
preserve (F, f)-validity.
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Implicational Derivation Rule
If we can exhibit a derivation of the pseudo-Boolean constraint C from C ∪D ∪{f ≤ v−1} in our (slightly
extended) version of cutting planes as described in Section 2 (i.e., in formal notation, if C∪D∪{f ≤ v−1} `
C), then we can go from the configuration (C ,D ,O�, ~z, v) to the configuration (C ,D ∪ {C},O�, ~z, v) by
the implicational derivation rule. By the soundness of the cutting planes proof system, this means that
C ∪ D ∪ {f ≤ v − 1} |= C, and so (F, f)-validity is preserved, but, more importantly, the cutting planes
derivation provides a simple and efficient way for an algorithm to verify that this implication holds. This
is a key feature of all rules in our proof system—not only are they sound, but the soundness of every rule
application can be efficiently verified by checking a simple, syntactic object.

When doing proof logging, the solver would need to specify by which sequence of cutting planes deriva-
tion rules C was obtained. For practical purposes, though, it greatly simplifies matters that in many cases
the verifier can figure out the required proof details automatically, meaning that the proof logger can just
state the desired constraint without any further information. One important example of this is when C is a
reverse unit propagation (RUP) constraint with respect to C ∪D ∪ {f ≤ v − 1}. Another case is when C is
literal-axiom-implied by some other constraint.

Objective Bound Update Rule
The objective bound update rule allows improving the estimate of what value can be achieved for the objec-
tive function f . We can go from (C ,D ,O�, ~z, v) to (C ,D ,O�, ~z, v′) if we know an assignment α satisfying
C such that f�α = v′ < v. When actually doing proof logging, the solver would specify such an assign-
ment α, which would then be checked by the proof verifier (in our case VeriPB).

To argue that this rule preserves (F, f)-validity, we note that the last two items are trivially satisfied
(they are weaker after applying the rule than before). The first item is satisfied since item 2 guarantees the
existence of an α′ satisfying F with an objective value that is at least as good as v′. Note that we have no
guarantee that α′ will be a solution to F . However, although we will not emphasize this point here, it follows
from our formal treatment below that the proof system guarantees that such an f -minimal solution α′ to the
original formula F can be efficiently reconstructed from the proof (where efficiency is measured in the size
of the proof).

Redundance-Based Strengthening Rule
The redundance-based strengthening rule allows deriving a constraintC from C ∪D even ifC is not implied,
provided that it can be shown that any assignment α that satisfies C ∪ D can be transformed into another
assignment α′ �f α that satisfies both C ∪ D and C (in case O� = O>, the condition α′ �f α just
means that f�α′ ≤ f�α). This rule is borrowed from [Gocht and Nordström, 2021], which in turn relies
heavily on [Heule et al., 2017, Buss and Thapen, 2019]. We extend this rule here from decision problems to
optimization problems in the natural way.

Formally, we say that C can be derived from (C ,D ,O�, ~z, v) by redundance-based strengthening, or
just redundance for brevity, if there is a substitution ω (which we will refer to as the witness) such that

C ∪D ∪ {¬C} `
(C ∪D ∪ C)�ω ∪ {f�ω ≤ f} ∪ O�(~z�ω, ~z) .

(18)

Intuitively, (18) says that if some assignment α satisfies C ∪ D but falsifies C, then α′ = α ◦ ω still
satisfies C ∪ D and also satisfies C. In addition, the condition f�ω ≤ f ensures that α ◦ ω achieves an

21

79



objective function value that is at least as good as that for α. This together with the constraints O�(~z�ω, ~z)
guarantees that α′ �f α. For proof logging purposes, the witness ω as well as any non-immediate cutting
planes derivations of constraints on the right-hand side of (18) would have to be specified, but, e.g., all RUP
constraints or literal-axiom-implied constraints can be left to the verifier to check.

Proposition 8. If C is derivable from an (F, f)-valid configuration (C ,D ,O�, ~z, v) by redundance-based
strengthening, then (C ,D ∪ {C},O�, ~z, v) is (F, f)-valid as well.

Proof. Items 1 and 2 of (F, f)-validity remain satisfied since F , v, and C are unchanged. Our proof of
item 3 extends proofs of similar properties for decision problems [Heule et al., 2017, Buss and Thapen, 2019,
Gocht and Nordström, 2021]. Consider an assignment ρ satisfying C ∪ {f ≤ v − 1}. We will construct an
assignment ρ′ �f ρ, i.e., such that f�ρ′ ≤ f�ρ and O�(~z�ρ′ , ~z�ρ) hold, that also satisfies C ∪D ∪ {C}.

Without loss of generality (due to item 3 of (F, f)-validity, which holds for the first configuration), we
can assume that ρ also satisfies D . If ρ satisfies C, then we use ρ′ = ρ and all conditions are satisfied (recall
that O� induces a preorder, and hence a reflexive relation: for any ρ, O�(~z�ρ, ~z�ρ) holds). Otherwise, choose
ρ′ = ρ ◦ ω. We know that ρ satisfies C ∪D ∪ ¬C, and hence by (18) ρ also satisfies

(C ∪D ∪ C)�ω ∪ {f�ω ≤ f} ∪ O�(~z�ω, ~z) . (19)

Clearly, for any constraint D, it holds that (D�ω)�ρ = D�ρ◦ω and thus if ρ satisfies D�ω , then ρ′ = ρ ◦ ω
satisfies D. Therefore, ρ′ satisfies C ∪ D ∪ C. Additionally, ρ satisfies {f�ω ≤ f}, and hence f�ρ′ ≤ f�ρ.
Similarly, ρ satisfies O�(~z�ω, ~z) and (O�(~z�ω, ~z))�ρ

.
= O�(~z�ρ′ , ~z�ρ) thus holds, which concludes our

proof.

Deletion Rule
We also need to be able to delete previously derived constraints. From a configuration (C ,D ,O�, ~z, v) we
can transition to (C ′,D ′,O�, ~z, v) using the deletion rule if

1. D ′ ⊆ D and

2. C ′ = C or C ′ = C \{C} for some constraintC derivable via the redundance rule from (C ′, ∅,O�, ~z, v).

This last condition above perhaps seems slightly odd, but it is there since deleting arbitrary constraints could
violate (F, f)-validity in two different ways. Firstly, it would allow finding better-than-optimal solutions.
Secondly, and perhaps surprisingly, in combination with the dominance-based strengthening rule, which we
will discuss below, arbitrary deletion is unsound, as it can turn satisfiable instances into unsatisfiable ones.
This is illustrated in Example 12 further below.

To see that deletion preserves (F, f)-validity, it is clear that item 1 remains satisfied by deletion, as does
the direction of item 2 that claims satisfiability of C ∪ {f ≤ v′}. Now let α be an assignment that satisfies
C ′ ∪ {f ≤ v′} for v′ < v; we use this to construct a satisfying assignment α′ for F ∪ {f ≤ v′}. If C ′ = C ,
we get α′ from the (F, f)-validity of the original configuration, so assume C ′ = C \{C}. If α satisfies C, it
satisfies C , and again the claim follows from (F, f)-validity of the original configuration. Assume therefore
that α does not satisfy C. Since C is derivable via redundance from (C ′, ∅,O�, ~z, v), it holds that

C ′ ∪ {¬C} ` (C ′ ∪ C)�ω ∪ {f�ω ≤ f} ∪ O�(~z�ω, ~z) . (20)

This yields an assignment α′′ = α ◦ ω satisfying C = C ′ ∪ {C} such that f�α′′ ≤ f�α ≤ v′, showing
that C ∪ {f ≤ v′} is satisfiable. Appealing to the (F, f)-validity of the original configuration, we then find
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an α′ with f�α′ ≤ v′ that satisfies F , proving that indeed the second item holds. The proof for item 3 is
similar: α ◦ω satisfies C ′∪{C}, and applying (F, f)-validity of the original configuration yields an α′ with
α′ �f α ◦ ω �f α that satisfies D .

An alternative to condition 2 would be to enforce the more restrictive demand C ′ ` C . However, this
would prevent the use of some SAT preprocessing techniques such as bounded variable elimination [Eén and
Biere, 2005].

In practice, checking deletions can make it more difficult to implement proof logging, or could have
negative effects on performance. An alternative is to use a more liberal deletion rule, which also allows
deleting constraints from C if D is empty. In this case, unsatisfiable instances can become satisfiable and
better than optimal solutions can be introduced, but we can still verify a lower bound on the best objective
value. This means that if the solver provides a solution to the original formula F that matches the verified
lower bound, then this solution is guaranteed to be optimal. To prove that the proof system remains sound
with this more liberal deletion rule, we need to adjust our invariant.

Definition 9. A configuration (C ,D ,O�, ~z, v) is weakly (F, f)-valid if the following conditions hold:

1. For every v′ < v, it holds that if F ∪ {f ≤ v′} is satisfiable then C ∪ {f ≤ v′} is satisfiable.

2. For every total assignment ρ satisfying the constraints C ∪ {f ≤ v − 1}, there is a total assignment
ρ′ �f ρ satisfying C ∪D ∪ {f ≤ v − 1}.

We will only show that each rule preserves (F, f)-validity, because the same proofs can be used to show
that weak (F, f)-validity is preserved as well and while deleting from C if D is empty does not preserve
(F, f)-validity, it is easy to see that weak (F, f)-validity is preserved. With this weaker invariant, we also
get a weaker result for the final configuration.

Theorem 10. Given a formula F and an objective function f , let (C ,D ,O�, ~z, v∗) be a weakly (F, f)-valid
configuration with {0 ≥ 1} ⊆ C ∪D . It holds that

• for any solution α of F we have f�α ≥ v∗, and especially,

• if v∗ =∞ then F is unsatisfiable.

Proof. If F is satisfiable, then let α be a satisfying assignment of F . If v∗ > f�α, then α satisfies F ∪ {f ≤
v∗ − 1}. Hence, item 1 yields an α′ that satisfies C ∪ {f ≤ v∗ − 1} and item 2 an α′′ that satisfies
C ∪D∪{f ≤ v∗−1}, which contradicts the assumption that 0 ≥ 1 is in C ∪D . It follows that v∗ ≤ f�α.

Transfer Rule
Constraints can always be moved from the derived set D to the core set C using the transfer rule, which
allows a transition from (C ,D ,O�, ~z, v) to (C ′,D ,O�, ~z, v) if C ⊆ C ′ ⊆ C ∪ D . This clearly preserves
(F, f)-validity.

The transfer rule together with deletion allows replacing constraints in the original formula with stronger
constraints. For example, assume that x+ y ≥ 1 is in C and that we derive x ≥ 1. Then we can move x ≥ 1
from D to C and then delete x + y ≥ 1. The required redundance check {x ≥ 1,¬(x+ y ≥ 1)} ` ⊥ is
immediate.

The rules discussed so far do not change O�, and so any derivation using these rules only will operate
with the trivial preorder O> imposing no conditions. The proof system defined in terms of these rules is a
straightforward extension of VeriPB as developed in [Elffers et al., 2020, Gocht et al., 2020b,a, Gocht and
Nordström, 2021] to an optimization setting. We next discuss the main contribution of this paper, namely
the new dominance rule making use of the preorder O�.
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Dominance-Based Strengthening Rule
Any preorder � induces a strict order ≺ defined by α ≺ β if α � β and β 6� α. The relation ≺f obtained
in this way from the preorder (17) coincides with what Chu and Stuckey [2015] call a dominance relation
in the context of constraint optimisation. Our dominance rule allows deriving a constraint C from C ∪ D
even if C is not implied, similar to the redundance rule. However, for the dominance rule an assignment α
satisfying C ∪ D but falsifying C need only to be mapped to an assignment α′ that satisfies C , but not
necessarily D or C. On the other hand, the new assignment α′ should satisfy the strict inequality α′ ≺f α
and not just α′ �f α as in the redundance rule. To show that this new dominance rule preserves (F, f)-
validity, we will prove that it is possible to construct an assignment that satisfies C ∪D ∪{C} by iteratively
applying the witness of the dominance rule, in combination with (F, f)-validity of the configuration before
application of the dominance rule. As our base case, if α′ satisfies C ∪ D ∪ {C}, we are done. Otherwise,
since α′ satisfies C , by (F, f)-validity we are guaranteed the existence of an assignment α′′ satisfying C ∪D
for which α′′ ≺f α′ ≺f α holds. If α′′ still does not satisfy C, we can repeat the argument. In this way, we
get a strictly decreasing sequence (with respect to≺f ) of assignments. Since the set of possible assignments
is finite, this sequence will eventually terminate.

Formally, we can derive C by dominance-based strengthening provided that there exists a substitution ω
such that

C ∪D ∪ {¬C} `
C�ω ∪ O�(~z�ω, ~z) ∪ ¬O�(~z, ~z�ω) ∪ {f�ω ≤ f} ,

(21)

where O�(~z�ω, ~z) and ¬O�(~z, ~z�ω) together state that α ◦ ω ≺ α for any assignment α. A minor techni-
cal problem is that the pseudo-Boolean formula O�(~z, ~z�ω) may contain multiple constraints, so that the
negation of it is no longer a PB formula. To get around this, we split (21) into two separate conditions and
shift ¬O�(~z, ~z�ω) to the premise of the implication, which eliminates the negation. Thus, the formal version
of our dominance-based strengthening rule, or just dominance rule for brevity, says that we can go from
(C ,D ,O�, ~z, v) to (C ,D ∪ {C},O�, ~z, v) if there is a substitution ω such that the conditions

C ∪D ∪ {¬C} ` C�ω ∪ O�(~z�ω, ~z) ∪ {f�ω ≤ f} (22a)
C ∪D ∪ {¬C} ∪ O�(~z, ~z�ω) ` ⊥ (22b)

are satisfied. Just as for the redundance rule, the witness ω as well as any non-immediate derivations would
have to be specified in the proof log.

Proposition 11. If C is derivable from an (F, f)-valid configuration (C ,D ,O�, ~z, v) by dominance-based
strengthening, then (C ,D ∪ {C},O�, ~z, v) is also (F, f)-valid.

Proof. The first two items of (F, f)-validity are clearly satisfied, since F , C , and v are unchanged. Assume
towards contradiction that the last item does not hold. Let S denote the set of assignments α that (1) satisfy
C ∪ {f ≤ v − 1} and (2) admit no α′ �f α satisfying C ∪D ∪ {C}. By our assumption, S is non-empty.

Letα be some≺f -minimal assignment in S. Since (C ,D ,O�, ~z, v) is (F, f)-valid, there exists someα1 �f
α that satisfies C ∪D . We know that α1 cannot satisfy C since α ∈ S. Hence, α1 satisfies C ∪D ∪ {¬C}.
From (22a) it follows that α1 satisfies O�(~z�ω, ~z) ∪ {f�ω ≤ f} and thus that O�(~z�α1◦ω, ~z�α1

) and
f�α1◦ω ≤ f�α1

are satisfied. In other words, α1 ◦ ω �f α1. By (22b), it follows that α1 does not sat-
isfy O�(~z, ~z�ω), i.e., O�(~z�α1

, ~z�α1◦ω) does not hold and thus α1 6�f α1 ◦ ω. Now let α2 be α1 ◦ ω. We
showed that α2 ≺f α1 �f α. Furthermore, since α1 satisfies C ∪ D ∪ {¬C}, (7a) yields that α2 satisfies
C . Thus α2 satisfies C ∪ {f ≤ v − 1}. Since α2 ≺f α, and α is a minimal element of S, it cannot be that
α2 ∈ S. Thus, there must exist a α′ �f α2 that satisfies C ∪D ∪ {C}. However, it is also so that α′ �f α,
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and since α ∈ S this means that α′ cannot satisfy C ∪D∪{C}. This yields a contradiction, thereby finishing
our proof.

When introducing the deletion rule, we already mentioned that deleting arbitrary constraints can be
unsound in combination with dominance-based strengthening. We now illustrate this phenomenon.

Example 12. Consider the formula F = {p ≥ 1} with objective f .
= 0 and the configuration

(C1 = {p ≥ 1},D1 = {p ≥ 1},O�, {p},∞) , (23)

where O�(u, v) is defined as {v + u ≥ 1}. This configuration is (F, f)-valid and C ∪ D is satisfiable. If
we were allowed to delete constraints arbitrarily from C , we could derive a configuration with C2 = ∅ and
D2 = {p ≥ 1}. However, now the dominance rule can derive C .

= p ≥ 1, using the witness ω = {p 7→ 0}.
To see that all conditions for applying dominance-based strengthening are indeed satisfied, we notice that
conditions (7a)–(7b) simplify to

∅ ∪ {p ≥ 1} ∪ {p ≥ 1} ` ∅ ∪ {p+ 1 ≥ 1} ∪ ∅ (24a)
∅ ∪ {p ≥ 1} ∪ {p ≥ 1} ∪ {0 + p ≥ 1} ` ⊥ (24b)

respectively. Both claims clearly hold, meaning that we arrive at a configuration that contains both p ≥ 1
and p ≥ 1.

Preorder Encodings
As mentioned before, O� is shorthand for a pseudo-Boolean formula O�(~u,~v) over two sets of formal
placeholder variables ~u = {u1, . . . , un} and ~v = {v1, . . . , vn} of equal size, which should also match the
size of ~z in the configuration. To use O� in a proof, it is required to show that this formula encodes a preorder.
This is done by providing (in a proof preamble) cutting planes derivations establishing

∅ ` O�(~u, ~u) (25a)
O�(~u,~v) ∪ O�(~v, ~w) ` O�(~u, ~w) (25b)

where (25a) formalizes reflexivity and (25b) transitivity (and where notation like O�(~v, ~w) is shorthand for
applying to O�(~u,~v) the substitution ω that maps ui to vi and vi to wi, as discussed in Section 2). These
two conditions guarantee that the relation � defined by α � β if O�(~z�α, ~z�β) forms a preorder on the set
of assignments.

By way of example, to encode the lexicographic order u1u2 . . . un �lex v1v2 . . . vn, we can use a single
constraint

O�lex
(~u,~v)

.
=
∑n
i=12

n−i · (vi − ui) ≥ 0 . (26)

Reflexivity is vacuously true since O�lex
(~u, ~u)

.
= 0 ≥ 0, and transitivity also follows easily since adding

O�lex
(~u,~v) and O�lex

(~v, ~w) yields O�lex
(~u, ~w) (where we tacitly assume that the constraint resulting from

this addition is implicitly simplified by collecting like terms, performing any cancellations, and shifting any
constants to the right-hand side of the inequality, as mentioned in Section 2).

A potential concern with encodings such as (26) is that coefficients can become very large as the number
of variables in the order grows. It is perfectly possible to address this by allowing order encodings using
auxiliary variables in addition to ~u and ~v. We have chosen not to develop the theory for this in the current
paper, however, since we feel that it makes the exposition unnecessarily complicated without adding anything
of real significance to the scientific contribution.
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Order Change Rule
The final proof rule that we need is a rule for introducing a nontrivial order, and it turns out that it can also
be convenient to be able to use different orders at different points in the proof. Switching orders is possible,
but to maintain soundness it is important to first clear the set D (after transferring the constraints we want
to keep to C ). The reason for this is simple: if we allow arbitrary order changes, then the third item of
(F, f)-validity would no longer hold, but when D = ∅, it is trivially true.

Formally, provided that O�2 has been established to be a preorder (via cutting planes proofs for (25a)
and (25b)), and provided that ~z2 is a list of variables of the size required by this order, it is allowed to go
from the configuration (C , ∅,O�1 , ~z1, v) to the configuration (C , ∅,O�2 , ~z2, v) using the order change rule.
As explained above, it is clear that this rule preserves (F, f)-validity.

This concludes the presentation of our proof system. Each rule has been shown to preserve (F, f)-
validity, and the initial configuration is clearly (F, f)-valid. Therefore, by Theorem 7 our proof system is
sound: whenever we can derive a configuration (C ,D ,O�, ~z, v) such that C ∪ D contains 0 ≥ 1, it holds
that v is the value of f in any f -minimal solution of F (or, for a decision problem, we have v <∞ precisely
when F is satisfiable). As mentioned above, in this case the full sequence of configurations (C ,D ,O�, ~z, v)
together with annotations about the derivation steps—including, in particular, any witnesses ω—contains all
information needed to efficiently reconstruct such an f -minimal solution of F . It is also straightforward to
show that our proof system is complete: after using the bound update rule to log an optimal solution v∗,
it follows from the implicational completeness of cutting planes that contradiction can be derived from
F ∪ {f ≤ v∗ − 1}.

C Technical appendix on Symmetry Breaking in SAT Solvers
In the “Symmetry Breaking in SAT Solvers” subsection, we discuss the core ideas that underlie most modern
symmetry breaking tools for SAT. Devriendt et al. [2016] extend these ideas further in a couple of ways. In
this technical appendix, we briefly discuss these techniques and how and why they fit in our proof system.

The most important contribution of Devriendt et al. [2016] is detecting so-called row interchangeability.
The goal of this optimization is to not just take an arbitrary set of generators of the symmetry group and
an arbitrary lexicographic order, but to choose “the right” set of generators and “the right” variable order
(with which to define the lexicographic order). Devriendt et al. [2016] showed that for groups that exhibit
a certain structure, breaking symmetries of a good set of generators, with a matching order, can guarantee
that the entire symmetry group is broken completely. Since our logging techniques simply use the same
lexicographic order as the breaking tool, and work for an arbitrary generator set, this automatically works
with the techniques described in Section 4.

Another (optional) modification BreakID implements is writing out a more compact encoding. The au-
thors observed that the definitions the y-variables can be weakened: the clauses (12c) and (12d) in the
“Symmetry Breaking in SAT Solvers” subsection can be omitted. Since our definition of CLL(k) uses these
clauses, we cannot simply omit them in our proof. However, all the symmetry breaking constraints are added
in the set D , and so we can remove these constraints from D as soon as they are no longer needed for the
proof logging derivations.

Next, BreakID has an optimization based on stabilizer subgroups to detect a plethora of binary clauses.
Since these binary clauses are all clauses of the form (12b) with j = 1, the described proof logging tech-
niques also work for this optimization, provided we keep track of which symmetry is used for each such
binary clause. However, BreakID currently does no such bookkeeping. While it is in principle possible to do
so, we did not implement this yet.
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Finally, BreakID supports partial symmetry breaking. That is, instead of adding the constraints (12b)–
(12f) for every j, this is only done for j < L with L a limit that can be chosen by the user. The reasoning
behind this is that the larger j, gets, the weaker the added breaking constraint is. By only doing this, for
instance for j < 100, the size of the added constraints can get significantly smaller without losing too much
breaking power. Since we only need to do proof logging for the clauses that are actually added by BreakID,
this optimization works out-of-the-box. However, there is an important caveat here: in benchmarks where
there are huge symmetries, e.g., symmetries permuting all the variables in the problem, even when this op-
timisation is used, a naive implementation of our proof logging technique suffers from serious performance
problems. The reason is that in principle the order O� is defined on all variables that are permuted by the
symmetries. If there are many such variables, this order in itself can get huge (the largest coefficient is ex-
ponentially large in terms of the number of variables). Luckily, there is a simple solution to this problem,
namely not taking ~x to be the set of all variables that are permuted, but only the set of variables on which
we will actually do breaking (for each symmetry, the first L variables in its support); this solution was
implemented in the experiments we presented.

A Complete Example of Proof Logging Symmetry Breaking
We now present a complete example of proof logging for symmetry for the well-known pigeon-hole problem.
We consider an instance of this problem with 4 pigeons and 3 holes. We use variables pij to represent that
pigeon i resides in hole j. The input for the symmetry breaking preprocessor consists of the constraints

p11 + p12 + p13 ≥ 1 (C1)

p21 + p22 + p23 ≥ 1 (C2)

p31 + p32 + p33 ≥ 1 (C3)

p41 + p42 + p43 ≥ 1 (C4)

p11 + p21 ≥ 1 (C5)

p11 + p31 ≥ 1 (C6)

p11 + p41 ≥ 1 (C7)

p21 + p31 ≥ 1 (C8)

p21 + p41 ≥ 1 (C9)

p31 + p41 ≥ 1 (C10)

p12 + p22 ≥ 1 (C11)
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p12 + p32 ≥ 1 (C12)

p12 + p42 ≥ 1 (C13)

p22 + p32 ≥ 1 (C14)

p22 + p42 ≥ 1 (C15)

p32 + p42 ≥ 1 (C16)

p13 + p23 ≥ 1 (C17)

p13 + p33 ≥ 1 (C18)

p13 + p43 ≥ 1 (C19)

p23 + p33 ≥ 1 (C20)

p23 + p43 ≥ 1 (C21)

p33 + p43 ≥ 1 (C22)

where the first four constraints represent that each pigeon resides in at least one hole, and the rest that each
hole is occupied by at most one pigeon.

Introducing the order

A VeriPB proof starts with a proof header (stating which version of the proof system is used) and an instruc-
tion to load the input formula
L1 pseudo-Boolean proof version 1.2
L2 f 22

where the 22 is the number of formulas in the input (to ensure consistent constraint numbering). To do
symmetry breaking, the proof BreakID yields, then contains the definition of the pre-order
L3 pre_order exp22
L4 vars
L5 left u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12
L6 right v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
L7 aux
L8 end
L9

L10 def
L11 -1 u12 1 v12 -2 u11 2 v11 -4 u10 4 v10 -8 u9 8 v9 -16 u8 16 v8 -32 u7 32 v7 -64

↪→ u6 64 v6 -128 u5 128 v5 -256 u4 256 v4 -512 u3 512 v3 -1024 u2 1024 v2
↪→ -2048 u1 2048 v1 >= 0;
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L12 end
L13
L14 transitivity
L15 vars
L16 fresh_right w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12
L17 end
L18 proof
L19 proofgoal #1
L20 p 1 2 + 3 +
L21 c -1
L22 qed
L23 qed
L24 end
L25 end

The pre-order is given a name (exp22) in Line 3. Lines 5 and 6 introduce two times twelve auxiliary
variables to define the order over. Line 11 then provides the well-known exponential encoding of the fact
that the u-variables are lexicographically smaller than the v-variables. To prove transitivity, another set of
variables (called w) is introduced. Formally, we need to show that equation (10b) holds. To prove this, we
assume O�(~u,~v), O�(~v, ~w) and ¬O�(~u, ~w) hold. When instantiated with the specified order, these three
constraints are

−u12 + v12 − 2u11 + 2v11 − 4u10 + 4v10 − · · · ≥ 0 (T1)

−v12 + w12 − 2v11 + 2w11 − 4v10 + 4w10 − · · · ≥ 0 (T2)

u12 − w12 + 2u11 − 2w11 + 4u10 − 4w10 + · · · ≥ −1, (T3)

where we use the T-numbering to emphasize that these are not constraints learned in the proof system, but
temporary constraints, local to the proof of transitivity. Line 20 is an instruction to add constraints (T1–T3),
resulting (after simplification) in the constraint

0 ≥ −1, (T4)

Line 21 then states that the last derived constraint (the−1 stands for the last derived constraint) is a conflict-
ing constraint, thereby concluding the proof of transitivity. Note that no proof for reflexivity is given since
for simple orders such as the one specified here, veriPB’s autoproving can construct a proof itself.

The proof continues with the instruction
L26 load_order exp22 p21 p22 p23 p11 p12 p13 p31 p32 p33 p41 p42 p43

stating that the order should be instantiated with the variables from the input. Do note that in the the chosen
instantiation, (all variables related to) pigeon 2 are ordered before pigeon 1, then pigeons 3 and 4. In other
words, in the lex-leader order, pigeon 2 has the highest importance.

Logging the breaking of a first symmetry

The next step is to log constraints for breaking symmetries. The first symmetry considered is the symmetry

π := (p11p43)(p12p42)(p13p41)(p21p23)(p31p33),

which is the symmetry that swaps pigeons 1 and 4, and simultaneously swaps holes 1 and 3. In this work, we
just take the set of symmetries to break on for granted and we will not elaborate on the possible reasons why
this peculiar symmetry was chosen. As explained in our section on symmetry breaking, in order to break
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this symmetry, first an exponential encoding of a lex-leader constraint is added using the dominance rule, as
follows

L27 dom -1 p43 1 p11 -2 p42 2 p12 -4 p41 4 p13 -8 p33 8 p31 -32 p31 32 p33 -64 p13 64 p41
↪→ -128 p12 128 p42 -256 p11 256 p43 -512 p23 512 p21 -2048 p21 2048 p23 >= 0 ;
↪→ p11 -> p43 p12 -> p42 p13 -> p41 p21 -> p23 p23 -> p21 p31 -> p33 p33 -> p31
↪→ p41 -> p13 p42 -> p12 p43 -> p11 ; begin

L28 proofgoal #2
L29 p -1 -2 +
L30 c -1
L31 qed

These instruction tell VeriPB to use the dominance rule to derive (and add to D) the constraint in Line
274, which expresses that the assignment in question is lexicographically smaller than it’s symmetric coun-
terpart. As expected, the variables related to pigeon 2 occur with the highest coefficients (since when instan-
tiating the order, they were given the highest priority).

The actual instruction for VeriPB does not just contain the constraint to be derived by dominance, but
also specifies

• The witness, which in this case is just the symmetry, in Line 27, and

• A subproof of one of the proof obligations in Lines 28–31.

As far as the subproof is concerned: to apply the dominance rule, we need to show that the two implications

C ∪D ∪ {¬C} ` C�ω ∪ O�(~z�ω, ~z) ∪ {f�ω ≤ f} (27a)
C ∪D ∪ {¬C} ∪ O�(~z, ~z�ω) ` ⊥ (27b)

hold. To do so, VeriPB generates the following proof obligations:

1. C ∪D ∪ {¬C} ` O�(~z�ω, ~z)

2. C ∪D ∪ {¬C} ` ¬O�(~z, ~z�ω)

3. C ∪D ∪ {¬C} ` {f�ω ≤ f}

4–25 C ∪D ∪ {¬C} ` B for each B ∈ C�ω .

Except for the second proof obligation, all of them can be proved automatically, for instance since we are
working in the context of a decision problem where f = 0, the third one is trivial. Since ω is a syntactic
symmetry of C (which is at this point still equal to the input), also the last ones are trivial. The proof of this
second proof obligation goes as follows. First, VeriPB (automatically) adds the constraint ¬C, which (after
simplification) equals:

255p11+126p12+60p13+1536p21+1536p23+24p31+24p33+60p41+126p42+255p43 ≥ 2002 (C23)

Next, VeriPB (again, automatically) adds the constraint O�(~z, ~z�ω), which, after simplification, equals

255p11+126p12+60p13+1536p21+1536p23+24p31+24p33+60p41+126p42+255p43 ≥ 2001 (C24)

Now the instruction 29 simply states that the last added constraint (i.e., Equation (C24)) and the one added
before Equation (C23)) should be added resulting in

255 + 126 + 60 + 1536 + 1536 + 24 + 24 + 60 + 126 + 255 ≥ 2002 + 2001, (C25)
4Notice that this constraint contains some duplicate variables, because of being generated automatically; later on this will be sim-

plified.
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which is a contradiction. The line 30 states that the this is indeed a contradiction and the subproof for
this proof obligation is ended. Finally, when this proof is finished and all other proof obligation have been
automatically checked, the new constraint

−p43 + 1p11 − 2p42 + 2p12 − 4p41 + 4p13 − 8p33 + 8p31 − 32p31 + 32p33 − 64p13 + 64p41
−128p12 + 128p42 − 256p11 + 256p43 − 512p23 + 512p21 − 2048p21 + 2048p23 ≥ 0

(C26)
is added to D . Afterwards, constraints (C23), (C24), and (C25) are removed, since they are constraints that
were only valid for the subproof.

This constraint, by itself, is a lex-leader constraint for the symmetry at hand. However, since we are in
the context of SAT solving, it still has to be translated to a set of clauses, which is what happens next. First,
(12a) is added with the redundance rule with the instruction

L32 red 1 y0 >= 1 ; y0 -> 1

which contains both the constraint
y0 ≥ 1 (C27)

and the witness y0 7→ 1 to apply the redundance rule. All proof obligations are checked automatically by
VeriPB.

In our chosen lexicographic order, the most prominent variable is p21. As such, the first clause for sym-
metry breaking is

p21 ∨ π(p21)
.
= p21 ∨ p23,

which is a simplification of (12b), omitting the trivially true y0. The constraint (C26) implies the above
constraint (e.g., using weakening out all other variables in that constraint). Instead of giving the actual
derivation, we can simply add it with the reverse unit propagation rule and let VeriPB figure out the details
by

L33 u 1 ∼p21 1 p23 >= 1 ;

resulting in
p21 + p23 ≥ 1. (C28)

Next, the Tseitin variable y1 is introduced with four redundance rule applications
L34 red 1 p23 1 ∼y0 1 y1 >= 1 ; y1 -> 1
L35 red 1 ∼p21 1 ∼y0 1 y1 >= 1 ; y1 -> 1
L36 red 1 ∼y1 1 y0 >= 1 ; y1 -> 0
L37 red 1 ∼y1 1 ∼p23 1 p21 >= 1 ; y1 -> 0

each of them also mentioning the witness mapping y1 either to 0 or to 1, resulting in the constraints

p23 + y0 + y1 ≥ 1 (C29)

p21 + y0 + y1 ≥ 1 (C30)

y1 + y0 ≥ 1, and (C31)

y1 + p23 + p21 ≥ 1 (C32)

corresponding to the constraints (12c)–(12f).
Before repeating this procedure for the next variable, we use the recently derived constrain to cancel out

the dominant terms in constraint (C26) with the instructions
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L38 p 26 32 2048 * +
L39 d 26

The first of these instructions results in adding (C32) 2048 times to (C26), resulting in

255p11+126p12+60p13+512p21+512p23+24p31+24p33+60p41+126p42+255p43+2048y1 ≥ 977.
(C33)

The last of these instructions deletes (C26) from D since it will no longer be required.
After p21, the next most important variable is p22. However, since our symmetry π at hand maps p22

to itself, no symmetry breaking clauses are added for it. The next variable in the ordering is p23, which is
mapped to p21, resulting in the (conditional on y1) symmetry breaking constraint

y1 + p23 + p21 ≥ 1 (C34)

obtained by the instruction
L40 u 1 ∼y1 1 ∼p23 1 p21 >= 1 ;

Next, as before, the next Tseitin variable y2 is introduced with the redundance rule using
L41 red 1 p21 1 ∼y1 1 y2 >= 1 ; y2 -> 1
L42 red 1 ∼p23 1 ∼y1 1 y2 >= 1 ; y2 -> 1
L43 red 1 ∼y2 1 y1 >= 1 ; y2 -> 0
L44 red 1 ∼y2 1 ∼p21 1 p23 >= 1 ; y2 -> 0

resulting in the constraints
p21 + y1 + y2 ≥ 1 (C35)

p23 + y1 + y2 ≥ 1 (C36)

y1 + y2 ≥ 1, and (C37)

p21 + p23 + y2 ≥ 1 (C38)

As before, our pseudo-Boolean symmetry breaking constraint is simplified with
L45 p 33 38 512 * +
L46 d 33

where the first instruction again cancels out the dominant terms (replacing them by y-variables) to express a
conditional symmetry breaking constraint, resulting in

255p11 + 126p12 + 60p13 + 24p31 + 24p33 + 60p41 + 126p42 + 255p43 + 2048y1 + 512y2 ≥ 465 (C39)

The next most important variable in our chosen order is p11, which is mapped to p43, resulting in the
symmetry breaking constraint

p11 + p43 + y2 ≥ 1 (C40)

added by
L47 u 1 ∼y2 1 ∼p11 1 p43 >= 1 ;

To see that this constraint indeed follows by reverse unit propagation, we observe that whenever y2 holds,
so do y1 and y0 (by (C37) and (C31). If furthermore p43 and p11 hold, (C39) simplifies to

126p12 + 60p13 + 24p31 + 24p33 + 60p41 + 126p42 ≥ 465,

which can never be satisifed since the coefficients on the left add up to 420.
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The process of introducing a new Tseitin variable is the same as before, resulting in the addition of the
following constraints to D :

p43 + y2 + y3 ≥ 1 (C41)

p11 + y2 + y3 ≥ 1 (C42)

y2 + y3 ≥ 1 (C43)

p11 + p43 + y3 ≥ 1 (C44)

This last constraint can then again be used to simplify (C39) with
L48 p 39 44 256 * +

resulting in

p11 +126p12 +60p13 +24p31 +24p33 +60p41 +126p42 + p43 +2048y1 +512y2 +256y3 ≥ 211 (C45)

This process continues by considering all variables not stabilized by π in the order used for lexicographic
ordering.

Logging the breaking of more symmetries

Afterwards, more symmetries are broken, and the resulting clauses logged. The process is completely the
same as with the first symmetry. In our example, BreakID decided to break the following symmetries next:

(p11p12)(p21p32)(p22p31)(p23p33)(p41p42)

(p21p11)(p22p12)(p23p13)

(p11p31)(p12p32)(p13p33)

(p31p41)(p32p42)(p33p43)

(p21p22)(p11p12)(p31p32)(p41p42), and
(p22p23)(p12p13)(p32p33)(p42p43).

The first of these symmetries swaps holes 1 and 2 and simultaneously swaps pigeons 2 and 3. It is important
to note here that the breaking of these six symmetries by no means interacts with the previously derived
breaking clauses: the order remains unchanged and all previously added constraints were added to D , hence
C still consists only of the input formula.

D Technical Appendix on Proof Logging for CP Symmetry Breaking
In the “Symmetries in Constraint Programming” subsection we describe how we can use proof logging in a
constraint programming setting to verify an algorithm for solving the Crystal Maze puzzle. In this appendix
we describe the key ideas behind an implementation of this algorithm; source code to run the demo is located
in the tools/crystal-maze-solver directory of the code and data repository5, and full instructions
are given in the tools/crystal-maze-solver/README.md file. An outline of this work follows
below.

5See https://doi.org/10.5281/zenodo.6373986.
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We modelled the Crystal Maze puzzle as a constraint satisfaction problem in the natural way: we have
a decision variable for each circle, whose values are the possible numbers that can be taken, and an all-
different constraint over all decision variables. We use a table constraint for each edge, for simplicity. We
also included symmetry elimination constraints.

We implemented this model inside a small proof-of-concept CP solver src/crystal maze.cc that
we created for this paper. (Full proof logging for CP is an entire research program in its own right, which
we do not claim to have carried out—what we do claim, though, is that our contribution shows that symme-
tries do not stand in the way of this work.) When executed, the solver compiles this high level CP model
to a pseudo-Boolean model, which it will output as crystal maze.opb. This is done following the
framework introduced by Elffers et al. [2020], but as well as using a one-hot (direct) encoding of CP deci-
sion variables to PB variables, it additionally creates channelled greater-or-equal PB variables for each CP
variable-value. Note that the encoding of the table constraints also introduces additional auxiliary variables.

Then, as it solves the problem, the solver outputs crystal maze.veripb, which provides a proof
that it has found all non-symmetric solutions. (Note that our solver maintains generalised arc consistency on
the all-different and table constraints, and so is performing propagation that requires explicit justification in
the proof log.) These two outputs can be verified using VeriPB.

To verify that the symmetry constraints introduced in the high level model are actually valid, we can
remove them from the pseudo-Boolean model and introduce them as part of the proof instead. We describe
how to do this editing in README.md. We also include a script make-symmetries.py that will output
the necessary proof fragment to reintroduce the symmetry constraints. The output of this script can be veri-
fied on top of the reduced pseudo-Boolean model using our modified version of VeriPB, with or without the
remainder of the proof—that is, we can both verify that the constraints introduced are valid (in that they do
not alter the satisfiability of the model), and that they line up with the actual execution of the solver.

E Technical Appendix on Proof Logging for Vertex Dominance in
Max-Clique Solving

Throughout this last appendix we letG = (V,E) denote an undirected, unweighted graph without self-loops
with vertices V and edges E. We write N(u) to denote the neighbours of a vertex u ∈ V , i.e., the set of
vertices N(u) = {w | (u,w) ∈ E} that are adjacent to u in the graph, and define neighbours of sets of
vertices in the natural way by taking unions N(U) =

⋃
u∈U N(u).

We say that u dominates v if
N(u) \ {v} ⊇ N(v) \ {u} (28)

holds, which intuitively says that the neighbourhood of u is at least as large as that of v. It is straightforward
to verify that this domination relation is transitive.

When representing the maximum clique problem in pseudo-Boolean form, we overload notation and
identify every vertex v ∈ V with a Boolean variable, where v = 1 means that the vertex v is in the clique.
The task is to maximize

∑
v∈V v under the constraints that all chosen vertices should be neighbours, but

since, syntactically speaking, we require an objective function to be minimized, we obtain

min
∑
v∈V v (29a)

v + w ≥ 1 [for all (v, w) /∈ E] (29b)

as the formal pseudo-Boolean specification of the problem.
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Algorithm 1: Max clique algorithm without dominance.

1 MaxCliqueSearch(G,Vrem, Ccurr, Cbest) :
2 Erem ← E(G) ∩ (Vrem × Vrem);
3 Grem ← (Vrem, Erem);
4 if |Ccurr| > |Cbest| then
5 Cbest ← Ccurr;

6 (S1, . . . , Sm)← colour classes in colouring of Grem ;
7 j ← m;
8 while j ≥ 1 and |Ccurr|+ j > |Cbest| do
9 for v ∈ Sj do

10 Cbest ← MaxCliqueSearch(G,Vrem ∩N(v), Ccurr ∪ {v}, Cbest);

11 Vrem ← Vrem \ Sj ;
12 j ← j − 1;

13 return Cbest;

High-Level Description of the Max Clique Solver
At a high level, the maximum clique solver of McCreesh and Prosser [2016], but before addition of vertex
dominance breaking, works as described in Algorithm 1. The first call to the MaxCliqueSearch algorithm is
with parameters G, Vrem = V , Ccurr = ∅, and Cbest = ∅.

When MaxCliqueSearch is called with a candidate clique Ccurr, the best solution so far Cbest, and a
subset of vertices Vrem, it considers the residual graph Grem = (Vrem, Erem) assumed to be defined on
all vertices in V \ Ccurr that are neighbours of all c ∈ Ccurr. Thus, the set Vrem contains all vertices to
which Ccurr could possibly be extended. The algorithm produces a colouring of Grem, which we assume
results in m disjoint colour classes (S1, . . . , Sm) such that Vrem =

⋃m
i=1 Si. It is clear that any clique

extending Ccurr can contain at most one vertex from every colour class Si. The clique search algorithm
now iterates over all colour classes in the order Sm, Sm−1, . . . , S1. Whenever the clique is extended with
a new vertex, a new recursive call to MaxCliqueSearch is made. Therefore, when we reach Sj in the loop,
we are considering the case when all vertices in Sm, Sm−1, . . . , Sj+1 have been rejected. For this reason, if
the condition |Ccurr|+ j > |Cbest| fails to hold, we know that the current clique candidate cannot possibly
be extended to a clique that is larger than what we have already found in Cbest. At the end of the first call
MaxCliqueSearch(G,V,Ccurr = ∅, Cbest = ∅), after completion of all recursive subcalls, the vertex set
Cbest will be a clique of maximum size in G. A certifying version of essentially this algorithm with VeriPB
proof logging was presented by Gocht et al. [2020a]. It might be worth noting in this context that one quite
interesting challenge is to justify the backtracking performed when the condition |Ccurr|+ j > |Cbest| fails,
and this is one place where the strength of the pseudo-Boolean reasoning in the cutting planes proof system
is very helpful (as opposed to the clausal reasoning in, e.g., DRAT).

The vertex dominance breaking of McCreesh and Prosser [2016] is based on the following observation:
If the algorithm is about to consider v ∈ Sj in the innermost for loop on line 9 in Algorithm 1, but has
previously considered a vertex u ∈

⋃m
i=j Si that dominates v in the sense of (28), then it is safe to ignore v.

If the algorithm would find a solution that includes v but not u, then we can swap u for v and obtain a
solution that is at least as good.

In pseudo-Boolean notation, this would correspond to adding the constraint u + v ≥ 1 to the formula,
but there is no way this can be semantically derived from the constraints (29a) or the requirement to mini-
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mize (29b). Therefore, the proof logging method in [Gocht et al., 2020a] is inherently unable to deal with
such constraints.

In general, the vertex dominance breaking as described above does not need to break ties consistently.
By this we mean that if u and v dominate each other, in principle it might happen that in a given branch of
the search tree, u is chosen to dominate v, while in another one, v is chosen to dominate u, simply because
of the order in which nodes are considered. While in principle, our proof logging methods can be adapted to
work in this case, the argument is subtle. Luckily, it turns out that in practical implementations, tie breaking
only happens in a consistent manner.

Fact 13. In the vertex dominance breaking of McCreesh and Prosser [2016], there exists a total order �G
on the set V of vertices such that whenever v is ignored because u has previously been considered, u �G v.

Moreover, this order�G is known before the algorithm starts: u �G v holds if u has a larger degree than
v, or in case they have the same degree but the identifier used to represent u internally is larger than that of
v. To see that this order indeed guarantees consistent tie breaking, we provide some properties of the actual
implementation of the algorithm.

1. If u and v dominate each other and are not adjacent, u and v are guaranteed to be in the same coloring
class. If furthermore u �G v, u is considered before v in the loop in Line 8 (due to the order in which
this for loop iterates over the nodes).

2. If u and v dominate each other, are adjacent, and u �G v, then u is assigned a larger coloring class
than v (due to the order in which the (greedy) coloring algorithm in Line 6 iterates over the nodes).
Hence, also in this case u will be considered before v.

In what follows below, we will explain

• first, how the redundance rule introduced to VeriPB by Gocht and Nordström [2021] could in principle
be used to provide proof logging for vertex dominance breaking, but that this seems hard to get to work
in practice; and

• then, how the dominance rule introduced in this paper can be used to resolve the practical problems in
a very simple way.

An implementation for both techniques can be found in the code and data repository.5

Vertex Dominance with the Redundance Rule
In order to provide proof logging for vertex dominance breaking using the redundance rule, we could in
theory proceed as follows. First, we let the solver check the vertex dominance condition (28) for all pairs of
vertices u, v in V .

Before starting the solver, we add all pseudo-Boolean constraints for vertex dominance breaking using
the redundance rule. For all u, v such that u dominates v and u �G v, we derive the vertex dominance
breaking constraint

u+ v ≥ 1 , (30)

doing so in decreasing order for uwith respect to�G. Our witness for the redundance rule derivation of (30)
will be ω = {u 7→ v, v 7→ u}, i.e., ω will simply swap the dominating and dominated vertices. Hence, the
objective function (29a) is syntactically unchanged after substitution by ω, and so the condition in (5) that
the objective should not increase is always vacuously satisfied.
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We need to argue that deriving the vertex dominance breaking constraints (30) is valid in our proof
system. Towards this end, suppose we are in the middle of the process of adding such constraints and are
currently considering u+ v ≥ 1 for u dominating v and u �G v. Let C ∪D be the set of constraints in the
current configuration. In order to add u+ v ≥ 1, we need to show that

C ∪D ∪ {¬(u+ v ≥ 1)} (31a)

can be used to derive all constraints in

(C ∪D ∪ {u+ v ≥ 1})�ω (31b)

by the cutting planes method (i.e., without any extension rules).
Starting with the vertex dominance constraint being added, note that from the negated constraint ¬(u+

v ≥ 1)
.
= u+ v ≥ 2 in (31a) we immediately obtain

u ≥ 1 (32a)
v ≥ 1 (32b)

as RUP constraints, meaning that the weaker constraint (u+ v ≥ 1)�ω
.
= v + u ≥ 1 is also RUP with

respect to the constraints in (31a).
Consider next any non-edge constraints x + y ≥ 1 in (29b) in the original formula. Clearly, such con-

straints are only affected by ω if {u, v} ∩ {x, y} 6= ∅; otherwise they are present in both (31a) and (31b)
and there is nothing to prove. Any non-edge constraint v + y ≥ 1 containing v will after application of ω
contain u, and will hence be RUP with respect to (32a) and hence also with respect to (31a). For non-edge
constraints u+y ≥ 1 with y 6= v, substitution by ω yields (u+ y ≥ 1)�ω

.
= v+y ≥ 1. Since by assumption

u dominates v and y 6= v is not a neighbour of u, it follows from (28) that y is not a neighbour of v either.
Hence, the input formula in (31a) already contains the desired non-edge constraint v + y ≥ 1.

It remains to analyse what happens to vertex dominance breaking constraints

x+ y ≥ 1 (33)

that have already been added to D before the dominance breaking constraint u+ v ≥ 1 that we are consid-
ering now. Again, such a constraint is only affected by ω if {u, v} ∩ {x, y} 6= ∅; otherwise it is present in
both (31a) and (31b). We obtain the following case analysis.

1. x = u: In this case, (x+ y ≥ 1)�ω
.
= v + ω(y) ≥ 1, which is RUP with respect to v ≥ 1 in (32b)

and hence also with respect to (31a).

2. x = v: This is impossible, since u �G v and any dominance breaking constraints with v = x as the
dominating vertex will be added only once we are done with u as per the description right below (30).

3. y = u: In this case x dominates u. Since x �G u, u �G v, and u dominates v, by transitivity we have
x �G v and also that x dominates v. Hence, the breaking constraint x+v ≥ 1 has already been added
to D . But since u 6= x 6= v, we see that our desired constraint is (x+ u ≥ 1)�ω

.
= x+ v ≥ 1, which

is precisely this previously added constraint.

4. y = v: Here we see that the desired constraint (x+ y ≥ 1)�ω
.
= ω(x) + u ≥ 1 is again RUP with

respect to (31a).

37

95



This concludes our proof that all vertex dominance breaking constraints that are consistent with our con-
structed linear order�G can be added and certified by the redundance rule before the solvers starts searching
for cliques.

So all of this works perfectly fine in theory. The problem that rules out this approach in practice, however,
is that the solver will not have the time to compute the dominance relation between vertices in advance,
since this is far too costly and does not pay off in general. Instead the solver designed by McCreesh and
Prosser [2016] will detect and apply vertex dominance relations on the fly during search. And from a proof
logging perspective this is too late—during search, when C ∪D will also contain constraints justifying any
backtracking made, our proof logging approach above no longer works. The constraints added to the proof
log to justify backtracking are no longer possible to derive when substituted by ω as in (31b), for the simple
reason that they are not semantically implied by (31a). One possible way around this would be to run the
solver twice—the first time to collect all information about what vertex dominance breaking will be applied,
and then the second time to do the actual proof logging—but this seems like quite a cumbersome approach.
Moreover, even when doing so, our argument of correctness uses that the set of pairs (u, v) for which a
constraint u+ v ≥ 1 is derived is transitively closed, i.e., we would still add more constraints than what the
solver actually needs.

We deliberately discuss this problem in some detail here, because this is an example of an important and
nontrivial challenge that shows up also in other settings when designing proof logging for other algorithms.
It is not sufficient to just come up with a proof logging system that is strong enough in principle to certify
the solver reasoning (which the redundance rule is for the clique solver with vertex dominance breaking, as
shown above). It is also crucial that the solver have enough information available at the right time and can
extract this information efficiently enough to actually be able to emit the required proof logging commands
with low enough overhead. For constraint programming solvers, it is not seldom the case that the solver
knows for sure that some variable should propagate to a value, because the domain has shrunk to a singleton,
or that the search should backtrack because some variable domain is empty, but that the solver cannot recon-
struct the detailed derivation steps required to certify this without incurring a massive overhead in running
time (e.g., since the reasoning has been performed with bit-parallel logical operations). It is precisely for this
reason that it is important that our proof system allow adding reverse unit propagation (RUP) constraints.
This makes it possible for the solver to claim facts that it knows to be true, and that it knows can be easily
verified, while leaving the work of actually producing a detailed justification to the proof checker.

Vertex Dominance with the Dominance Rule
Similar to the case of the redundance rule we will make use of Fact 13. Before staring the proof logging, we
use the order change rule to activate the lexicographic order on the the assignments to the vertices/variables
induced by �G.

Suppose now that the solver is running and that the current candidate clique is Ccurr. The solver has
an ordered list of unassigned candidate vertices that it is iterating over when considering how to enlarge
this clique, and this list is defined by the colour classes (Sm, Sm−1, . . . , S1). (We note that this ordered list
depends on Ccurr, and would be different for a different clique C ′curr.) Suppose the next vertex in that list
is v. Then when it is time to make the next decision on line 9 in Algorithm 1 about enlarging the clique, we
can apply the following decision algorithm:

1. If there exists a vertex u that has already been considered in the current iteration and that dominates v
(and hence for which u �G v), then discard v by vertex dominance and add the constraint u+ v ≥ 1
by the dominance rule with witness ω = {u 7→ v, v 7→ u}. We will below explain in detail why this is
possible.
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2. Otherwise, enlarge Ccurr with v and make a recursive call.

When the solver has explored all ways of enlarging Ccurr and is about to backtrack, here is what will
happen on the proof logging side (where we refer to [Gocht et al., 2020a] for a more detailed description of
how proof logging for backtracking CP solvers works in general):

1. For every u that was explored in an enlarged clique Ccurr ∪ {u}, when backtracking the solver will
already have added u+

∑
w∈Ccurr

w ≥ 1 as a RUP constraint.

2. The solver now inserts the explicit cutting planes derivation required to justify that |Ccurr| + j >
|Cbest| must hold.

3. After this, the solver adds the claim that
∑
w∈Ccurr

w ≥ 1 is a RUP constraint.

We need to argue why
∑
w∈Ccurr

w ≥ 1 will be accepted as a RUP constraint, allowing the solver to back-
track. The RUP check for

∑
w∈Ccurr

w ≥ 1 propagates w = 1 for all w ∈ Ccurr. This in turn propagates
u = 0 for all explored vertices u by the backtracking constraints for Ccurr ∪ {u} added in step 1. The
vertex dominance breaking constraints then propagate v = 0 for all vertices v discarded because of vertex
domination. At this point, the proof checker has the same information that the solver had when it detected
that the colouring constraint forced backtracking. This means that the proof checker will unit propagate to
contradiction, and so the backtracking constraint

∑
w∈Ccurr

w ≥ 1 is accepted as a RUP constraint.
We still need to explain how and why the pseudo-Boolean dominance rule applications allow deriving

the constraint u+ v ≥ 1 in case u dominates v (and hence u �G v). Recall that the order used in our proof
is the lexicographic order in duced by �G. This means that if vertices/variables u and v are assigned by α in
such a way as to violate a dominance breaking constraint u+ v ≥ 1, then α ◦ ω will flip u to 1 and v to 0 to
produce a lexicographically smaller assignment (since v is considered before u in the lexicographic order).

The conditions for the dominance rule are that we have to exhibit proofs of (7a) and (7b). In this discus-
sion, let us focus on (7a) which says that starting with the constraints

C ∪D ∪ {¬(u+ v ≥ 1)} (34a)

and using only cutting planes rules, we should be able to derive

C�ω ∪ O�(~z�ω, ~z) ∪ {f�ω ≤ f} . (34b)

Note first that our lexicographic order in fact does not in itself respect the objective function (29b).
However, since ω just swaps two variables it leaves the objective syntactically unchanged, meaning that the
inequality f�ω ≤ f in (7a) is seen to be trivially true.

As in our analysis of the redundance rule, from (34a) we obtain u ≥ 1 and v ≥ 1 as in (32a)–(32b), and
O�(~z�ω, ~z) is easily verified to be RUP with respect to these constraints, since what the formula says after
cancellation is precisely that v ≥ u.

It remains to consider the pseudo-Boolean constraints in the solver constraint database C∪D . The crucial
difference from the redundance rule is that we no longer have to worry about proving D�ω in (34b)—we only
need to show how to derive C�ω . But this means that all we need to consider are the non-edge constraints
in (29b), and we already explained in our analysis for the redundance rule derivation that the fact that u
dominates v means that for any non-edge constraints affected by ω their substituted versions are already
there as input constraints or are easily seen to be RUP constraints. In addition to these non-edge constraints
there might also be all kinds of interesting derived constraints in D , but the dominance rule says that we can
ignore those constraints.
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Finally, although we skip the details here, it is not hard to argue analogously to what has been done
above to show that ¬C .

= ¬(u + v ≥ 1) and O�(~z, ~z�ω) in (7b) together unit propagate to contradiction.
This concludes our discussion of how to certify vertex dominance breaking in the maximum clique solver
by McCreesh and Prosser [2016] using the pseudo-Boolean dominance rule introduced in this paper.

40

98



Paper C





Cutting to the Core of Pseudo-Boolean Optimization:
Combining Core-Guided Search with Cutting Planes Reasoning

Jo Devriendt,1,2,3 Stephan Gocht,1,2 Emir Demirović,4 Jakob Nordström,2,1 Peter J. Stuckey5
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Abstract
Core-guided techniques have revolutionized Boolean satisfi-
ability approaches to optimization problems (MaxSAT), but
the process at the heart of these methods, strengthening
bounds on solutions by repeatedly adding cardinality con-
straints, remains a bottleneck. Cardinality constraints require
significant work to be re-encoded to SAT, and SAT solvers
are notoriously weak at cardinality reasoning. In this work,
we lift core-guided search to pseudo-Boolean (PB) solvers,
which deal with more general PB optimization problems
and operate natively with cardinality constraints. The cut-
ting planes method used in such solvers allows us to derive
stronger cardinality constraints, which yield better updates
to solution bounds, and the increased efficiency of objective
function reformulation also makes it feasible to switch repeat-
edly between lower-bounding and upper-bounding search.
A thorough evaluation on applied and crafted benchmarks
shows that our core-guided PB solver significantly improves
on the state of the art in pseudo-Boolean optimization.

Introduction
The Boolean satisfiability (SAT) problem plays a fasci-
nating dual role in computer science. Although it is an
archetypal hard problem—proven NP-complete in (Cook
1971; Levin 1973) and widely believed to be exponen-
tially hard in theory—at the same time it serves as the
modelling language for the conflict-driven clause learn-
ing (CDCL) SAT solvers (Bayardo Jr. and Schrag 1997;
Marques-Silva and Sakallah 1999; Moskewicz et al. 2001)
that have emerged over the last two decades as highly
practical tools for solving large-scale real-world problems
in a wide range of application areas (Biere et al. 2021).
This success has also led to exports of the conflict-driven
paradigm beyond SAT solving to, e.g., SAT-based opti-
mization (MaxSAT) (Fu and Malik 2006), pseudo-Boolean
(PB) optimization (Chai and Kuehlmann 2005; Sheini and
Sakallah 2006), constraint programming (CP) (Ohrimenko,
Stuckey, and Codish 2009; Stuckey 2010), and mixed integer
programming (MIP) (Achterberg 2007).

Our starting point in this work is the MaxSAT problem,
which differs from SAT in that some of the constraints are
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

declared to be soft, but with associated penalties for vio-
lating them, and where the goal is to minimize the total
penalty of violated constraints. The core-guided approach
introduced by (Fu and Malik 2006) optimistically assumes
that this penalty is zero, and then tries to solve the result-
ing SAT problem under this assumption as described in (Eén
and Sörensson 2003). If this attempt fails, the solver returns
a core explaining why the assumption was too good to be
true, and such cores are repeatedly used to update the esti-
mate of the optimal solution and make new attempts with
revised assumptions. Such techniques play a crucial role for
the performance of modern MaxSAT solvers (Morgado et al.
2013), and have also been adapted to other paradigms such
as answer set programming (ASP) (Andres et al. 2012) and
constraint programming (Gange et al. 2020).

A technical barrier for efficient implementations of core-
guided search, however, is that the process of using cores
to strengthen bounds requires dealing with cardinality con-
straints. Such constraints are cumbersome to encode in the
low-level language of propositional logic, and the resolu-
tion method on which CDCL SAT solvers are based (Beame,
Kautz, and Sabharwal 2004) has severe limitations when it
comes to cardinality reasoning (Haken 1985), affecting even
core-guided approaches that use clauses to explain propaga-
tions by the cardinality constraints (Manquinho, Marques-
Silva, and Planes 2009; Alviano, Dodaro, and Ricca 2015).

Our Contribution The simple but crucial observation un-
derlying our work is that the MaxSAT problem of minimiz-
ing a weighted sum of penalties subject to constraints ex-
pressed in conjunctive normal form (CNF) is just a special
case of PB optimization (also known as 0-1 integer linear
programming). An intriguing fact in this context is that there
are PB solvers that borrow the conflict-driven paradigm from
SAT but perform their reasoning using the cutting planes
method (Cook, Coullard, and Turán 1987). Cardinality con-
straints are no problem for such solvers, since they operate
with even more general PB constraints, and it is known that
cutting planes applied to cardinality constraints is exponen-
tially more powerful than resolution.

In view of this, it might seem like an attractive, and
even obvious, proposition to combine PB reasoning with
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core-guided search. In practice, however, harnessing the
theoretical power of the cutting planes method in PB
solvers has turned out to be very challenging, to the ex-
tent that the best PB optimization solver NAPS (Sakai and
Nabeshima 2015) in the most recent PB Competition in
2016 (www.cril.univ-artois.fr/PB16/) instead
rewrites the input to CNF and runs a CDCL solver. One of
the problems with PB solvers is that the increased degree of
freedom make it hard to know how to best explore the search
space, and for the same reason it is not a priori obvious what
would be “the right way” of generalizing core-guided tech-
niques to a PB setting.

In this paper, we report on our work on designing algo-
rithms and heuristics for core-guided PB solving. We imple-
ment different approaches in the state-of-the-art PB solver
ROUNDINGSAT (Elffers and Nordström 2018), and perform
an extensive evaluation on applied and crafted benchmarks
from different domains.

The one-sentence summary of our results is that adding
core-guided techniques dramatically improves the solver.
Core-guided search with clausal cores, as in SAT, already
enhances performance, but the cutting planes method also
allows the solver to derive stronger, non-clausal, cores.
These cores lead to better updates of the solution bounds,
meaning that the solver can zoom in faster on the optimal so-
lution. Even more strikingly, the fact that all cores and objec-
tive function reformulations can be expressed in the native
format of the solver means that there is very little overhead.
This makes it possible to go beyond core-boosting (Berg,
Demirović, and Stuckey 2019), which combines an initial
core-guided search phase with a longer upper-bounding lin-
ear search phase, and implement a fully hybrid mode that
switches repeatedly back and forth between core-guided
search and linear search at very little cost, similar to inter-
leaving in ASP (Alviano et al. 2015). This hybrid mode is
what gives the best performance overall.

We have also evaluated popular heuristics from
core-guided MaxSAT solvers such as using stratifica-
tion (Ansótegui et al. 2012) and independent cores (Berg
and Järvisalo 2017) during core-guided search, and fixing
the phase to that of the incumbent solution during linear
search (Demirović, Chu, and Stuckey 2018; Demirović and
Stuckey 2019) rather than using standard phase saving as
in (Pipatsrisawat and Darwiche 2007). Here the results are
not so clear-cut. How to set the phase does not seem to have
a decisive influence. Stratification and independent cores
have a much less positive impact than we expected—these
settings are good for some classes of benchmarks, but for
others they make performance notably worse (which is
particularly pronounced for independent cores).

Overall, adding core-guided search to ROUNDINGSAT
dramatically improves the solver, to the extent that it is now
better by a wide margin than the latest versions of both
NAPS (Sakai and Nabeshima 2015) and SAT4J (Le Berre
and Parrain 2010) for the PB Competition 2016 benchmarks.

Preliminaries
We start with a review of the basics of PB solving—this ma-
terial is standard, and can be found, e.g., in (Buss and Nord-

ström 2021). A literal ` over a Boolean variable x is x it-
self or its negation x = 1− x, where variables take values 0
(false) or 1 (true) and where we define x = x for conve-
nience. A PB constraint C is a 0-1 integer linear inequality∑

iai`i ≥ B , (1)

which without loss of generality we always assume to be
in normalized form; i.e., all literals `i are over distinct vari-
ables and the coefficients ai and the degree (of falsity) B are
non-negative integers. A cardinality constraint is a PB con-
straint in normalized form where all coefficients are 1. We
use equality

∑
iai`i = B as syntactic sugar for the pair of

inequalities
∑
iai`i ≥ B and

∑
i − ai`i ≥ −B (but rewrit-

ten in normalized form).
The weakening rule weaken(C, `j) ≡

∑
i6=j ai`i ≥

B − aj removes a literal `j from the constraint by sub-
tracting its coefficient from the right-hand side, and
weaken(C,L) for a set of literals L performs this oper-
ation for all `j ∈ L. The division rule divide(C, d) ≡∑
dai/de`i ≥ dB/de divides all coefficients and the degree

by d ∈ N+ and rounds up. The operation round2card(C)
computes a cardinality constraint over the literals in C with
the degree equal to the minimum number of literals that must
be set to true in order to satisfy C.

A PB formula is a conjunction F =
∧
j Cj of PB con-

straints. Note that a clause `1 ∨ · · · ∨ `k is equivalent to
the constraint `1 + · · ·+ `k ≥ 1, so formulas in conjunctive
normal form (CNF) are special cases of PB formulas.

A (partial) assignment ρ is a (partial) function from liter-
als to { 0, 1 }, where we write ρ(x) = ρ(x) = ∗ if x is not
in the domain of ρ and define ρ(x) = 1− ρ(x) otherwise. If
ρ is partial, then it is also referred to as a restriction, and the
restricted constraint C�ρ is obtained by substituting values
for all assigned variables and adjusting the degree appropri-
ately, i.e.,

C�ρ =
∑
ρ(`i)=∗ai`i ≥ B −

∑
ρ(`i)=1ai . (2)

For a PB formula F =
∧
j Cj we define F�ρ =

∧
j Cj�ρ.

The constraint C is satisfied by ρ if
∑
ρ(`i)=1 ai ≥ B,

(or, equivalently, if the restricted constraint (2) has a non-
positive degree and hence is trivial). A PB formula is satis-
fied by ρ if all constraints in it are, in which case it is satisfi-
able and ρ is a solution. If there is no satisfying assignment,
the formula is unsatisfiable.

A constraint C is said to unit propagate the literal ` un-
der ρ if C�ρ cannot be satisfied unless ` 7→ 1. During unit
propagation on F under ρ, we extend ρ iteratively by any
propagated literals ` 7→ 1 until an assignment ρ′ is reached
under which no constraint C ∈ F is propagating, or under
which some constraintC propagates a literal that has already
been assigned to the opposite value. The latter scenario is
referred to as a conflict, since ρ′ violates the constraint C in
this case, and ρ′ is called a conflicting assignment.

A PB optimization problem consists of a PB formula
F and an objective function O ≡

∑m
i=1 ai`i + co. We

will abuse notation slightly and write (a, `) ∈ O to obtain
coefficient-literal pairs from the objective. Given an assign-
ment ρ we write ρ(O) to denote the value of the objective
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function under ρ. Without loss of generality we assume that
all coefficients in the objective are positive and that we want
to minimize the objective function. An optimal solution is a
satisfying assignment for F with minimum objective value
ρ(O) among all solutions.

Let Vars(F ) (Lits(F )) denote the variables (literals) ap-
pearing in F and analogously for O. Given a PB optimiza-
tion problem, a fresh variable is a variable that does not ap-
pear in the formula or the objective function.

The idea of linear search, a widely used approach for PB
optimization, is to find a solution ρ to the formula F , after
which the constraint O ≤ ρ(O)− 1 (in normalized form) is
added to F . This can be repeated until F turns unsatisfiable,
at which point the solution last found is the optimal solution.

Core-guided MaxSAT Solving Maximum satisfiability
(MaxSAT) can be viewed as a PB optimization problem with
a CNF formula, but many MaxSAT solvers use not only lin-
ear search but also core-guided approaches that work as fol-
lows (expressed in PB notation).

Given an objective function O, we build a set of assump-
tions A = Lits(O) and solve the formula F ∪ {`i | `i ∈ A}.
There are two cases: either we find a solution (which must
be optimal, since the objective value is zero under A) or
the problem is unsatisfiable. In the latter case, the solver
can be made to return a subset κ ⊆ A of the assump-
tion that force unsatisfiability. This subset κ, treated as a
clause

∑
`∈κ ` ≥ 1, is called an unsatisfiable core, and is

implied by F since one of the assumptions must be fal-
sified in any solution. Core-guided methods then reformu-
late the problem to take this information into account, de-
ducing that the objective value must be at least amin =
min`i∈κ ai. The OLL method (Andres et al. 2012; Morgado,
Dodaro, and Marques-Silva 2014) introduces new Boolean
variables zj that represent the (lower bounds of the) sum
1 +

∑
j zj =

∑
`∈κ `, and essentially rewrites the objective

to O + amin(1 +
∑
j zj −

∑
`∈κ `). This is a new MaxSAT

problem, for which we can repeat the procedure described
above again. The whole process terminates when a solution
is found, which is guaranteed to be optimal since it assigns
zero to all literals in the rewritten objective function.

Overview of the Optimization Algorithm
The general idea of our PB optimization approach is shown
in Algorithm 1, which uses an incremental PB solver. The
interface to the solver is similar to that of an incremental
SAT solver (Eén and Sörensson 2003) and has two methods,
one for adding constraints and one for solving the problem.
The solve method solve(A) also takes a (potentially empty)
set of literals A and returns either sat(ρ) where ρ is a full
assignment satisfying the added constraints and the assump-
tions A; or unsat(C) where C is a PB constraint implied
by the added constraints that is falsified by the assumptions.
We call this constraint a core. Note that in contrast to the
MaxSAT setting such a core can now be an arbitrary, non-
clausal PB constraint.

In each iteration, Algorithm 1 will refine either the lower
or upper bound. If a solution is found a constraint is added

Algorithm 1 PB Optimization with Core Extraction.
1: procedure OPTIMIZE(F ,O)
2: lb← 0; ub←∞; O′ ← O
3: solver.add(F )
4: while ub− lb > 0 do
5: pick set of assumption literals A ⊆ Lits(O′)
6: result← solver.solve({`i | `i ∈ A})
7: if result ≡ sat(ρ) then
8: ub← ρ(O)
9: . improves best solution by at least 1

10: solver.add(O < ub)
11: else . unsatisfiable under assumptions
12: let result ≡ unsat(C)
13: lb← improveBound(O′, C)
14: . improves lower bound by at least 1
15: E ← encoding for reformulation variables
16: O′ ← reformulate(O′, E)
17: solver.add(E)
18: return ub

that only allows strictly better solutions. If a core is returned
we will reformulate the objective function so that the best
known lower bound is the constant part of the objective and
so that all coefficients remain non-negative.
Example 1. To illustrate Algorithm 1, suppose we want to
minimize x1 + x2 + x3 + x4 subject to x1 + x2 + 2x5 ≥ 2
and x3+x4−2x5 ≥ 0. If we start by assuming all variables
to false, the solver obtains the core x1+x2+x3+x4 ≥ 2 by
adding the two constraints in the formula together. This core
gives us a lower bound of 2. Next we introduce new variables
z1, z2 that encode the value of the sum of the xi variables by
adding the constraint z1 + z2 + 2 = x1 + x2 + x3 + x4 to
the solver. Note that this equality represents a reformulation
z1+z2+2 of the objective function, so we can now continue
by minimizing this reformulated objective z1+z2+2, which
contains the just derived lower bound 2 as constant term.
Suppose we perform the next iteration without assumptions
and let us say the solver produces a solution with objective
value 3. We add the constraint x1 + x2 + x3 + x4 < 3 and
continue. Because the gap between best solution and lower
bound is 1 the solver will terminate in the next iteration by
finding an optimal solution.

This example also demonstrates the advantages of using
a PB solver. Firstly, the produced cores are not clauses but
more general PB constraints, thanks to which we can obtain
larger increases in the lower bound. Secondly, it is very easy
to add the upper bound after a solution is found, because
the upper bound is represented as a single constraint that the
solver can handle natively. Finally, the PB solver can employ
strong reasoning based on the cutting planes proof system.

To fully utilize the potential of combining PB optimiza-
tion with core-guided search we need to overcome multiple
challenges: How do we extract cores? How can we guaran-
tee a sound reformulation for arbitrary PB cores? How do
we avoid introducing huge numbers of variables during re-
formulation? How do we choose the set of assumptions? We
will discuss these questions in what follows.
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Algorithm 2 Computation of cardinality constraint implied
by C with maximal lower bound increase.

1: procedure MAXLOWERBOUNDINCREASE(C,O)
2: lb+ ← 0
3: repeat
4:

∑
`∈X ` ≥ B ← round2card(C)

5: m← min`∈X a`
6: if B ·m > lb+ then
7: lb+ ← B ×m
8: R←

∑
`∈X ` ≥ B

9: C ← weaken(C, {` | (m, `) ∈ O})
10: until B ≤ 0
11: return R

Contributions
Lifting Incremental Solving to PB Incremental PB solv-
ing is similar to incremental SAT solving, but there are more
degrees of freedom to core extraction, which we explore in
this section. Similar to SAT, we detect unsatisfiability with
respect to the assumptions when a learned constraint L is
generated that causes a conflict after propagating the as-
sumptions. All literals in L which were falsified by prop-
agation can be systematically eliminated from L to generate
a PB core constraint C.

One difference from MaxSAT is that a PB core constraint
can still contain non-assumption literals. These can be safely
eliminated by weakening. The resulting decision literal core
is a PB constraint only involving assumption literals. An-
other difference is that it could be that a valid core constraint
is encountered before all falsified non-assumption literals
have been eliminated. If so, we can stop core extraction im-
mediately and weaken all non-assumption literals to obtain
a constraint that we will call an early core. Both of these
scenarios arise fairly frequently.

Postprocessing the Core to a Cardinality Constraint
The cores obtained from the solver will in general be arbi-
trary PB constraints. It turns out to simplify matters (as we
will explain later) to round this constraint to a cardinality
core constraint. In general, a PB constraint C ≡

∑
ai`i ≥

B can imply multiple cardinality constraints, so we need to
choose how to round. This is another example of a question
that does not arise in MaxSAT solving. We consider two op-
tions: (a) the cardinality constraint that maximizes the lower
bound increase; and (b) the shortest implied clause.

Maximal lower bound increase Given a cardinality core∑
`∈X ` ≥ B, let a` > 0 be the coefficient of the literal ` in

the objective function to be minimized. The increase in the
lower bound caused by this core isB ·min`∈X a`. To find the
best such core, we weaken all literals with small coefficients
and evaluate the resulting rounded cardinality constraint in
terms of lower bound increase as described in Algorithm 2.

Example 2. Consider the core C ≡ 3x1 + 3x2 + 2x3 +
x4 + x5 ≥ 7 with objective 7x1 + 3x2 + 9x3 + 6x4 + 7x5.
Then round2card(C) = x1 + x2 + x3 + x4 + x5 ≥ 3. We

compute m = 3 and set lb+ = 9. We then weaken C to
obtain 3x1 + 2x3 + x4 + x5 ≥ 4, which can be rounded to
R ≡ x1 + x3 + x4 + x5 ≥ 2. We compute m = 6 and set
lb+ = 12 storing R as the current best. We then weaken C
obtaining 3x1 + 2x3 + x5 ≥ 1, which yields the cardinality
constraint x1 + x3 + x5 ≥ 1. We compute m = 7 but lb+
does not increase. We weaken C to obtain 2x3 ≥ −3, at
which point the loop is exited and R is returned.

Minimal Size Clause We construct a minimal size clause
from C by weakening literals with the smallest coefficients
until the degree is no greater than any remaining coefficient,
after which we can construct a clause by division with the
greatest coefficient amax.
Example 3. As in Example 2, consider the core C ≡ 3x1+
3x2 + 2x3 + x4 + x5 ≥ 7. Then we can weaken x5, x4 and
x3 to obtain 3x1 + 3x2 ≥ 3, with the remaining coefficients
at least the weakened degree. The resulting shortest clause
is divide(3x1 + 3x2 ≥ 3, 3) or x1 + x2 ≥ 1.

Objective Reformulation After we obtained a cardinality
constraint

∑
`∈X ` ≥ B from a core, we reformulate the ob-

jective function such that the new lower bound is reflected
in the constant part of the objective. Broadly speaking, we
follow the OLL approach (Andres et al. 2012; Morgado, Do-
daro, and Marques-Silva 2014) in MaxSAT solving, but with
the crucial difference that there is no re-encoding of car-
dinality constraints to clauses. Instead, we introduce fresh
variables zi and add to the solver constraint database sum
encoding constraints∑

`∈X ` = B +
∑|X|
i=B+1 zi (3)

representing the sum of the literals in the core in unary, as
well as ordering constraints zi ≥ zi+1 to enforce that zi is
true if and only if

∑
`∈X ` ≥ i holds. Here it is important

to observe that if we had a general PB constraint in (3), we
could be forced to introduce an exponential number of vari-
ables. Using (3), we can reformulate the objective function
as ∑

(a,`)∈O

a`+ co (4a)

=
∑

(a,`)∈O

a`+ co +m(
∑
`∈X

`)−m(
∑
`∈X

`) (4b)

(3)
=

∑
(a,`)∈O

a`+ co +m(B +

|X|∑
i=B+1

zi)−m(
∑
`∈X

`) , (4c)

where m is the smallest coefficient in the objective function
of literals in X . In this way, we ensure that

∑
(a,`)∈O a` −

m(
∑
`∈X `) still only has non-negative coefficients. This in

turn means that the constant term co +mB in the reformu-
lated objective function is the new lower bound. Note that
it is always possible to rewrite the objective function in this
way, because we only assume to false literals that appear
in the current reformulated objective function. Furthermore,
every reformulation strictly increases the lower bound, so
we will will eventually reach an optimal lower bound.
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Lazy Variable Encodings One problematic issue with the
objective function reformulation as described above is that
every new reformulation can introduce many fresh variables,
and as the number of new variables increases this can slow
down the solver in future incremental calls. To alleviate this,
one can introduce the zi variables lazily, i.e., only when they
are needed. Observe that in view of the ordering constraints
zi ≥ zi+1 we know that setting zk to false forces zi to false
for all i > k as well. Hence, we do not need the variables
zi for i > k when assuming zk as false. (This observation
was also made in the context of incremental re-encoding of
cardinality constraints to clauses in (Martins et al. 2014).)

To obtain a lazy encoding we take the sum encoding (3)
and remove variables in a safe manner. Assume we only
want to introduce variables up to zk. Then we can write the
equality in (3) as two inequalities∑|X|

i=B+1 zi ≤
∑
`∈X `−B ≤

∑|X|
i=B+1 zi . (5)

For the lower bound on the left we can just omit the vari-
ables zi, i > k, because this will only make the lower bound
smaller. For the upper bound on the right we compensate for
the removed variables by increasing the coefficient of zk.
This leads to the lazy sum encoding∑k

i=B+1 zi ≤
∑
`∈X `−B ≤

≤
∑k−1
i=B+1 zi + (|X| − k + 1)zk . (6)

If we also want to remove zi for i < k, we can do so in the
upper bound on the right by replacing them with 1, and in
the lower bound on the left we increase the coefficient of zk
so that the correct bound is implied for zk = 1. This results
in the lazy reified encoding

(k −B)zk ≤
∑
`∈X `−B ≤
≤ (k −B − 1) + (|X| − k + 1)zk . (7)

Note that if zk = 0, this simplifies to B ≤
∑
`∈X ` ≤ k−1,

and if zk = 1 to k ≤
∑
`∈X ` ≤ |X| as desired.

When a core is found, we still use the sum encoding (3) to
reformulate the objective. This is implemented by maintain-
ing an implicit representation of the reformulated objective
function, storing for each core the factor used for reformula-
tion as well as the number of variables that have not yet been
introduced due to laziness. Instead of adding constraints as
in (3) to the solver database, we only add the lazy encod-
ing for a single variable. Due to other cores this variable can
disappear from the reformulated objective and at this point
we add the next variable and the corresponding lazy encod-
ing to the solver. In case of the lazy sum encoding the solver
can delete constraints that were introduced for variables with
smaller index.

Utilizing the Upper Bound A further improvement can
be achieved if an upper bound u ∈ N is known for the literals
in the core, i.e.,

∑
`∈X ` ≤ u. Such an upper bound means

that we do not need to introduce all zi variables but only
variables up to i = min(u, |X|).

Hybrid Search The simplest strategy for choosing the as-
sumptions is to not set any assumptions at all, which results
in pure linear search. If the set of assumptions is non-empty,
we refer to this as core-guided search. Since adding upper
and lower bound constraints can be achieved with very low
overhead in a native PB setting, we explore a hybrid search
variant where we switch back and forth between running the
solver with and without assumptions, trying to roughly bal-
ance the time spent on linear and core-guided search, re-
spectively (measuring not running time, however, but differ-
ent statistics such as number of literals investigated during
unit propagation, in order make the solver deterministic for
reproducibility purposes).

Experiments
We have implemented the discussed core-guided techniques
in the PB solver ROUNDINGSAT (Elffers and Nordström
2018) and we have evaluated our implementation on four
benchmark sets (converted to the standard OPB format used
for PB solvers as needed):
• PB16: OPT-SMALL-INT benchmarks from the most re-

cent PB Competition in 2016.
• MIP: 0-1 integer linear programming optimization prob-

lems from MIPLIB.
• KNAP: Knapsack benchmarks from (Pisinger 2005).
• CRAFT: Some crafted combinatorial benchmarks.
For comparing against other PB solvers, the PB16 bench-
marks are the main target. We also study MIP and KNAP be-
cause they are two quite challenging sets of benchmarks for
PB solvers, as observed in (Devriendt, Gleixner, and Nord-
ström 2021). Finally, the crafted benchmarks are inspired by
(Elffers et al. 2018; Vinyals et al. 2018), but have been gen-
erated with larger parameters so as to be more challenging.
This allows us to “stress-test” the solvers by exposing them
to problems that provably require sophisticated reasoning.

As hardware we used AMD Opteron 6238 nodes having
6 cores and 16 GiB of memory running Ubuntu 16.04.7.
Each run was executed as a single thread on a node (leav-
ing 5 cores unused to avoid timing issues due to compe-
tition for memory resources) with a 5000 second time-out
limit. Binary, source code and detailed experimental results
are available online (Devriendt et al. 2020).

Contribution of Core-Guided PB Techniques In order
to investigate the impact of the different core-guided tech-
niques we have developed for PB solving, we started by
running extensive experiments with a large number of differ-
ent settings to identify a good base configuration. Guided by
these experiments, we chose a configuration that will be re-
ferred to as HYBRID in what follows. It uses hybrid solving
interleaving core-guided and linear search phases, chooses
the cardinality core that yields the largest increase of the
lower bound for the objective function, and reformulates the
objective using the lazy reified encoding. We then investi-
gated three technical novelties of PB core-guided search:

1. non-clausal cores (comparing with HYBRIDCLAUSAL
deriving clausal cores instead of cardinality cores),
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PB16 MIP KNAP CRAFT
(1600) (291) (783) (985)

HYBRID 968 78 306 639
HYBRIDCLAUSAL 937 75 298 618
HYBRIDNONLAZY 936 70 186 607
HYBRIDCLNONL 917 67 203 612
ROUNDINGSAT 853 75 341 309
COREGUIDED 911 61 43 595
COREBOOSTED 959 80 344 580
SAT4J 773 61 373 105
NAPS 896 65 111 345
SCIP 1057 125 765 642

Table 1: Number of instances solved to optimality for state-
of-the-art solvers and ROUNDINGSAT core-guided variants.

2. lazy reformulation of the objective function (comparing
with non-lazy reformulation in HYBRIDNONLAZY),

3. hybrid optimization with repeated switches back and forth
between core-guided search and linear search (compared
to linear search as in standard ROUNDINGSAT, pure
COREGUIDED, and COREBOOSTED approaches).

We want to stress that the language of PB inequalities gives
native support for an efficient implementation of this kind
of approaches, in contrast to CNF. The top seven configu-
rations of Table 1 shows that all three new features listed
above significantly improve PB solver performance.

In more detail, Figure 1 provides a scatter plot of the num-
ber of cores needed to prove optimality for the configura-
tion HYBRID as compared to the version HYBRIDCLAUSAL
with clausal cores, except that to get as clear a comparison
as possible the plots are for pure core-guided search with
these solvers—adding linear search does not change the con-
clusions, but just makes the plot more fuzzy. Clearly, in the
non-clausal settings fewer cores are needed.

In Figure 2 we study the number of new variables in-
troduced by HYBRID as compared to the version HYBRID-
NONLAZY that eagerly introduces all new variables in one
go when the objective is reformulated. For many instances
the lazy approach introduces orders of magnitude less vari-
ables, and this effect is especially pronounced for knapsack
instances. We studied the two different lazy encodings (lazy
sum and lazy reified) but did not see any significant differ-
ences in performance between the two—what is important is
to avoid non-lazy reformulation. It is worth noting that even
the weakest core-guided configuration HYBRIDCLNONL
with clausal cores and non-lazy reformulations is clearly
better than the original ROUNDINGSAT solver on the PB16
benchmarks, so core-guided search in itself is powerful.

The theoretical benchmarks in CRAFT give us a possi-
bility to peek inside the solver, as it were, by exposing it to
formulas expressing different combinatorial principles and
thus requiring different forms of sophisticated reasoning. It
is striking that on these benchmarks we see the clearest gains
from the core-guided techniques.

Overall, a clear message is that adding core-guided tech-
niques provides a dramatic boost for PB solving. And even

Figure 1: Number of cores during search for non-clausal
(x-axis) versus clausal (y-axis) cores for instances solved by
both approaches (but using pure core-guided optimization).

though the simplest version of core-guided search, with-
out exploiting PB-specific techniques, can already provide
major gains for some domains compared to the non-core-
guided solver, our further PB optimizations help signifi-
cantly to give more consistent performance improvements.

An interesting question is how to balance lower-bounding
search using core-guided solving and upper-bounding linear
search. As can be seen in Table 1, pure core-guided search
(COREGUIDED) is not universally beneficial, and for KNAP
even the hybrid mode is clearly not helpful compared to sim-
ple linear search. But it is interesting that our configuration
COREBOOSTED with 10% core-boosting (Berg, Demirović,
and Stuckey 2019) shows that a little bit of core-guided
search can also help on these benchmarks. Overall, our new
hybrid mode, switching repeatedly between core-guided and
linear search, is the best. Importantly, this is not just an ef-
fect of hybrid providing a portfolio, as it were, of pure core-
guided and pure linear search. For the crafted benchmarks,
we verified that the hybrid solver even beats a parallel ver-
sion where pure core-guided and pure linear search get to
run side by side, each with a 5000 second time-out.

We have also evaluated the popular heuristics stratifica-
tion (Ansótegui et al. 2012) and independent cores (Berg
and Järvisalo 2017) from the core-guided MaxSAT lit-
erature. Figure 3 shows the effects of turning on
stratification (HYBRIDSTRAT) and independent cores
(HYBRIDSTRATIND) for the PB16 benchmarks. Looking
at all benchmarks, switching on both stratification and in-
dependent cores helps for MIP and KNAP but does not
change much for PB16 and is terrible for CRAFT. Strati-
fication alone seems never to be a bad idea—we could have
included it in our base configuration HYBRID and the con-
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Figure 2: Number of new variables during search for lazy
(x-axis) versus non-lazy (y-axis) objective reformulation for
instances solved by both approaches.

clusions would not really have changed—but using indepen-
dent cores can cause real problems for the wrong kind of
benchmarks, which is especially clear for CRAFT. We are
currently unable to explain why this is so.

Comparison to State of the Art In addition to comparing
our core-guided PB solver to the original ROUNDINGSAT
version, we evaluate two other PB solvers that performed
well in the PB16 Competition as well as one MIP solver:
• SAT4J (Le Berre and Parrain 2010) commit c091d768.

We use the Both strategy that essentially runs a CDCL
solver and a cutting-planes-based PB solver in parallel.1

• NAPS (Sakai and Nabeshima 2015) commit 7aaa54f4.
We use the bignum version as suggested to us by the au-
thors. In contrast to ROUNDINGSAT and SAT4J, NAPS
does not use cutting-planes-based reasoning but instead
re-encodes the input to CNF and runs a CDCL solver.

• SCIP (Gamrath et al. 2020) version 7.0.0 using SOPLEX
version 5.0.0 as LP solver, with presolving support of PA-
PILO 1.0 but without symmetry detection.

We present the results of this comparison in Table 1. Figure 3
gives a more detailed picture of the PB16 benchmarks.

Overall, our core-guided PB solver HYBRID decisively
beats ROUNDINGSAT, SAT4J, and NAPS, with the notable
exception that the dual-threaded version of SAT4J is best for
KNAP benchmarks.

Sadly, PB solvers still struggle to compete with MIP
solvers such as SCIP, and addressing this shortcoming

1This dual-threaded approach gets twice the CPU time of the
other solvers, but we kept it so that our core-guided PB solvers
would compete against the best version of SAT4J for each instance.

Figure 3: Cumulative plot for PB16 benchmarks.

seems to be the most interesting challenge for future re-
search. One important factor to note is that presolving is a
very important part of MIP performance, whereas current
cutting-planes-based PB solvers essentially have no prepro-
cessing. A natural approach would be to integrate the PA-
PILO presolver with a cutting-planes-based PB solver and
see what happens to performance. Another direction would
be to combine core-guided solving with the use of linear pro-
gramming relaxations, which is another core component of
MIP solvers, and where the results in (Devriendt, Gleixner,
and Nordström 2021) look promising. Already now, though,
the results for some of the benchmarks in CRAFT show that
there are problems that PB solvers solve very efficiently but
that are beyond MIP solvers such as SCIP.

Concluding Remarks
In this work, we extend the resolution-based core-guided ap-
proach to pseudo-Boolean solvers using cutting planes rea-
soning, and show that this leads to dramatic improvements.
The fact that PB solvers have native handling of PB con-
straints make them a very good fit for core-guided search.

Our work opens several directions for future work. One
important problem is to find better strategies for balanc-
ing the lower- and upper-bounding phases in our hybrid ap-
proach for PB solvers. Independent core extraction is an-
other technique that seems worth studying more closely—
it has been successful for MaxSAT and CP solvers, but we
see no such clear gains, and on the contrary this approach is
largely detrimental for crafted instances. Finally, we would
like to understand why MIP solvers are often (though not al-
ways!) much better than the best core-guided PB approach.
Since preprocessing and LP relaxations are important com-
ponents in MIP solvers, employing these techniques in PB
core-guided search may be one key to further gains.
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Demirović, E.; Chu, G.; and Stuckey, P. J. 2018. Solution-
Based Phase Saving for CP: A Value-Selection Heuristic to
Simulate Local Search Behavior in Complete Solvers. In In-
ternational Conference on Principles and Practice of Con-
straint Programming, 99–108. Springer.
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2020. Core-Guided and Core-Boosted Search for Con-
straint Programming. In Proceedings of the 17th Inter-
national Conference on the Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research
(CPAIOR ’20), volume 12296 of Lecture Notes in Computer
Science, 205–221. Springer.

Haken, A. 1985. The Intractability of Resolution. Theoreti-
cal Computer Science 39(2-3): 297–308.

Le Berre, D.; and Parrain, A. 2010. The Sat4j Library, Re-
lease 2.2. Journal on Satisfiability, Boolean Modeling and
Computation 7: 59–64.

Levin, L. A. 1973. Universal Sequential Search Problems.
Problemy peredachi informatsii 9(3): 115–116. In Russian.
Available at http://mi.mathnet.ru/ppi914.

Manquinho, V. M.; Marques-Silva, J. P.; and Planes, J. 2009.
Algorithms for Weighted Boolean Optimization. In Pro-
ceedings of the 12th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’09), vol-
ume 5584 of Lecture Notes in Computer Science, 495–508.
Springer.

Marques-Silva, J. P.; and Sakallah, K. A. 1999. GRASP:
A Search Algorithm for Propositional Satisfiability. IEEE
Transactions on Computers 48(5): 506–521. Preliminary
version in ICCAD ’96.

Martins, R.; Joshi, S.; Manquinho, V. M.; and Lynce, I. 2014.
Incremental Cardinality Constraints for MaxSAT. In Pro-
ceedings of the 20th International Conference on Princi-
ples and Practice of Constraint Programming (CP ’14), vol-
ume 8656 of Lecture Notes in Computer Science, 531–548.
Springer.

Morgado, A.; Dodaro, C.; and Marques-Silva, J. P. 2014.
Core-Guided MaxSAT with Soft Cardinality Constraints. In
Proceedings of the 20th International Conference on Princi-
ples and Practice of Constraint Programming (CP ’14), vol-
ume 8656 of Lecture Notes in Computer Science, 564–573.
Springer.

Morgado, A.; Heras, F.; Liffiton, M.; Planes, J.; and
Marques-Silva, J. 2013. Iterative and Core-Guided MaxSAT
Solving: A Survey and Assessment. Constraints 18:
478–534.

Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an Efficient SAT Solver.
In Proceedings of the 38th Design Automation Conference
(DAC ’01), 530–535.

Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2009. Prop-
agation via Lazy Clause Generation. Constraints 14(3):
357–391.

Pipatsrisawat, K.; and Darwiche, A. 2007. A Lightweight
Component Caching Scheme for Satisfiability Solvers. In
Proceedings of the 10th International Conference on The-
ory and Applications of Satisfiability Testing (SAT ’07), vol-
ume 4501 of Lecture Notes in Computer Science, 294–299.
Springer.

Pisinger, D. 2005. Where are the hard knapsack problems?
Computers & Operations Research 32(9): 2271–2284.
Sakai, M.; and Nabeshima, H. 2015. Construction of an
ROBDD for a PB-Constraint in Band Form and Related
Techniques for PB-Solvers. IEICE Transactions on Infor-
mation and Systems 98-D(6): 1121–1127.
Sheini, H. M.; and Sakallah, K. A. 2006. Pueblo: A Hy-
brid Pseudo-Boolean SAT Solver. Journal on Satisfiability,
Boolean Modeling and Computation 2(1-4): 165–189. Pre-
liminary version in DATE ’05.
Stuckey, P. J. 2010. Lazy Clause Generation: Combining the
Power of SAT and CP (and MIP?) Solving. In Proceedings
of the 7th International Conference on Integration of AI and
OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems (CPAIOR ’10), volume 6140 of
Lecture Notes in Computer Science, 5–9. Springer.
Vinyals, M.; Elffers, J.; Giráldez-Cru, J.; Gocht, S.; and
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Abstract
The dramatic improvements in Boolean satisfiability (SAT) solving since the turn of the millennium
have made it possible to leverage state-of-the-art conflict-driven clause learning (CDCL) solvers for
many combinatorial problems in academia and industry, and the use of proof logging has played a
crucial role in increasing the confidence that the results these solvers produce are correct. However,
the fact that SAT proof logging is performed in conjunctive normal form (CNF) clausal format
means that it has not been possible to extend guarantees of correctness to the use of SAT solvers for
more expressive combinatorial paradigms, where the first step is an unverified translation of the
input to CNF.

In this work, we show how cutting-planes-based reasoning can provide proof logging for solvers
that translate pseudo-Boolean (a.k.a. 0-1 integer linear) decision problems to CNF and then run
CDCL. To support a wide range of encodings, we provide a uniform and easily extensible framework
for proof logging of CNF translations. We are hopeful that this is just a first step towards providing
a unified proof logging approach that will also extend to maximum satisfiability (MaxSAT) solving
and pseudo-Boolean optimization in general.
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1 Introduction

Boolean satisfiability (SAT) solving has witnessed striking improvements over the last couple
of decades, starting with the introduction of conflict-driven clause learning (CDCL) [36, 39],
and this has led to a wide range of applications including large-scale problems in both
academia and industry [8]. The conflict-driven paradigm has also been successfully exported
to other areas such as maximum satisfiability (MaxSAT), pseudo-Boolean (PB) solving,
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2 Certified CNF Translations for Pseudo-Boolean Solving

Figure 1 Proof logging workflow for pseudo-Boolean solving (our contribution in blue boldface).

constraint programming (CP), and mixed integer linear programming (MIP). As modern
combinatorial solvers are used to attack ever more challenging problems, and employ ever
more sophisticated heuristics and optimizations to do so, the question arises whether we can
trust the results they produce. Sadly, it is well documented that state-of-the-art CP and
MIP solvers can return incorrect solutions [1, 14, 24]. For SAT solvers, however, analogous
problems [9] have been successfully addressed by the introduction of proof logging, requiring
that solvers should be certifying [37] in the sense that they output machine-verifiable proofs
of their claims that can be verified by a stand-alone proof checker.

A number of different proof logging formats have been developed for SAT solving, including
RUP [28, 47], TraceCheck [7], DRAT [29, 30, 50], GRIT [16], and LRAT [15]. Since 2013 the
SAT competitions [45] require solvers to be certifying, with DRAT established as the standard
format. It would be highly desirable to have such proof logging also for stronger combinatorial
solving paradigms, but while methods such as DRAT are extremely powerful in theory, the
fact that they are limited to a clausal format makes it hard to capture more advanced forms
of reasoning in a succinct way. A more fundamental concern is that it is not clear how these
proof logging methods should deal with input that is not in conjunctive normal form (CNF).
One way to address this problem could be to allow extensions to the DRAT format [2],
but another approach pursued in recent years is to develop stronger proof logging methods
based on other formalisms such as binary decision diagrams [4], algebraic reasoning [33, 44],
pseudo-Boolean reasoning [21, 25, 26], or integer linear programming [12, 19].

Our Contribution In this work, we consider the use of CDCL for pseudo-Boolean solving,
where the pseudo-Boolean input (i.e., a 0-1 integer linear program) is translated to CNF and
passed to a SAT solver, as pioneered in MiniSat+ [18]. The two solvers Open-WBO [41] and
NaPS [40] using this approach were among the top performers in the latest pseudo-Boolean
evaluation [43]. While DRAT proof logging can be used to certify unsatisfiability of the
translated formula, it cannot prove correctness of the translation, not only since there is no
known method of carrying out pseudo-Boolean reasoning efficiently in DRAT (except for
constraints with small coefficients [10]), but also, and more fundamentally, because the input
is not in CNF.

We demonstrate how to instead use the cutting planes proof method [13], enhanced with
a rule allowing to introduce extension variables [27], to show that the CNF formula resulting
from the translation can be derived from the original pseudo-Boolean constraints. Since this
method is a strict extension of DRAT , we can combine the proof for the translation with the
SAT solver DRAT proof log (with appropriate syntactic modifications) to achieve end-to-end
verification of the pseudo-Boolean solving process using the proof checker VeriPB [48], as
illustrated in Figure 1.

One challenge when certifying PB-to-CNF translations is that there are many different
ways of encoding pseudo-Boolean constraints into CNF (as catalogued in, e.g., [42]), and
it is time-consuming (and error-prone) to code up proof logging for every single encoding.
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However, many of the encodings can be understood as first designing a circuit to evaluate
whether the PB constraint is satisfied, and then writing down a CNF encoding of the
computation of this circuit. An important part of our contribution is that we develop a
general framework to provide proof logging for a wide class of such circuits in a uniform
way. The pseudo-Boolean format used for proof logging makes it easy to derive 0-1 linear
inequalities describing the computations in the circuit, and once this has been done the
desired clauses in the CNF translation can simply be obtained by so-called reverse unit
propagation (RUP) [28, 47], obviating the need for complicated syntactic proofs. We have
applied this method to the sequential counter [46], totalizer [3], generalized totalizer [32] and
adder network [18, 49] encodings, and report results from an empirical evaluation.

We note that a slightly stronger result would be to certify equivalence of the original
pseudo-Boolean formula F and the translated CNF formula F ′, in the sense that any satisfying
assignment α to F could be extended to an assignment α′ also to the new variables introduced
during translation that would satisfy F ′, and that any satisfying assignment α′ to F ′ also
satisfies F . The tools we develop can reach this more ambitious goal in principle, but some
additional technical work is required, due to which we leave this as future work.

Outline of This Paper After discussing preliminaries in Section 2, we illustrate our method
for the sequential counter encoding in Section 3. Section 4 presents the general framework,
and we briefly discuss how to apply it to adder networks in Section 5. (Details for the
totalizer and generalized totalizer encodings are in the appendix.) We report experimental
data for proof logging and verification in Section 6 and conclude with a discussion of some
possible directions for future research in Section 7.

2 Preliminaries

Let us start with a review of some standard material that can also be found in, e.g., [11, 27].
A literal ℓ over a Boolean variable x is x itself or its negation x, where variables can be
assigned values 0 (false) or 1 (true), so that x = 1− x. For notational convenience, we define
x

.= x (where we use .= to denote syntactic equality). We sometimes write x⃗ = {x1, . . . , xm }
to denote a set of variables. A pseudo-Boolean (PB) constraint is a 0-1 linear inequality

C
.=

∑
iaiℓi ≥ A , (1)

which without loss of generality we always assume to be in normalized form [5]; i.e., all
literals ℓi are over distinct variables and the coefficients ai and the degree (of falsity) A are
non-negative integers. The normalized form of the negation of C in (1) is

¬C
.=

∑
iaiℓi ≥

∑
iai −A + 1 . (2)

An equality constraint C
.=

∑
iaiℓi = A is just syntactic sugar for the pair of inequalities

Cgeq .=
∑

iaiℓi ≥ A and C leq .=
∑

i −aiℓi ≥ −A (with the latter converted to normalized
form). We write

∑
iaiℓi ▷◁ A for ▷◁∈ {≥,≤, = } for constraints that are either inequalities

or equalities. A pseudo-Boolean formula is a conjunction F
.=

∧
j Cj of PB constraints. A

cardinality constraint is a PB constraint with all coefficients equal to 1. If the degree of
falsity is also 1, then the constraint ℓ1 + · · ·+ ℓk ≥ 1 is equivalent to the (disjunctive) clause
ℓ1 ∨ · · · ∨ ℓk, and so CNF formulas are just special cases of PB formulas.

A (partial) assignment ρ is a (partial) function from variables to { 0, 1 }. Applying ρ

to a constraint C as in (1) yields the constraint C↾ρ obtained by substituting values for
all assigned variables, shifting constants to the right-hand side, and adjusting the degree

115



4 Certified CNF Translations for Pseudo-Boolean Solving

appropriately, and for a formula F we define F↾ρ
.=

∧
j Cj↾ρ. The constraint C is satisfied

by ρ if
∑

ρ(ℓi)=1 ai ≥ A (or, equivalently, if the restricted constraint C↾ρ has a non-positive
degree and is thus trivial). An assignment ρ satisfies F

.=
∧

j Cj if it satisfies all Cj , in which
case F is satisfiable. A formula without satisfying assignments is unsatisfiable. Two formulas
are equisatisfiable if they are both satisfiable or both unsatisfiable.

Cutting planes as defined in [13] is a method for iteratively deriving new constraints C

implied by a PB formula F . If C and D are previously derived constraints, or are axiom
constraints in F , then any positive integer linear combination of these constraints can be
added. (When referring to a linear combination of two equality constraints C and D, we
mean the linear combinations of Cgeq and Dgeq and C leq and Dleq, respectively, with the
same positive integer factors.) We can also add literal axioms ℓi ≥ 0 to a previously derived
constraint. For a constraint

∑
i ai · ℓi ≥ A in normalized form, we can use division by

a positive integer d to derive
∑

i ⌈ai/d⌉ℓi ≥ ⌈A/d⌉, dividing and rounding up the degree
and coefficients, and it is sometimes convenient to also include a saturation rule deriving∑

i min { ai, A } · ℓi ≥ A from
∑

i ai · ℓi ≥ A.
For PB formulas F , F ′ and constraints C, C ′, we say that F implies or models C, denoted

F |= C, if any assignment satisfying F must also satisfy C, and we write F |= F ′ if F |= C ′

for all C ′ ∈ F ′. It is clear that any collection of constraints F ′ derived (iteratively) from F

by cutting planes are implied in this sense.
A constraint C is said to unit propagate the literal ℓ under ρ if C↾ρ cannot be satisfied

unless ℓ is set to true. During unit propagation on F under ρ, we extend ρ iteratively by
assignments to any propagated literals until an assignment ρ′ is reached under which no
constraint C ∈ F is propagating, or under which some constraint C propagates a literal that
has already been assigned to the opposite value. The latter scenario is called a conflict, since
ρ′ violates the constraint C in this case. We say that F implies C by reverse unit propagation
(RUP), and that C is a RUP constraint with respect to F , if F ∧ ¬C unit propagates to
conflict under the empty assignment. It is not hard to see that F |= C holds if C is a RUP
constraint, but the opposite direction is not necessarily true.

In addition to deriving constraints C that are implied by F , we will also need a rule
for adding so-called redundant constraints D having the property that F and F ∧ D are
equisatisfiable. For this purpose we will use the reification rules described below, which are
shown in [27] to be special cases of the redundance rule in that paper. Provided that z is a
fresh variable that is not in the formula and has not appeared previously in the derivation,
we can introduce the reified constraints

z ⇒
∑

iaiℓi ≥ A
.= Az +

∑
iaiℓi ≥ A (3a)

and

z ⇐
∑

iaiℓi ≥ A
.=

(∑
iai −A + 1

)
· z +

∑
iaiℓi ≥

∑
iai −A + 1 . (3b)

A moment of thought reveals that the constraint (3a) says that if z is true, then
∑

iaiℓi ≥ A

has to hold, and this explains the notation z ⇒
∑

i aiℓi ≥ A introduced for this constraint.
In an analogous fashion, the constraint (3b) says that if

∑
iaiℓi ≥ A holds, then z has to

be true. We will write z ⇔
∑

i aiℓi ≥ A for the conjunction of (3a) and (3b). It is easy
to see that adding such reification constraints to a formula F preserves equisatisfiability,
since any satisfying assignment to F can be extended by setting z as required to satisfy the
implications.
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(a) Logic circuit of single component. (b) Circuit for 4 input literals counting up to 4.

Figure 2 Circuit representation of the sequential counter encoding.

3 Certified Translation for the Sequential Counter Encoding

To encode a cardinality constraint of the form
∑n

i=1 ℓi ▷◁ k we can use the sequential counter
encoding [46]. This encoding is designed after a circuit accumulating the sum of input bits
using the intermediate fresh variables si,j for i ∈ [n] , j ∈ [i], where si,j is true if and only if
the first i literals sum up to j. The variable si,j is computed as in Figure 2a, i.e.,

si,j ↔ ((ℓi ∧ si−1,j−1) ∨ si−1,j) , (4)

that is either the first i− 1 variables add up to j − 1 and the i-th literal is true, or the first
i− 1 variables already add up to j. The resulting circuit is shown in Figure 2b and can be
divided into multiple blocks, where the i-th block accumulates the i-th input literal and the
variables si−1,j for j ∈ [i− 1]. We will use this block structure later as an abstract way to
represent the encoding. The clausal encoding is given by translating the circuit into clausal
form, i.e., via the clauses

ℓi + si−1,j−1 + si,j ≥ 1 (5a)
si−1,j + si,j ≥ 1 (5b)

ℓi + si−1,j + si,j ≥ 1 (5c)
si−1,j−1 + si,j ≥ 1 , (5d)

where i ∈ [n] and j ∈ [i]. To cover corner cases we always replace si,j for j > i with 0 and
si,j for j ≤ 0 with 1 and simplify the constraints accordingly. For example, for i = j = 1
we only get the clauses ℓ1 + s1,1 ≥ 1 and ℓ1 + s1,1 ≥ 1, since s0,0 is replaced by 1 and hence
the variable disappears from (5a) while (5d) is satisfied, and s0,1 is replaced by 0 and thus
disappears from (5c) and satisfies (5b). To enforce a greater-or-equal-k constraint it is only
necessary to add the clause sn,k ≥ 1. Analogously, a less-or-equal-k constraint is enforced
using the clause sn,k+1 ≥ 1. A common optimization, known as k-simplification, is to not
add the clauses for variable si,j if j > k + 1, as these variables have no influence on the
satisfiability of the clausal encoding.

Before discussing the proof logging, let us study the encoding in more detail, ignoring
k-simplification for now. Remember that the variable si,j should be true if and only if the
first i literals sum up to at least j and hence can be understood as a unary representation,
where we want that

∑i
j=1 ℓj =

∑i
j=1 si,j for i ∈ [n]. However, the circuit is only using
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(a) Graph without k-simplification.

(b) Graph with k-simplification for k = 1.

Figure 3 Graph representation of the sequential counter encoding.

the variables from the previous block si−1,j and the literal ℓi as input to compute the si,j

variables and hence it will instead be more convenient to consider the equality

ℓi +
∑i−1

j=1si−1,j =
∑i

j=1si,j i ∈ [n] . (6)

We can use this insight to get a more abstract representation of the circuit in Figure 2b, by
thinking of blocks as nodes with two input edges labelled ℓi and

∑i−1
j=1 si−1,j and an output

edge labelled
∑i

j=1 si,j as shown in Figure 3a. Additionally, for each inner node the sum of
all input labels should be equal to the sum of all output labels as enforced by (6), which we
will call a preserving equality. This graph representation will be helpful to generalize the
presented proof logging approach for other encodings.

Note that the sum of input variables coming from the source equals the sum of output
variables on the edges going to the sink because each node preserves equality between
incoming and outgoing values. That is we have

∑n
j=1ℓj =

∑n
j=1sn,j , which can also be

obtained mathematically by summing all equalities of the form (6). Based on this equality, it
is clear that a bound on the input variables k ▷◁

∑n
j=1ℓi also implies a bound on the output

variables, which can be seen by summing k ▷◁
∑n

j=1ℓi and
∑n

j=1ℓi =
∑n

j=1sn,j to get

k ▷◁
∑n

j=1sn,j . (7)

Another important observation is that the variables si,j should not just take any value
satisfying (6), but they should also be ordered, that is if si,j+1 is true, the sum should
be at least j + 1 and hence also at least j and si,j should be true as well (and also
si,j−1 = 1, si,j−2 = 1, etc.). This can be enforced with ordering constraints

si,j ≥ si,j+1 i ∈ [n] , j ∈ [i− 1] . (8)

With this improved understanding of the encoding, we can now tackle the task of proof
logging, which becomes surprisingly simple. The constraints (6), (7), (8) are all pseudo-
Boolean constraints and if we are able to derive them, then the clauses of the sequential
counter encoding ((5) and sn,k+1 ≥ 1 and/or sn,k ≥ 1) can all be derived via reverse unit
propagation: The propagations due to (8) will cause enough variables to propagate, such that
(6) is falsified. The derivation of (7) from (6) was already discussed when introducing (7),
where we summed all constraints (6) and the constraint to be encoded. This summation can
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be expressed directly in cutting planes. For deriving the other constraints, remember that for
proof logging we want to demonstrate that adding constraints does not change satisfiability.
However, it is easy to see that the preserving equality (6) and ordering constraints (8) can
always be satisfied by choosing a suitable value for the si,j variables. If the constraints are
added in ascending order of i, then the si,j are fresh and can indeed be chosen freely. In the
proof format this reasoning is expressed through reification as discussed in the next example
and for the general case in Appendix A.1.

▶ Example 1. Let us consider how to derive the preserving equality

ℓ3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 (9)

for Block 3 in Figure 3a. To satisfy (9) we want that s3,1 is true if ℓ3 + s2,1 + s2,2 is greater
equal 1, s3,2 is true if it is greater equal 2 and s3,3 is true if it is greater equal 3. We can
enforce these conditions by introducing the fresh variables s3,1, s3,2, s3,3 via reification, i.e.,
s3,1 ⇔ ℓ3 + s2,1 + s2,2 ≥ 1, s3,2 ⇔ ℓ3 + s2,1 + s2,2 ≥ 2 and s3,3 ⇔ ℓ3 + s2,1 + s2,2 ≥ 3, which
results in the pseudo-Boolean constraints

s3,1 + ℓ3 + s2,1 + s2,2 ≥ 1 (10a)
2s3,2 + ℓ3 + s2,1 + s2,2 ≥ 2 (10b)
3s3,3 + ℓ3 + s2,1 + s2,2 ≥ 3 (10c)
3s3,1 + ℓ3 + s2,1 + s2,2 ≥ 3 (10d)
2s3,2 + ℓ3 + s2,1 + s2,2 ≥ 2 (10e)
s3,3 + ℓ3 + s2,1 + s2,2 ≥ 1 . (10f)

By design, (10a)-(10f) implies (9) and hence (9) can be derived via cutting planes. To
do so in practice, we accumulate the constraints (10a)-(10c) while maintaining the invariant∑i

j=1 s3,j + ℓ3 + s2,1 + s2,2 ≥ i, where i = 1, 2, 3 is the number of accumulated constraints.
When starting with (10a) the invariant holds. Next we add (10b) and divide by 2 to obtain
s3,1 + s3,2 + ℓ3 + s2,1 + s2,2 ≥ 2 and continue by multiplying with 2, adding (10c) and
dividing by 3, which results in s3,1 + s3,2 + s3,3 + ℓ3 + s2,1 + s2,2 ≥ 3, which is equivalent to
ℓ3 + s2,1 + s2,2 ≥ s3,1 + s3,2 + s3,3, as desired. Analogously, we can accumulate (10d)-(10f) in
reverse order to obtain ℓ3 +s2,1 +s2,2 ≤ s3,1 +s3,2 +s3,3. The ordering constraints s3,1 ≥ s3,2
can be obtained by adding (10d) and (10b), which yields 3s3,1 + 2s3,2 ≥ 1 and can be divided
by 3 to obtain s3,1 + s3,2 ≥ 1, which is equivalent to s3,1 ≥ s3,2, as desired. Analogously, we
can obtain s3,2 ≥ s3,3 by using (10e) and (10c).

To perform k-simplification, we could simply omit deriving the unneeded clauses, however
this potentially introduces a large overhead for proof logging if k is small, as we would always
introduce O(n2) intermediate variables instead of the O(kn) variables that are needed. To
avoid this overhead, as demonstrated in Figure 3b, we want that the edge going to the
next block is labelled with

∑k+1
j=1 si,j instead of

∑i
j=1 si,j . However, this means we need to

introduce an additional edge going directly to the sink with the label si,k+2 to preserve the
equality of in- and output, i.e.,

ℓi +
∑k+1

j=1 si−1,j =
∑k+2

j=1 si,j i ∈ [n] . (11)

Note that without the additional variable si,k+2 we could not guarantee equality, as we would
have k + 2 literals on the left-hand side and only k + 1 fresh variable on the right hand side.
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▶ Example 2. To demonstrate k-simplification, consider Block 3 in Figure 3b, which has
input edges with labels s2,1 + s2,2 and ℓ3 and let us perform 1-simplification. The output of
Block 3 to Block 4 should only contain the 2 variables s3,1 + s3,2. To preserve equality of in-
and output, we add an edge from Block 3 to the sink labelled s3,3.

As before, we can obtain that in- and output of the graph are equal by summing the preserv-
ing constraint (11) of each node, which yields

∑n
i=1

(
ℓi +

∑k+1
j=1 si−1,j

)
=

∑n
i=1

(∑k+2
j=1 si,j

)
and can be simplified to

∑n
i=1 ℓi =

∑n
i=1 si,k+2 +

∑k+1
j=1 sn,j .

4 General Framework for Certifying CNF Translations

A major challenge of providing proof logging for translations of pseudo-Boolean constraints to
CNF is that there are so many different encodings of pseudo-Boolean constraints. To support
a wide range of encodings, we can generalize the idea of the graph representation used in the
previous section to obtain a general framework. The main ingredient of the framework is
a graph representing the connection between the variables of the encoded constraint and
auxiliary variables used in the encoding. This graph has the property that we can derive
a preserving equality of in- and output for each node and that the CNF encoding follows
from these equalities. To derive the preserving equality, we provide proof logging for general
purpose operations for different ways to represent natural numbers. Let us start with a
formal definition of the graph representation.

▶ Definition 3 (Arithmetic Graph). An arithmetic graph with input
∑

i aixi and output∑
i cioi is a directed graph G = (V, E) with a source node s, a sink node t, and edge labels

of the form
∑

i be
i ye

i for each edge e ∈ E. For convenience, we allow to have multiple edges
between two nodes. Additionally, we require that

the source s has only outgoing edges and the input is split among edges of s, i.e.,∑
i aixi ≡

∑
(s,v)=e∈E

∑
i be

i ye
i ,

the sink t has only incoming edges and the output is split among edges of t, i.e.,
∑

i cioi ≡∑
(v,t)=e∈E

∑
i be

i ye
i , and

for every inner node v the input is equal to the output, which can be derived via proof
logging, i.e., we can derive the preserving equality∑

(u,v)=e∈E

∑
i

be
i ye

i =
∑

(v,u)=e∈E

∑
i

be
i ye

i . (12)

The general strategy for providing proof logging will be to formulate the used encoding
in terms of an arithmetic graph, where the preserving equality (12) will depend on the
representation of natural numbers used in the encoding and will be derived using one of the
operations described later in this section. For each encoding, we will make sure that the
clauses in the encoding directly correspond to a node in the graph and will follow by reverse
unit propagation from the preserving equality (12). However, each encoding has also clauses
to restrict the output variables oi, which can only be derived after translating the bound
known on the input variables to a bound on the output variables.

▶ Proposition 4. Given an arithmetic graph with input
∑

i aixi and output
∑

i cioi and a
pseudo-Boolean constraint

∑
i aixi ▷◁ k, where ▷◁∈ {≥,≤, = }, we can derive

∑
i cioi ▷◁ k

using cutting planes.

Proof. As we have an arithmetic graph, we know that we can derive (12) for every inner
node in the graph. By adding all these constraints together, we obtain the constraint∑

i aixi =
∑

i cioi, which can be combined with
∑

i aixi ▷◁ k to obtain
∑

i cioi ▷◁ k. ◀
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Algorithm 1 General algorithm for proof logging arithmetic encodings.
1: procedure proof_log_encoding(C, f, G, F )
2: ▷ input: C is of the form

∑n
i=1 aiℓi ▷◁ k, with k, n ∈ N and ▷◁∈ {≥,≤, = }.

3: ▷ input: an arithmetic graph G = (V, E) with input
∑

i aixi and output
∑

i cioi

4: ▷ input: a function f that takes a node and derives its preserving equality
5: ▷ input: the CNF encoding F to be derived
6: sum the constraints f(v) for v ∈ V in topological order to obtain

∑
i aixi =

∑
i cioi

7: combine
∑

i aixi =
∑

i cioi and C to obtain
∑

i cioi ▷◁ k

8: derive each clause in the CNF encoding F via RUP

Once the bound on the input variables is translated to a bound on the output variables,
all clauses of the CNF encoding will follow by reverse unit propagation. This results in the
general algorithm for proof logging encodings shown in Algorithm 1. Note that the nodes of
the graph need to be traversed in a topological order when deriving the preserving equality.
Otherwise we can not use that the output variables of a node are fresh, which will be crucial
for the presented derivations.

Let us now discuss three common ways to represent natural numbers, as well as some
general purpose operations on these representations that are used to derive the preserving
equality for inner nodes. The easiest way to encode a natural number j with domain
A = { 0, 1, . . . , m } using Boolean variables is to use a unary number, where the number of
variables zi set to true is equal to j, i.e., j =

∑
i∈[m] zi. For better propagation behaviour, it

is usually required that the zi variables are ordered via constraints zi ≥ zi+1, which enforces
that zi is true if and only if j ≥ i. This representation is used in the sequential counter [46]
and totalizer encoding [3] and is known as order encoding.

▶ Proposition 5 (Unary Sum). For any literals ℓ1, . . . , ℓn we can derive the constraints∑n
i=1ℓi =

∑n
i=1zi (13)

zi ≥ zi+1 i ∈ [n− 1] . (14)

using O(n) steps, where z1, . . . , zn are fresh variables.

Conceptually, adding these constraints does not change satisfiability, because they can always
be satisfied using the fresh variables. We already discussed deriving these constraints in
the context of the sequential counter encoding. The general idea is to introduce the fresh
variables via reification zi ⇔

∑n
i=1ℓi ≥ i, after which we can obtain the greater-than part

of the equality by maintaining the invariant
∑n

i=1ℓi +
∑j

i=1 zi ≥ j and analogously for the
less-than part. A detailed description of the algorithm for deriving a unary sum is provided
in Appendix A.1.

If we want to encode a natural number j, for which we know that it can only take values
in a small domain A, then introducing variables for all values in the range introduces a lot
of redundant variables. For example if j ∈ { 0, 50, 75 }, then the first 50 variables in a full
unary representation are either all true or all false, but will never take different values. For a
more concise encoding we can use a sparse representation, i.e., we represent j ∈ { 0, 50, 75 }
as 50 · z50 + 25 · z75 and enforce that z50 ≥ z75. In general, we use

sparse(z⃗, A) =
∑

i∈A\{ 0 }(i− pred(i, A))zi , (15)

where pred(i, A) = max({ j ∈ A | j < i }). Additionally, we enforce that the zi variables are
ordered, i.e., zi ≥ zsucc(i,A), where succ(i, A) = min({ j ∈ A ∪ {∞} | j > i }). This represen-
tation is used in the sequential weight counter [31] and generalized totalizer encoding [32].
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▶ Proposition 6 (Sparse Unary Sum). Given A, B ⊆ N, E = { i + j | i ∈ A, j ∈ B }, ordering
constraints on variables y⃗ and y⃗ ′, as well as fresh variables z⃗, we can derive

sparse(y⃗, A) + sparse(y⃗ ′, B) = sparse(z⃗, E) , and (16a)
zi ≥ zsucc(i,E) i ∈ E \ {max (E) } , (16b)

using O(|A| · |B|) steps.

As in the case of the unary sum, these constraints can be added without changing satisfiability,
because we can always set the fresh zi variables such that the constraints are satisfied. The
general idea is to introduce the fresh variables via reification zi ⇔

∑n
i=1ℓi ≥ i. Then we

simulate a brute-force search on the possible combinations of values for A and B, showing
that the equality holds in all cases. A detailed description can be found in Appendix A.2.

Finally, if we want to represent a natural number that is large and has a large domain with
maximal value m, then we can encode it using a binary representation, i.e., j =

∑⌊log2(m)⌋
i=0 2izi.

To build a binary number (as is discussed in Section 5) it is sufficient to compose multiple
full adders, which compute the sum of up to three input bits, using a binary adder circuit
[18].

▶ Proposition 7. For literals ℓ1, ℓ2, ℓ3 and fresh variables z1, z0 we can derive the constraints

ℓ1 + ℓ2 + ℓ3 = 2z1 + z0 (17)

using O(1) steps.

Again, it should be clear that this equality can be added without changing satisfiability
because it can be satisfied using the fresh variables. To derive it, we reify

c⇔ x + y + z ≥ 2 (18a)
s⇔ x + y + z + 2c ≥ 3 . (18b)

The equality can be derived by multiplying (18a) by 2, adding (18b) and dividing the result
by 3 as discussed in detail in [27].

In Section 5 and Appendix B, it is demonstrated how to apply this framework for the
binary adder and the (generalized) totalizer encoding, respectively.

5 Binary Adder Encoding

The binary adder encoding [18] is used to encode general pseudo-Boolean constraints of the
form

∑
i aiℓi ▷◁ k. The idea is to use an adder network to obtain the value of

∑
i aiℓi as a

binary number
∑bits

i=0 2ioi, where oi are the output literals and bits =
⌊
log2(

∑
i ai)

⌋
is the

required bit width. To enforce the constraint, the output bits oi are constrained by clauses
that perform a bitwise comparison with k in binary representation.

To recapitulate the algorithm for the construction of the adder network in [18], we need
some more notation. A 2m-bit is a literal that represents the numerical value 2m. A 2m-bucket
is a queue of bits where each bit has the value 2m and that supports operations to insert
and extract bits. We use [m]2 to denote the binary representation of a natural number m.

The construction of the network starts by initializing each 2m-bucket with all literals ℓi

such that the 2m-bit of [ai]2 is 1. Then we repeat the following steps until there is at most
one element left in each bucket. Consider the 2m-bucket with the smallest value that has
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Algorithm 2 Construction of adder network [18]. Procedure full_adder adds full adder to network.
1: procedure adder_network(b)
2: ▷ input: vector of buckets b

3: for i from 0 to b.size() do
4: while bi.size()≥ 2 do
5: if bi.size()= 2 then
6: x, y ← bi.dequeue()
7: c, s← full_adder(x, y, 0)
8: else
9: x, y, z ← bi.dequeue()

10: c, s← full_adder(x, y, z)
11: bi.enqueue(s)
12: bi+1.enqueue(c)

source

Adder

Adder Adder Adder

sink

20-bit 21-bit 22-bit 23-bit

x1 + x3 + x4

x5
s1

s2

2c1
2c2

2s3

4c3

4x1 + 4x2

4s4
8c4

Figure 4 Layout of the arithmetic graph for adder network encoding of 5x1+4x2+x3+x4+x5 ≥ 5.

at least 2 elements in it. If there are only 2 elements in the 2m-bucket, take x and y from
the bucket and set z = 0. Otherwise, let x, y and z be 3 elements from the 2m-bucket and
remove them from the 2m-bucket. The bits x, y and z are used as input for a new full adder
with fresh variables c and s as output, where c is a 2m+1-bit and s is a 2m-bit. The bits
c and s are then inserted in their respective buckets, possibly creating a new bucket. An
algorithm for constructing the network is given in Algorithm 2.

The arithmetic graph is constructed directly from the adder network such that each
full adder is represented by a node. Each inner node constructed from the 2m-bucket, i.e.,
which has 2m-bits as input, has input edges with labels 2mx, 2my and 2mz and output edges
with labels 2ms and 2m+1c. An example of the resulting graph is shown in Figure 4. The
preserving equality can be derived using Proposition 7 and multiplying the resulting equality
x+y +z = 2c+s by 2m to obtain 2mx+2my +2mz = 2m+1c+2ms. After construction of the
adder network, each 2m-bucket has at most one 2m-bit left and we connect the corresponding
edges to the sink, resulting in an output of the form

∑bits
i=0 2ioi. If the 2i-bucket is empty, oi

is set to 0.
Each full adder of the network is encoded to CNF via the clauses

y + z + c ≥ 1
x + z + c ≥ 1
x + y + c ≥ 1

x + y + z + s ≥ 1
x + y + z + s ≥ 1
x + y + z + s ≥ 1
x + y + z + s ≥ 1

y + z + c ≥ 1
x + z + c ≥ 1
x + y + c ≥ 1

x + y + z + s ≥ 1
x + y + z + s ≥ 1
x + y + z + s ≥ 1
x + y + z + s ≥ 1 . (19)

Note that all the clauses in (19) are RUP with respect to the preserving equality x + y + z =
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2c + s.
To compare k with the output of the circuit, the encoding performs the comparison x⃗ ≥ y⃗

for bit vectors x⃗ and y⃗, where either x⃗ = obits . . . o1o0 and y⃗ = [k]2 or vice versa, depending
on whether we want to encode

∑n
i=1 aiℓi ≥ k or

∑n
i=1 aiℓi ≤ k, respectively. If we want to

encode
∑n

i=1 aiℓi = k, then the comparison for both directions is performed. If the size of
these vectors is different, the shorter vector is padded with 0. Then, for i = 0, . . . , bits, the
constraint

xi + yi +
bits∑
j=i

xjyj + xjyj ≥ 1 (20)

is added to the CNF encoding. Note that either x⃗ or y⃗ is constant and hence the constraint
is always a clause. This clause guarantees that the 2i-bit on the variable side is equal to the
2i-bit in [k]2 or there was already a 2j-bit for j > i that is different to the 2j-bit in [k]2.

The clauses (20) are RUP with respect to
∑bits

i=0 2ioi ▷◁ k, which we obtain from the
arithmetic graph using Proposition 4. The clauses are RUP because the RUP step will set
all 2j-bits, where j > i, to the same value as in [k]2 and the 2i-bit to the opposite value of
the 2i-bit in [m]2, which falsifies

∑bits
i=0 2ioi ▷◁ k.

6 Experimental Results

To show the generality of our approach for proof logging arithmetic encodings, we implemented
the sequential counter encoding [46], binary adder encoding [18], totalizer [3] and generalized
totalizer encodings [32], in a certified encoding framework called VeritasPBLib. This
framework inputs a pseudo-Boolean formula in OPB format and returns a CNF translation
with the corresponding proof logging certificate. We used the verifier VeriPB [48] to verify
the proof logging certificate returned by VeritasPBLib. The CNF formula is then solved
by a modified version of the SAT solver kissat [34] 1 that generates proof logging compatible
with the VeriPB verifier. Finally, we conjoin the proof logging from the CNF translation
with the proof logging from SAT solving and verify the end-to-end pipeline with VeriPB.

The experiments were conducted on Amazon EC2 r5.large instances (2 vCPU) with
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz CPUs, 16 GB of memory, and gp2
volumes. We ran one process on each instance with a memory limit of 15 GB and a time
limit of 7,200 seconds for verifying the proof with VeriPB, and a time limit of 1,800 seconds
for CNF translation with VeritasPBLib and SAT solving with kissat. We gave additional
time for verification, since verification is slower than solving the problem.

To evaluate VeritasPBLib, we collected 1,803 pseudo-Boolean formulas from the PB
2016 Evaluation.2 We can split these instances into four categories: (1) formulas with only
clauses (279 instances), (2) formulas with clauses and cardinality constraints (772 instances),
(3) formulas with clauses and general PB constraints (444 instances), and (4) formulas with
clauses, cardinality and general PB constraints (308 instances). Since this work targets the
verification of formulas with cardinality or general PB constraints, we excluded the 279 pure
CNF formula instances, as those can already be certified with existing techniques. More
details about the instances can be found in Appendix C.1.

The goal of our evaluation is to answer the following questions:

1 Available at https://gitlab.com/MIAOresearch/kissat_fork
2 Available at http://www.cril.univ-artois.fr/PB16/
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Table 1 Number of translated, solved and verified instances for each encoding

Translation Solving

Category #Inst Encoding #CNF #Veri #Solved #Verified
SAT UNSAT SAT UNSAT

Card 772 Sequential 772 772 139 480 133 479
Totalizer 772 772 139 475 130 474

PB 444 Adder 444 444 179 167 178 165
GTE 425 414 164 162 150 151

Card+PB 308 Seq+Adder 306 296 134 152 128 151

1. Can we use the end-to-end framework to verify the results of SAT-based approaches to
solve pseudo-Boolean formulas and how efficient is verification?

2. How long does verification of the proof logging take when compared to translating the
pseudo-Boolean formula to CNF?

End-to-End Solving and Verification Table 1 shows how VeritasPBLib can be used to
generate a CNF formula that can be solved by kissat and verified by VeriPB. For instances
with cardinality constraints (Card), we use the sequential and totalizer encoding to translate
those constraints to CNF. For instances with general PB constraints (PB), we use the
adder and generalized totalizer encoding (GTE) to translate general PB constraints to CNF.
Finally, for instances with both cardinality and general PB constraints (Card+PB), we use
the sequential encoding for cardinality constraints and the adder encoding for PB constraints,
henceforth denoted by Seq+Adder. Even though other combinations of cardinality and PB
encodings could be explored, the goal of this work is not to find the best performing encodings
but to show that we can verify the final result with a variety of encodings.

The column #CNF shows for how many instances VeritasPBLib successfully generated
the CNF translation. For most of the formulas, we can translate the PB formula to CNF. The
exceptions are 19 instances using the generalized totalizer (GTE) encoding and 2 instances
using the Seq+Adder encoding. In those cases, the number of clauses generated is too large
and exceeds the resource limits used in our evaluation.

The column #Veri under Translation shows how many instances VeriPB can verify
the proof logging certificate generated by VeritasPBLib. Except for a few instances for
the GTE and Seq+Adder where the proof is large, VeriPB can verify the CNF translation.
Note that if verification of the translation is successful, then this guarantees that the CNF
encoding does not remove any solutions of the PB formula.

The columns #Solved and #Verified under Solving show how many instances can be
solved by the SAT solver kissat and from those how many can be verified by VeriPB. If a
satisfiable formula is verified, then it means that all clauses derived by kissat are due to
correct derivations and the satisfying assignment returned by the SAT solver is a satisfying
assignment of the original PB formula. If an unsatisfiable formula is verified, then it means
that the reason of unsatisfiability is due to correct derivations.

We can verify 99% of the solved instances for unsatisfiable instances, which shows that
the current approach can be used in practice to verify unsatisfiable results of SAT solvers
when solving PB formulas. For satisfiable instances, we can verify 95% of the solved instances.
However, for instances that VeriPB does not verify the result within the time limit, we
can still certify that the satisfying assignment of the SAT solver satisfies the original PB
formula. Even though VeriPB is already able to verify the majority of the proof logging,
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Figure 5 Comparison between CNF file size and proof logging file size in KiB

improvements to the verifier are orthogonal to our approach and can further increase the
number of verified instances.

Translation and Verification Let us now focus on the CNF translation without solving.
Our experiments show that the average overhead for proof logging ranges from 2× to 3×
slower for all encodings with the exception of GTE which is around 5× slower. However,
since translation is fast for the majority of instances (see Figure 6), the additional overhead
of proof logging is not an issue when translating the PB formulas to CNF. A more detailed
comparison of running times between CNF translation with and without proof logging can
be found in Appendix C.2.

The overhead for translation can be explained with the increased proof size compared to
the size of the CNF encoding as shown in Figure 5. For most instances the proof size seems
to be within a constant factor of the CNF file size. However, there is a series of benchmarks
for which the sequential counter encoding requires super linear (but still polynomial) proofs.
It turns out that these instances are all crafted instances encoding a vertex cover [20]. These
instances contain a constraint enforcing a constant fraction of the literals in the formula to
be true, which is the worst case scenario for the sequential counter. At first glance, this super
linear relationship seems to contradict the expected linear relationship between the number
of clauses in the CNF and the number of steps in the proof. However, this can be explained
as each reification step for deriving the unary sum introduces a constraint of linear size, so
even though the number of steps for deriving a unary sum is linear, the proof size will be
quadratic. It would be desirable to find a derivation of the unary sum that only requires
linear proof size.

Figure 6 shows the relationship between the time to generate the CNF translation using
VeritasPBLib and the time to verify the translation using VeriPB. The time to verify the
translation compared to the translation itself is not negligible. Over all encodings, for 75%
of benchmarks verification takes at-most 49 times longer than translation and for 98% of
benchmarks take at-most 100 times longer. To some degree, such an overhead in verification
time of the translation is expected, as the translation does not need to reason about its steps
and the verification needs to perform some reasoning to justify the correctness of the proof
steps. However, this also indicates that there is still room for improvement, both in terms of
improving the performance of the verifier but also finding easier to verify derivation steps.
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Figure 6 Comparison between CNF translation and verification of the corresponding proof logging

7 Concluding Remarks

In this work, we develop a general framework for certified translations of pseudo-Boolean
constraints into CNF using cutting-planes-based proof logging. Since our method is a strict
extension of DRAT , the proof for the translation can be combined with a SAT solver DRAT
proof log to provide, for the first time, end-to-end verification for CDCL-based pseudo-
Boolean solvers. Our use of the cutting planes method is not only crucial to deal with the
pseudo-Boolean format of the input, but the expressivity of the 0-1 linear constraints also
allows us to certify the correctness of the translation to CNF in a concise and elegant way.
While there is still room for performance improvements in proof logging and verification, our
experimental evaluation shows that this approach is feasible in practice.

While studying the different encodings, we discovered the following interesting questions,
which, to the best of our knowledge, have not been investigated before. For encodings
using the order encoding, what impact does including the ordering constraints in the CNF
translation have on the SAT solving? What is the effect on SAT solving for encoding∑n

i=1 aiℓi ≤
∑n

i=1 ai − k instead of
∑n

i=1 aiℓi ≥ k depending on the smaller degree? Does
encoding the left-hand side of equality constraints only once instead of once for each direction
have an impact on SAT solving time, especially with respect to propagation?

In our view, proof logging for pseudo-Boolean decision problems is only a first step. We
believe that our method should also be sufficient to support proof logging for MaxSAT solvers.
As a concrete example, using the techniques developed in this paper it should be possible
to certify the clauses added during core extraction and objective function reformulation in
core-guided MaxSAT solving [23, 38]. While supporting MaxSAT solvers using approaches
such as implicit hitting set (IHS) [17] and abstract cores [6] seems a bit more challenging, we
are still hopeful that our work could lead to a unified proof logging method for both MaxSAT
solving and pseudo-Boolean optimization using cutting-planes-based reasoning as in [22, 35].
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A Derivations for Building Blocks

Before going into detail on the derivations and presenting their respective algorithms, the
notation for the proof logging is described. This is similar to the notation of the proof file
used by VeriPB.
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Algorithm 3 Deriving a unary sum over fresh variables zi.
1: procedure derive_unary_sum(C ′)
2: ▷ input: C ′ is of the form

∑n
i=1ℓi =

∑n
i=1 zi and describes the constraint to be

derived
3: ▷ the zi variables need to be fresh, the left-hand side is the sum to be encoded
4: for j from 1 to k do
5: Dgeq

j , Dleq
j ← reify(zj ⇔

∑n
i=11 · ℓi ≥ j) ▷ Step 1: introduce variables as

reification
6: Cgeq ← derive_sum(Dgeq

1 , Dgeq
2 , . . . , Dgeq

n ) ▷ Step 2: derive
∑n

i=1ℓi ≥
∑n

i=1zi

7: C leq ← derive_sum(Dleq
n , Dleq

n−1, . . . , Dleq
1 ) ▷ Step 3: derive

∑n
i=1ℓi ≤

∑n
i=1zi

8: for i from 1 to k − 1 do
9: derive_ordering(Dleq

i , Dgeq
i+1) ▷ Step 4: derive zi ≥ zi+1, i ∈ [n− 1]

10: return Cgeq, C leq

Algorithm 4 Reify
∑n

i=1aiℓi ≥ j using the fresh variable zj .

1: procedure reify(zj ⇔
∑n

i=1aiℓi ≥ j)
2: Cgeq ←

∑n
i=1aiℓi + jzj ≥ j ▷ zj ⇒

∑n
i=1aiℓi ≥ j in normalized form

3: proof_log(red Cgeq ; zj -> 0)
4: C leq ←

∑n
i=1aiℓi + (

∑n
i=1 ai − j + 1)zj ≥

∑n
i=1 ai − j + 1 ▷ zj ⇐

∑n
i=1aiℓi ≥ j in

normalized form
5: proof_log(red C leq ; zj -> 1)
6: return Cgeq, C leq

Lines are added to the proof file using the proof_log(·) command. In this format, every
constraint in the proof gets a unique identifier (or just id for brevity). We can express cutting
planes derivations in reverse polish notation where constraints are referred to by their ids.
For example, given previously derived constraints C and D, the line ‘proof_log(pol C D +
3 * 4 d)’ adds C and D, multiplies the result by 3, and finally divides by 4 (rounding up).
In the concrete format constraints in reverse polish notation are represented by an identifier,
but we omit this detail for simplicity and operate on the constraints directly. The proof
format also supports the saturation rule, which, given a normalized constraint

∑
iaiℓi ≥ A,

allows to derive
∑

i min(ai, A)ℓi ≥ A. We use ‘proof_log(pol C s)’ to denote saturation in
the proof format.

A RUP constraint C can be added using ‘proof_log(rup C)’. The syntax for adding a
constraint as reification is ‘red z ⇒ C ; z 1’ and ‘red z ⇐ C ; z 0’, respectively (for more
details please refer to [27]).

A.1 Deriving the Unary Sum
Deriving the constraints of a unary sum over fresh variables zj , i.e.,∑n

i=1ℓi ≥
∑n

i=1zi , (21a)∑n
i=1ℓi ≤

∑n
i=1zi , and (21b)

zi ≥ zi+1 i ∈ [n− 1] , (21c)

is described in Algorithm 3, which is split into four steps. Step 1 is to introduce the fresh
variables zj as reifications of the constraints

∑n
i=1ℓi ≥ j, which is shown in Algorithm 4 for

the more general case using arbitrary positive coefficients.
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Algorithm 5 Derive sum of reification variables.
1: procedure derive_sum(D1, . . . , Dn)
2: ▷ input: Dj is of the form

∑n
i=1 ℓi + jzj ≥ j

3: C ← D1
4: for j from 2 to n do ▷ Invariant: C :

∑n
i=1ℓi +

∑j
i=1 zi ≥ j

5: proof_log(pol C j − 1 * Dj + j d)
6: C ← ((j − 1) · C + Dj)/j

7: return C

Algorithm 6 Deriving an ordering constraint zA ≥ zB from the reification constraints.
1: procedure derive_ordering(C, D)
2: ▷ input: C is of form zA ⇒

∑n
i=1aiℓi ≥ A

3: ▷ input: D is of form zB ⇐
∑n

i=1aiℓi ≥ B

4: divisor ←
∑n

i=1 ai

5: ▷ derive zA ≥ zB if A < B

6: proof_log(pol C D + divisor d)

Step 2: Deriving the Lower Bound. To derive (21a) in Algorithm 5 we maintain
the invariant

∑n
i=1ℓi +

∑j
i=1 zi ≥ j, which holds by induction. For j = 1 the invariant

is equivalent to the reification constraint z1 ⇒
∑n

i=1ℓi ≥ 1, which in normalized form is∑n
i=1ℓi + z1 ≥ 1 and hence the base case is covered. For the inductive step going from j to

j+1, we multiply the invariant by j and add the reification constraint zj+1 ⇒
∑n

i=1ℓi ≥ j + 1,
which is

∑n
i=1ℓi + (j + 1)zj+1 ≥ j + 1 in normalized form, to get (j + 1)

∑n
i=1ℓi + j

∑j
i=1 zi +

(j + 1)zj+1 ≥ j2 + j + 1. Note that j2 + j + 1 = (j + 1)2 − j and hence division by j + 1
and rounding up yields

∑n
i=1ℓi +

∑j
i=1 zi + zj+1 ≥ j + 1, i.e., the invariant for j + 1. For

j = k + 1 the invariant is the normalized form of (21a).
Step 3: Deriving the Upper Bound. To derive (21b) we can use Algorithm 5 again

but need to provide the constraints in reverse order to fit the required input format.
Step 4: Deriving the Ordering Constraints. The ordering constraint is derived in

Algorithm 6, using the reification constraints: We add the constraints used for reification,
that is zj+1 ⇒

∑n
i=1aiℓi ≥ j + 1 and zj ⇐

∑n
i=1aiℓi ≥ j. In normalized form these two

constraints are (j + 1)zj+1 +
∑n

i=1aiℓi ≥ j + 1 and (m− j + 1)zj +
∑n

i=1aiℓi ≥ m− j + 1,
where m =

∑n
i=1 ai. Adding both constraints together yields (m− j + 1)zj + (j + 1)zj+1 ≥ 2

and we get the desired ordering constraint after division by a large enough number, e.g., m.

A.2 Deriving the Sparse Unary Sum
In this section we prove Proposition 6 by providing Algorithm 7, which derives the sparse
unary sum of two numbers in sparse unary representation. As for the unary sum, we start in
Step 7.1 by introducing the required fresh variables via reification. However, we only need to
introduce the variables that will be used, i.e., those with index in E. If k-simplification is
used, then also variables with index bigger than k need to be introduced, as without them
equality cannot be derived. (The introduction of variables with index bigger than k can
be avoided by having a arithmetic graph each for the upper and lower bound and relaxing
the preserving equality to inequalities.) After introducing the variables we can derive the
ordering constraints as before.

In Step 7.2 we introduce a variable zeq which is true if and only if the equality to be
derived is true. Note that we need to represent an equality as two inequalities and hence
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need to introduce separate variables zgeq, zleq for each inequality and then combine them
into zeq.

In Step 7.3 we derive zeq ≥ 1 by checking all combinations of values in A and B, which
requires O(|A| · |B|) steps. Note that asymptotically this is the same number of steps as is
required to compute which elements are in E so this step is still linear in the time needed to
construct the encoding.

In Step 7.4 we use that zeq ≥ 1 and hence zgeq = zleq = 1, which allows us to derive
sparse(y⃗, A) + sparse(y⃗ ′, B) ≥ sparse(z⃗, E) and sparse(y⃗, A) + sparse(y⃗ ′, B) ≤ sparse(z⃗, E)
respectively by removing zgeq, zleq from the constraints introduced in Step 7.2.

Algorithm 8 describes in detail how to derive zeq ≥ 1 by checking all combinations
of values in A and B. Let us illustrate how the algorithm works with an example. Let
A = { 0, 2 } and B = { 0, 2, 4 }. After the first iteration of the outer loop the algorithm
derives the clauses

y2+y′
2+ zeq ≥ 1 , (22a)

y2+y ′
2+y′

4+zeq ≥ 1 , and (22b)
y2+ y ′

4+zeq ≥ 1 . (22c)

Note that deriving (22a) by reverse unit propagation sets y2 = y′
2 = zeq = 0. This causes the

ordering constraints to propagate all variables in y⃗ and y⃗ ′. As all y⃗ and y⃗ ′ variables are set,
the reification constraints introduced in Step 7.1 will cause all z⃗ variables to propagate. As
the constraints reified in Step 7.2 are now satisfied we also get the propagation zgeq = zleq = 1
and hence zeq should be set to 1 as well. However, we already set zeq to 0 and hence
have a contradiction showing that (22a) can be derived. Deriving the other clauses works
analogously.

If we add all clauses in (22) together, then y′
2 and y′

4 get canceled out and we are left with
3y2 + 3zeq ≥ 1 which is saturated to obtain y2 + zeq ≥ 1. Analogously, the second iteration
of the outer loop derives y2 + zeq ≥ 1, which added to the result of the first iteration yields
2zeq ≥ 1 and using saturation we obtain zeq ≥ 1 as desired.

A.3 Derivation for binary adder encoding
This section provides the algorithm for proof logging and derivation of the preserving
equality (17) from Proposition 7 for a single binary full adder in Algorithm 9.

B Totalizer and Generalized Totalizer Encoding

The totalizer and generalized totalizer encoding accumulate the input in form of a balanced
binary tree. The totalizer encoding is designed for encoding cardinality constraints and uses
the order encoding to represent values, while the generalized totalizer is designed for general
pseudo-Boolean constraints and uses a sparse representation. An example of an arithmetic
graph for the generalized totalizer encoding is shown in Figure 7. This graph contains a leaf
node for each of the variables in the encoded constraint (to obtain a unique source we simply
combine all leaf nodes into one node). The leaf nodes are combined in form of a binary tree,
where we ensure that the value is preserved for each inner node, i.e., each possible value of
incoming edges is representable as value of the outgoing edges. To perform k-simplification
the arithmetic graph has additional edges that go directly into the sink node. The formal
definition of arithmetic graph for the (generalized) totalizer encoding is as follows.
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Algorithm 7 Deriving a sparse unary sum over fresh variables z⃗.

1: procedure derive_sparse_unary_sum(C ′)
2: ▷ input: C ′ is of the form sparse(y⃗, A) + sparse(y⃗ ′, B) = sparse(z⃗, E) and describes

the constraint to be derived such that A, B ⊆ N, E = { i + j | i ∈ A, j ∈ B } and z⃗

variables are fresh
3: ▷ Step 7.1: introduce variables as reification and derive ordering
4: for j ∈ E \ { 0 } do
5: Dgeq

j , Dleq
j ← reify(zj ⇔ sparse(y⃗, A) + sparse(y⃗ ′, B) ≥ j)

6: for i ∈ E \ { 0, max (E) } do
7: derive_ordering( Dleq

i , Dgeq
succ(i,E)) ▷ derive zi ≥ zsucc(i,E)

8: ▷ Step 7.2: : reify constraint to be derived
9: Cgeq, _← reify(zgeq ⇔ sparse(y⃗, A) + sparse(y⃗ ′, B) ≥ sparse(z⃗, E))

10: C leq, _← reify(zleq ⇔ sparse(y⃗, A) + sparse(y⃗ ′, B) ≤ sparse(z⃗, E))
11: reify(zeq ⇔ zgeq + zleq ≥ 2)
12: ▷ Step 7.3: derive that zeq ≥ 1
13: try_all_values(sparse(y⃗, A), sparse(y⃗ ′, B), zeq)
14: ▷ Step 7.4: derive constraint to be derived from its reification
15: M ← max(A) + max(B) ▷ Coefficient so that reification variables get eliminated.
16: D ← zgeq ≥ 1
17: proof_log(rup D)
18: proof_log(pol Cgeq D M * +)
19: Cgeq ← Cgeq + M ·D
20: D ← zleq ≥ 1
21: proof_log(rup D)
22: proof_log(pol C leq D M * +)
23: C leq ← C leq + M ·D
24: return Cgeq, C leq

▶ Definition 8 (Arithmetic graph for the generalized totalizer encoding). Given a linear sum∑
i aixi over n variables, let G be a binary tree with edges directed towards the root r, leaves

si for i ∈ [n] and an additional sink node t with an edge (r, t). In what follows we will
consider r as an inner node. The edge (si, v) from the leave si is labeled with aixi, which
can be viewed as a sparse representation for values { 0, ai }. For an inner node v with two
incoming edges with labels sparse(y⃗, A) and sparse(y⃗ ′, B), the outgoing edge e is labeled
sparse(z⃗, E), where z⃗ are fresh variables and E = { i + j | i ∈ A, j ∈ B }. To obtain a graph
with a single source we combine all si into a single node s. To perform k-simplification
we split sparse(z⃗, E) =

∑
i∈E aizi into

∑
i≤succ(k,E) aizi, which is the label of the outgoing

edge e, and
∑

i>succ(k,E) aici, which is the label for an addition outgoing edge e′ = (v, t).

To see that the defined graph is an arithmetic graph, we only need to check that we can
derive the preserving equality for each inner node. Each inner node has two incoming edges
that are labeled with a sparse unary representation and all outgoing edges together form a
sparse unary representation as well, so that we can use Proposition 6 to derive the required
preserving equality. Note that Proposition 6 also requires to have ordering constraints on
the input variables, however, it is easy to see by an inductive argument that the ordering
constraints on the variables will be present, when processing the graph in topological order:
Edges from the source only contain a single variable and hence the ordering constraints exist
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Algorithm 8 Given a reified sparse unary sum, derive that the reification variable is true.
1: procedure fix(sparse(y⃗, A), a)
2: return ya + ysucc(a,A) ▷ replace y0 by 1 and y∞ by 0
3: procedure try_all_values(sparse(y⃗, A), sparse(y⃗ ′, B), zeq)
4: Couter ← 0 ≥ 0
5: for i ∈ A do
6: Cinner ← 0 ≥ 0
7: for j ∈ B do
8: ▷ assuming that a (respectively b) is the value encoded by sparse(y⃗, A)

(sparse(y⃗ ′, B))
9: ▷ encode that (a = i ∧ b = j)⇒ zeq

10: D ← fix(sparse(y⃗, A), i) + fix(sparse(y⃗ ′, B), j) + zeq ≥ 1
11: proof_log(rup D)
12: proof_log(pol Cinner D +)
13: Cinner ← Cinner + D

14: proof_log(pol Couter Cinner s +)
15: Couter ← Couter + saturate(Cinner)
16: proof_log(pol Couter s)
17: Couter ← saturate(Couter)
18: return Couter ▷ Couter is now zeq ≥ 1

Algorithm 9 Proof logging the encoding of a single full adder.
1: procedure full_adder(x, y, z)
2: Dgeq

carry, Dleq
carry ← reify(c⇔ x + y + z ≥ 2)

3: Dgeq
sum, Dleq

sum ← reify(s⇔ x + y + z + 2c ≥ 3)
4: Dgeq ← (2 ·Dgeq

carry + Dgeq
sum)/3

5: proof_log(pol Dgeq
carry 2 * Dgeq

sum + 3 d)
6: Dleq ← (2 ·Dleq

carry + Dleq
sum)/3

7: proof_log(pol Dleq
carry 2 * Dleq

sum + 3 d)
8: return Dgeq, Dleq, c, s ▷ D is the preserving equality of the full adder

trivially. For inner nodes we get the ordering constraints by applying Proposition 6.
If the set of achievable values E is dense for some node, i.e., E contains all values from 0

to max(E), then we can also use Proposition 5 to derive the required preserving equality,
which only requires O(|E|) instead of O(|A| · |B|) steps and hence can reduce the proof
logging overhead.

For each inner node in the graph with incoming edge labels sparse(y⃗, A) and sparse(y⃗ ′, B),
the (generalized) totalizer encoding contains the clauses

yi + y ′
j + zi+j ≥ 1 for i ∈ A, j ∈ B (23a)

ysucc(i,A) + y′
succ(j,B) + zsucc(i+j,E) ≥ 1 for i ∈ A, j ∈ B s.t. i + j (23b)

where succ(i, A) = min({ j | j ∈ A ∪ {∞} , j > i }) and we replace y0, y′
0 with 1, and

y∞, y′
∞, z∞ with 0 and simplify accordingly. Note that, (23) encodes that a + b = c (where a

and b are the incoming values and c is the output value), because (23a) encodes that if a ≥ i

(expressed by assigning yi to 1) and b ≥ j then c ≥ i + j while (23a) encodes that if a ≤ i

(which is the same as saying that a < succ(i, A), expressed by assigning ysucc(i,A) to 0) and
b ≤ j then c ≤ i + j.
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source

sink

x1 x2 x3 x4 2x5 2x6 2x7 2x8

z11 + z12 z21 + z22 2z32 + 2z34 2z42 + 2z44

z51 + z52 + z53 2z62 + 2z64

∑7

i=1
z7i

z54 2z66 + 2z68

Figure 7 Layout of the arithmetic graph for the generalized totalizer encoding of x1 + x2 + x3 +
x4 + 2x5 + 2x6 + 2x7 + 2x8 ≤ 2. Edges introduced for k-simplification are colored cyan.

Table 2 Properties of pseudo-Boolean formulas used in the experimental results.

Card PB Card+PB
#Inst. 772 442 308

Card
Avg. # 107.01±252.57 0.00 1,154.43±5,881.78
Avg. #Lits 36.45±47.43 0.00 16.96±26.57
Avg. Coeff. Size 1.00±0.00 0.00 1.00±0.00

PB
Avg. # 0.00 1,020.73±2,294.43 33,379.31±18,3229.66
Avg. #Lits 0.00 24.95±27.60 105.21±109.99
Avg. Coeff. Size 0.00 204.93±1,118.74 10.79±50.42

For proof logging the CNF encoding we can simply add all clauses using RUP: A RUP check
of (23a) will assign yi = y′

j = 1 and zi+j = 0. The ordering constraints on y⃗, y⃗ ′ will cause
a propagation setting multiple y⃗, y⃗ ′ variables to true such that sparse(y, A) + sparse(y′, B)
has a value of at least i + j, while the ordering constraints on z⃗ will propagate multiple z⃗ to
false such that sparse(z, E) can only take a value that is strictly less than i + j and hence
causes a conflict with the preserving equality sparse(z, E) = sparse(y, A) + sparse(y′, B).
Similarly, a RUP check of (23b) will assign ysucc(i,A) = y′

succ(j,B) = 0 and zsucc(i+j,E) = 1
causing propagations such that sparse(y, A) + sparse(y′, B) takes a value less than or equal
to i + j and sparse(z, E) takes a value strictly greater than i + j causing again a conflict
with the preserving equality.

To enforce a pseudo-Boolean constraint
∑

i aixi ▷◁ k, we first derive a bound on the
output of the arithmetic graph

∑
i cioi ▷◁ k, using Proposition 4. Then we can derive unit

clauses on the output via reverse unit propagation.
To encode

∑
i aixi ≥ k or

∑
i aixi ≤ k the clause zsucc(k−1,E) ≥ 1 or zsucc(k,E) ≥ 1

is added, respectively. This clause is RUP, as the derived sum
∑

i cioi has a value of at
most k − 1 or at least k + 1 and thus the constraint

∑
i cioi ≥ k or

∑
i cioi ≤ k is falsified,

respectively. To encode
∑

i aixi = k both clauses are added.

C Additional Evaluation Data

C.1 Benchmarks

Table 2 shows some properties of the benchmarks used in the experimental results, namely,
the average number of cardinality constraints (Card), the average number of literals in each
constraint, and the average size of coefficients associated with each literal. (The same is
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(b) General pseudo-Boolean formulas

Figure 8 Comparison of runtimes between CNF translation with and without proof logging.

shown for PB constraints.) Since the benchmark set is composed of instances from multiple
domains, there is a large dispersion of values between instances. For example, the number
of cardinality constraints for instances in the Card benchmark set ranges from 1 to 2,720.
Whereas the number of PB constraints for instances in the PB benchmark set ranges from 1
to 18,798. In the Card+PB benchmark set, we have an even larger dispersion with instances
that have from 1 to 2,378,901 PB constraints and from 1 to 75,582 cardinality constraints.

C.2 Overhead of Proof Logging
Figure 8 shows the overhead of proof logging when translating the pseudo-Boolean formulas
to CNF. For the majority of the instances, the overhead is not too significant, and formulas
with just cardinality constraints can still be translated under 10 seconds, while formulas
with PB constraints can be translated under 100 seconds. The exception are the cardinality
formulas from vertex cover that require super linear proofs, which lead to a higher overhead
when storing the proof. Additionally, there were 6 instances that had memory outs when
storing the proof in memory, which could be improved in the future by a more compact
representation of the proof logging in VeritasPBLib.

C.3 Solving and Verification
Figure 9 shows the relationship between the time to generate the CNF translation and solve
it using kissat and the time to verify the translation and solution using VeriPB. It can be
seen that even though we can verify most instances, verification is often considerably slower
than solving.

A lot of instances are spread in a wide range of different overheads. This wide range
only comes from verifying the solution, which is out of the scope of this work. However, it
motivates potential improvements to VeriPB which are complementary to the work proposed
in this paper and can further increase the number of verified instances.
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Figure 9 Comparison between end-to-end solving and verification time
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Abstract

Constraint programming solvers support rich global con-
straints and propagators, which make them both powerful and
hard to debug. In the Boolean satisfiability community, proof-
logging is the standard solution for generating trustworthy
outputs, and this has become key to the social acceptability
of computer-generated proofs. However, reusing this technol-
ogy for constraint programming requires either much weaker
propagation, or an impractical blowup in proof length. This
paper demonstrates that simple, clean, and efficient proof log-
ging is still possible for the all-different constraint, through
pseudo-Boolean reasoning. We explain how such proofs can
be expressed and verified mechanistically, describe an imple-
mentation, and discuss the broader implications for proof log-
ging in constraint programming.

Introduction

Constraint programming solvers are increasingly being used
for fully automated decision making without a human in
the loop, even in safety-critical applications. Unfortunately,
these solvers will sometimes have bugs, and these bugs are
hard to detect using conventional testing methods (Akgün
et al. 2018; Gillard, Schaus, and Deville 2019). Meanwhile,
formal proofs of correctness can be useful in verifying the
mathematical description of some of the algorithms under-
lying these solvers, but are not yet suitable for verifying a
full implementation of a high-performance modern solver. It
would therefore be reassuring to have a different way to be
confident that a solver has produced a correct answer.

When a constraint programming solver outputs “yes” for
a decision instance, it is usually relatively easy to verify that
the answer it provides is valid—for example, by having a
different person implement a solution checker, which is typ-
ically much simpler than writing a program which finds a
solution. Similarly, for optimisation problems, verifying the
feasibility of a solution is simple. However, for “no” decision
instances, and for verifying optimality, a solver likely took
a large number of complicated steps to reach that conclu-
sion, and there is no simple way of demonstrating that those
steps were valid. In the Boolean satisfiability community,

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proof logging is the standard approach to this problem: in
order to take part in the SAT competitions (Heule, Järvisalo,
and Suda 2019), a solver must be able to output a “certifi-
cate” or “proof log” alongside a claimed unsatisfiable result.
This log is a (potentially very large) file in a standard for-
mat known as DRAT (Heule, Hunt Jr., and Wetzler 2013b;
2013a; Wetzler, Heule, and Hunt Jr. 2014), which may be
verified by an external tool. Importantly, the proof verifying
tools used are much simpler than the solvers, giving us confi-
dence in their correctness. Proof logging for Boolean satisfi-
ability has been key to the social acceptance of computer-
produced proofs of mathematical conjectures (e.g. Heule,
Kullmann, and Marek 2016, Lamb 2016).

Due to their use of rich global constraints like “all
different”, constraint programming solvers cannot simply
reuse this approach: compiling constraint programming to
Boolean satisfiability results in weaker reasoning for many
constraints (Bessiere et al. 2009b), and although it is theoret-
ically possible to use the DRAT format to justify rich prop-
agation, developing any approach that is feasible in practice
has remained stubbornly out of reach.

In this work, we instead propose the use of a new proof
format based upon pseudo-Boolean reasoning and cutting
planes proofs (Cook, Coullard, and Turán 1987). We show
that this format can easily and efficiently capture all of the
reasoning carried out by the all different propagator. This
allowing us to develop, for the first time, an efficient verifi-
cation system for non-trivial constraint programming infer-
ence techniques: we describe a tool which can verify these
proofs, as well as the implementation of a small constraint
solver which produces them. We conclude with a discussion
of the broader implications for constraint programming.

Pseudo-Boolean Models

An instance of the pseudo-Boolean (PB) decision problem,
or a PB formula, is defined by a set of {0, 1}-valued vari-
ables {x1, . . . , xn} and a set of linear constraints over these
variables, each of which is of the form

∑n
i=1 ai�i ≥ A,

where the ais and A are all integers, and each �i is either an
unnegated literal xi or a negated literal xi. Using the equal-
ity xi + xi = 1, which encodes the semantics of negation,
we can always rewrite a PB constraint so that all ai are non-
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negative and A is strictly positive, and so when describing
reasoning rules we will assume that all constraints are writ-
ten in this so-called normalized form (this is purely for no-
tational convenience, and does not affect expressive power).
For a constraint in normalized form, A is often referred to as
the degree of falsity, or just degree. The objective is to assign
values to the variables so that all constraints are respected.
If this is possible, we say that the PB instance is satisfiable;
otherwise it is unsatisfiable.

By treating 0 as “false” and 1 as “true”, any instance of the
Boolean satisfiability (SAT) problem in conjunctive normal
form (CNF) can be viewed as a PB formula by observing
that, e.g. x ∨ y ∨ z is satisfied if and only if x+ y + z ≥ 1.
On the other hand, not all pseudo-Boolean constraints can
be translated into a single SAT clause. For example, “cardi-
nality” constraints such as x1+x2+x3+x4+x5 ≥ 3 must
be encoded before they can be handled by a SAT solver, and
more general constraints such as x1 + 2x2 + 3x3 + 4x4 +
5x5 ≥ 7 require even more complicated handling.

Cutting Planes Proofs

To reason about satisfiability or unsatisfiability of pseudo-
Boolean formulae we use the cutting planes proof sys-
tem (Cook, Coullard, and Turán 1987), which can be de-
scribed as follows. We have four sets of derivation rules,
which we describe using the standard notation with a list of
preconditions above a horizontal line that allow us to infer
the constraint below the line. Initially, these preconditions
can be the constraints in the PB formula, which we refer to
as (input) axioms, but later they can be any constraint de-
rived by a previous rule application. Firstly, we may assert
unconditionally the literal axiom that any xi or xi is non-
negative:

�i ≥ 0

Secondly, we may create a new constraint by addition of any
two constraints:

∑
i ai�i ≥ A

∑
i bi�i ≥ B

∑
i(ai + bi)�i ≥ A+B

(Here we implicitly assume that the equality xi + xi = 1
is applied to cancel any literals of opposing signs, and shift
any constant terms to the right-hand side, so that the result-
ing constraint is in normalized form). Thirdly, we can apply
multiplication by a positive integer c to any constraint:

∑
i ai�i ≥ A

∑
i cai�i ≥ cA

Fourthly, we may apply division by any positive integer c,
where all fractional values in the divided constraint are
rounded upwards:

∑
i ai�i ≥ A

∑
i

⌈
ai

c

⌉
�i ≥

⌈
A
c

⌉

(Note that the soundness of this rule requires that the con-
straint is in normalized form.)

Cutting planes is a complete proof system for pseudo-
Boolean formulas in the same way that the resolution proof

system (Blake 1937; Davis and Putnam 1960) is complete
for CNF formulas—it is always possible to derive 0 ≥ 1
from a PB formula using a cutting planes proof if and only
if this formula is unsatisfiable. We refer the interested reader
to Buss and Nordström (2019) for more details.

Unit Propagation

Two key notions in the context of SAT solving and pseudo-
Boolean solving, which will be important for us also, are
those of propagating and conflicting constraints. Let C =∑

i ai�i ≥ A be a PB constraint and let ρ be a partial truth
value assignment. Then the slack of C under ρ measures
how much room there is left for error if we want to satisfy C
given ρ. Formally, slack(C; ρ) =

∑
i : ρ(�i) �=0 ai − A is the

sum of the coefficients of all non-falsified literals minus the
degree. If slack(C; ρ) < 0, then there is no way C can be
satisifed, and we say that the constraint is conflicting un-
der ρ. If for some coefficient ai we have slack(C; ρ) < ai,
then �i must be set to true to avoid conflict, and we say that
C unit propagates �i under ρ. By way of example, for the
empty assignment the constraint C = x1 + 2x2 + 3x3 +
4x4 + 5x5 ≥ 7 has slack 8 and does not propagate any-
thing, but if we set x5 = 1 then the slack drops to 3 and
C propagates x4 = 0. If we instead set x4 = 1, then the
slack decreases to −1 and we have a conflict. We note that
the pseudo-Boolean notation of unit propagation is just a
generalization of that used in conflict-driven clause learning
(CDCL, Marques Silva and Sakallah 1999), since a disjunc-
tive clause unit propagates only when the slack is 0 (since all
coefficients are 1), which happens precisely when all literals
in the clause except one is falsified.

Reverse Unit Propagation

The concept of unit propagation has turned out to be very
useful for proof logging as explained next. A constraint C
can be derived from a PB formula F if and only if F to-
gether with the negation of C is unsatisfiable. In general,
deciding whether this is so is an NP-complete problem, but
in the context of CDCL solving it is much easier. Namely,
if F is the set of clauses derived so far and C is the new
clause learned from the most recent conflict, then it holds
that F plus ¬C (i.e., the conjunction of the negations of all
literals in C) unit propagates to conflict. When this is the
case, we say that C follows from F by reverse unit propa-
gation (RUP) or is a RUP clause. The correctness of a ba-
sic CDCL proof search loop can be verified efficiently by
just emitting the learned clauses one by one and checking
that they are RUP clauses (Goldberg and Novikov 2003;
Van Gelder 2008). The more expressive DRAT proof log-
ging format (Heule, Hunt Jr., and Wetzler 2013b; 2013a;
Wetzler, Heule, and Hunt Jr. 2014) used in current state-of-
the-art SAT solvers is based on an extension of this simple
but powerful idea.

The RUP concept readily transfers to a pseudo-Boolean
setting. We say that the constraint

∑
i ai�i ≥ A is RUP

for a PB formula F if the negation of this constraint (i.e.∑
i −ai�i ≥ 1−A) together with F unit propagates to con-

flict, and if this is the case then it is clearly sound to derive
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∑
i ai�i ≥ A from F . This is useful in that, as we will show,

it allows for very efficient proof logging for some constraint
programming propagation algorithms.

Machine-Verifiable Proofs

In order to produce a machine-verifiable proof of unsatis-
fiability for a PB formula, we need a file that expresses the
problem, and a second file that provides the proof. There is a
standard format1 for expressing pseudo-Boolean problems,
which we use as a starting point. Briefly, each line in the file
is either a comment (starting with an asterisk), or specifies a
constraint. For example, the line

3 x1 + 2 ~x3 -3 x6 >= 2 ;

specifies that 3x1+2x3−3x6 ≥ 2. For solver competitions,
a series of additional guarantees are provided, such that the
file will start with a special header comment, and that the
variables will be named “x1” through “xN”. Many pseudo-
Boolean solvers treat these guarantees as requirements on
the input, and will reject or misbehave if they are not fol-
lowed, so these guarantees are de facto rules. Our tools can
generate files following these restrictions, but do not have to
do so: we find it more readable to be able to generate PB
variable names like “xFoo 3” to correspond to a constraint
programming variable “Foo” taking the value 3.

For logging proofs, we have created a new format. The
format is a simple text file, which is at least somewhat
human-readable, and which has been designed to reduce the
amount of work required from solver implementers to a min-
imum. In particular, a key design choice is that solver writers
will not need to maintain an entire pseudo-Boolean solver
alongside their existing constraint programming solver, and
can instead output proofs using a simpler template-based
approach—we discuss this further in the following section.

Proof headers. The proof file must begin with a header
line. Typically, this will immediately be followed by an “f”
rule, as follows (the asterisk line is a comment and is ig-
nored):

pseudo-Boolean proof version 1.0
* read in the 18 model constraints
f 18 0

This “f” rule instructs the proof verifier to read in the
pseudo-Boolean model file. The “18” must correspond to
the number of constraints in the problem, except that any
“equals” constraint in the model is considered to be two in-
equalities instead. Each constraint read in is numbered, start-
ing from 1. The zero is a line terminator.

Deriving constraints. Subsequent lines in a proof will use
these numbered constraints, ultimately deriving a contradic-
tion. The first way to do so is using a “p” rule, which takes
an expression in reverse Polish notation, and creates a new
numbered constraint with its result. For example, the line

p 42 3 * 43 + 2 d 0

1http://www.cril.univ-artois.fr/PB12/format.pdf

means “create a new constraint by multiplying the constraint
numbered 42 by 3, then adding constraint 43, then divid-
ing by 2”; again, the zero is a line terminator. The “p” rule
can thus express any number of applications of the addition,
multiplication, and division axioms as a single step—during
development we found this to be much more convenient and
compact than requiring a step per axiom application.

Literal axioms. The “p” rule may also be used to intro-
duce literal axioms. For example, the line

p x1 ~x2 + 5 + 0

will create a new constraint by adding the literal axioms
x1 ≥ 0 and x2 ≥ 0 to constraint number 5.

Reverse unit propagation. The “u” rule gives another
way of introduction of a new constraint, which this time is
given explicitly in OPB format. For example,

u -1 x8 -1 x25 -1 x26 -1 x5 >= -3 ;

would create a new numbered constraint saying

−x8 +−x25 +−x26 +−x5 ≥ −3.

In order for such a constraint to be introduced, it must be
an “obvious” consequence of the constraints known so far.
Here “obvious” is defined to mean “follows by reverse unit
propagation”, as described in the previous section.

Although the “u” rule is theoretically no more power-
ful than the “p” rule, using this rule substantially reduces
the implementation effort for solver authors. It avoids the
need for solvers to understand pseudo-Boolean constraints
to (e.g.) perform cancellations correctly, and instead offloads
that work onto the proof verifier. It also avoids the need to
explicitly log any steps for propagation of constraints which
can be encoded into pseudo-Boolean form in a way where
unit propagation gives the same propagation strength as the
constraint.

Asserting contradiction. Once a contradiction has been
derived, the “c” rule is used to verify that assertion and ter-
minate the proof. So, a typical proof may end as follows:

u >= 1 ;
c 146750 0

Here the penultimate line asserts that contradiction (0 ≥ 1)
follows by unit propagation from the constraints learned so
far, and the final line asserts that the previous constraint
(which has number 146750) is in fact a contradiction.

Other rules. The proof format also supports other rules,
including ways of deleting constraints (for reduced memory
usage) and verifying solutions. These are explained in the
documentation for our proof-checking tool, which we will
now describe.
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A Proof Checking Tool

We have implemented a proof checking tool for this proof
format.2 It is written in Python, with critical parts in C++
for performance reasons. The tool can also output a log of
exactly what it is deriving at every stage of the verification
process, which we have found to be tremendously helpful
when debugging solvers.

Constraint Programming

In constraint programming, we have a more general prob-
lem to solve than in the pseudo-Boolean setting. We still
have a set of variables, but now variables may take their
values from a finite set, rather than being Boolean; we will
use capital letters for constraint programming variables, to
distinguish them from PB variables. We also have a set of
constraints, but these may be in a variety of forms. This gen-
erality is a particular strength of constraint programming:
in a single model, we may mix Boolean constraints, arith-
metic constraints, and other “global” constraints such as “all
different”. The all different constraint operates on a set of
variables of any size, and states that each variable in this set
must be given a different value. A given problem could have
a single all different constraint, which could operate over
some or all of its variables, or it could have many all differ-
ent constraints, each operating over a different (and poten-
tially overlapping) subset of values. The all different con-
straint was one of the first global constraints to have a dedi-
cated propagation algorithm (Régin 1994), and remains one
of the core constraints present in any constraint program-
ming toolkit—it therefore presents a good minimum stan-
dard that any proof logging system must be able to meet.

Compiling Constraint Programming

One approach to solving a constraint programming prob-
lem is to compile it to another format, such as Boolean
or pseudo-Boolean satisfiability. A simple way of doing so
is as follows: for each constraint programming variable X
with domain D(X), we create |D(X)| Boolean variables.
We then need constraints saying that at least one of these
Boolean variables is set to true—this is a disjunction, which
may be expressed directly in CNF, or as a single sum in-
equality in pseudo-Boolean notation. Then we need to man-
date that at most one of these Boolean variables is set to
true—this is also a sum inequality in pseudo-Boolean nota-
tion, but requires all-pairs binary constraints in CNF.

For example, given a constraint satisfaction problem with
variables W ∈ {1, 2, 3}, X ∈ {2, 3}, Y ∈ {1, 3}, and Z ∈
{2, 4}, we might compile this into OPB format as follows
(we omit the header line):

* variable W in { 1 2 3 }
1 xW_1 1 xW_2 1 xW_3 >= 1 ;
-1 xW_1 -1 xW_2 -1 xW_3 >= -1 ;
* variable X in { 2 3 }
1 xX_2 1 xX_3 >= 1 ;
-1 xX_2 -1 xX_3 >= -1 ;

2https://github.com/StephanGocht/VeriPB/, https://doi.org/10.
5281/zenodo.3548582

* variable Y in { 1 3 }
1 xY_1 1 xY_3 >= 1 ;
-1 xY_1 -1 xY_3 >= -1 ;
* variable Z in { 2 4 }
1 xZ_2 1 xZ_4 >= 1 ;
-1 xZ_2 -1 xZ_4 >= -1 ;

Note that for compatibility with pseudo-Boolean solvers, it
would be better to use variable names “x1” through “x9”;
our tools can also generate numbered variable names, but
here will will use more descriptive variable names.

To compile a constraint programming not-equals con-
straint X �= Y into either CNF or pseudo-Boolean form,
we post a “not both true” constraint for each value that ap-
pears in the intersection of the two domains. For example,
we could encode W �= X in the above model using two
constraints:

* W not equals X, value 2
-1 xW_2 -1 xX_2 >= -1 ;
* W not equals X, value 3
-1 xW_3 -1 xX_3 >= -1 ;

Note that no constraint appears for the value 1, which is only
present in W ’s domain.

This suggests a very simple way of compiling an all dif-
ferent constraint: for each distinct pair of variables X and Y
in the constraint’s scope, we follow the steps to compile a
X �= Y constraint. However, a much more compact encod-
ing is possible in pseudo-Boolean form. For each value that
appears in at least one domain, we post a constraint sum-
ming over every Boolean variable that corresponds to a CP
variable in that constraint taking that value, saying that this
sum is at most one. In other words, we are saying that each
value can be used at most one time. For example, we could
compile an all-different constraint over all four variables as:

-1 xW_1 -1 xY_1 >= -1 ;
-1 xW_2 -1 xX_2 -1 xZ_2 >= -1 ;
-1 xW_3 -1 xX_3 -1 xY_3 >= -1 ;
-1 xZ_4 >= -1 ;

(The final line could be deleted, because only Z can take the
value 4, but leaving it in place reduces the number of special
cases needed when implementing a solver.)

Other more sophisticated compilation methods exist, such
as those described by Ohrimenko and Stuckey (2008) and
Bessiere et al. (2009a). However, these methods are aimed
at getting better performance out of solvers, whilst we need
only a correct encoding for proof-logging purposes.

Propagators

Constraint programming solvers rarely use these decom-
position methods. Instead, solvers have special algorithms
called propagators associated with each constraint. A prop-
agator can do two things (Schulte and Tack 2009):
1. It can signal that no solution is possible for its associ-

ated constraint, based upon the values remaining in the
domains of the associated variables.

2. It can remove values from the domains of its associated
variables.
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A propagator may only remove a value from a domain
if that value cannot occur in any solution to that constraint.
A propagator which will always remove all such values is
known as “achieving generalised arc consistency (GAC)”
(or sometimes “domain consistency”). For some constraints,
achieving GAC is either intractable or impractical, but for
the all different constraint GAC may be achieved efficiently
and practically (Régin 1994; Gent, Miguel, and Nightin-
gale 2008). Furthermore, GAC for the all different constraint
cannot be achieved by any polynomial-sized decomposition
into Boolean satisfiability (Bessiere et al. 2009b). This is im-
portant in practice: there are many examples where strong
propagation of constraints is the key to solving hard prob-
lems (e.g. Stergiou and Walsh 1999).

From Propagating to Justifying All-Different

The canonical GAC propagation algorithm was introduced
by Régin (1994), and has seen considerable subsequent work
on how to implement it as efficiently as possible (Gent,
Miguel, and Nightingale 2008). We will briefly describe,
without proofs, the basic (non-incremental) form of the algo-
rithm, although everything we describe can also be applied
to more modern highly tuned implementations. The algo-
rithm works in two stages: firstly, it determines whether it
is possible to satisfy the constraint at all, and then if it is, it
finds the complete set of values which may safely be deleted
from its variables.

Matchings and Hall violators. Let {X1, . . . , XN} be the
set of variables in an all-different constraint. The value
graph for this constraint is a bipartite graph, with a ver-
tex in its left set for each variable Xn, and a vertex in its
right set for each value that is present in at least one Xn’s
domain; there is an edge between a variable’s vertex and a
value’s vertex if and only if that variable’s domain contains
that value. A matching is a set of edges in a bipartite graph
such that no vertex appears as an endpoint of more than one
edge; a matching is left-saturating if it covers every vertex
on the left, and is of maximum cardinality if it contains as
many edges as possible.

It is easy to see that left-saturating matchings in a value
graph are in one-to-one correspondence with solutions to the
all-different constraint. In particular, the constraint can be
satisfied if and only if a maximum cardinality matching is
left-saturating. Since finding a maximum cardinality match-
ing may be done in polynomial time (Hopcroft and Karp
1973), it is easy to implement a propagator which checks
whether or not the constraint is satisfiable.

We are now left with the problem of justifying a back-
track if we find that a maximum cardinality matching is
not left-saturating. Using only resolution, this would require
exponentially many steps (Haken 1985), but with pseudo-
Boolean proofs we are in a better situation. We use Hall’s
(1935) marriage theorem, which states that a left-saturating
matching exists in a bipartite graph if and only if for every
subset W ⊆ {X1, . . . , XN} we have that |W | ≤ |N(W )|,
where N(W ) denotes the neighbourhood of W . In particu-
lar, if a left-saturating matching does not exist, then there ex-

ists a Hall violator W where |N(W )| < |W |; in our terms,
this is a set of n variables whose domains contain strictly
fewer than n values between them.

A conventional propagator does not care about the exis-
tence of Hall violators, and only looks at the size of a max-
imum cardinality matching. However, the usual augmenting
paths algorithm for finding a maximum cardinality matching
can easily be extended to output a Hall violator by follow-
ing an alternating path backwards from an unmatched left-
vertex.

Given such a set of variables H , a justifying propaga-
tor must be able to express that “either one of the variables
in H must be given a value that is currently not present in
its domain, or there is a contradiction”. To do this, we count
sets of variable-value pairs in two different ways. Firstly, we
have (from the model) that each variable in H must be given
at least one value—call these constraints AL1 (h). We sum
together these constraints, to achieve an expression of the
form

∑
h∈H AL1 (h) ≥ |H|. Now, letting D(H) mean the

values in the union of the domains of the variables in H ,
and denoting the “value can be used at most once” con-
straints from the model as AM1 (v), we sum these to get∑

v∈D(H) AM1 (v) ≤ |D(H)|. Since H is a Hall violator,
|H| > |D(H)|, so the sum of these two sums gives a suitable
justification.

Continuing our running example, suppose that the Z vari-
able could not take the value 4, due to it being eliminated by
another constraint or by a guessed assignment during search.
In this case, a maximum cardinality matching in the value
graph would leave a single variable uncovered. Suppose the
matching found is {W = 1, X = 2, Y = 3} leaving Z un-
covered. In this case, the Hall violator has the four variables
{W,X, Y, Z}, and the three associated values are {1, 2, 3}.
By summing up the lines saying

1 xW_1 1 xW_2 1 xW_3 >= 1 ;
1 xX_2 1 xX_3 >= 1 ;
1 xY_1 1 xY_3 >= 1 ;
1 xZ_2 1 xZ_4 >= 1 ;
-1 xW_1 -1 xY_1 >= -1 ;
-1 xW_2 -1 xX_2 -1 xZ_2 >= -1 ;
-1 xW_3 -1 xX_3 -1 xY_3 >= -1 ;

using a proof logging command which could look like (if the
lines for the variable axioms for W , X , Y and Z are 1, 3, 5
and 7, and the all-different constraint starts on line 9):

p 1 3 + 5 + 7 + 9 + 10 + 11 + 0

we derive the constraint

1 xZ_4 >= 1 ;

which means that Z must take the value 4 after all—and if it
cannot then we have proved unsatisfiability.

Strongly connected components and Hall sets. The sec-
ond stage of the propagation process takes place only if a
left-saturating matching has been found. If such a matching
M exists, a new directed bipartite graph known as the resid-
ual graph is created by taking the value graph, and direct-
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ing edges as right-to-left if they are present in M and left-
to-right otherwise. This graph has the property that certain
edges that start in one strongly connected component and
end in another correspond to variable-value assignments that
will never appear in any maximum cardinality matching—
we refer to Gent, Miguel, and Nightingale (2008) for full
details.

Again, we cannot directly express graph-theoretic proper-
ties in a proof log, but a connection between combinatorics
and graph theory saves us. Every edge which describes a
deletion is due to the existence of a Hall set—that is, a set of
n variables whose union contains exactly n values (Quimper
and Walsh 2005). More specifically, there is no solution to
an all-different constraint where variable Xi gets value vj if
and only if there exists a set H of variables not including Xi

whose domains contain exactly |H| values between them,
one of which is vj .

Given a Hall set H , we may output a pseudo-Boolean con-
straint justifying the deletions it triggers by following the
same process as for a Hall violator: we sum up the “variable
must be given at least one value” constraints and the “value
must be used at most once” constraints, and this time arrive
at an equality which shows that no variable outside of the
Hall set may be given any value in the Hall set.

It remains only to identify the relevant Hall sets, which
is also straightforward: they correspond precisely to the
strongly connected components in the residual graph which
have a deletion edge entering them (Dulmage and Mendel-
sohn 1958). Note that a single Hall set can justify multiple
deletions (and for space reasons it is advantageous to detect
this and avoid emitting duplicate constraints).

Returning to our running example, the variables
{W,X, Y } form a Hall set with three values {1, 2, 3}. The
Z variable also includes the value 2, which may be deleted.
We may justify this by summing the lines

1 xW_1 1 xW_2 1 xW_3 >= 1 ;
1 xX_2 1 xX_3 >= 1 ;
1 xY_1 1 xY_3 >= 1 ;
-1 xW_1 -1 xY_1 >= -1 ;
-1 xW_2 -1 xX_2 -1 xZ_2 >= -1 ;
-1 xW_3 -1 xX_3 -1 xY_3 >= -1 ;

using a command like

p 1 3 + 5 + 9 + 10 + 11 + 0

to derive a new constraint

1 ~xZ_2 >= 1 ;

which corresponds to saying that Z may not take the value 2.
If we had another variable Q with domain {2, 5, 6}, the con-
straint generated using the same sum would instead be

1 ~xZ_2 1 ~xQ_2 >= 2

showing that neither Z nor Q could take the value 2.
Finally, we note that Hall sets may nest. For example,

given A,B ∈ {1, 2}, C,D ∈ {1, 2, 3, 4}, and E ∈
{1, 2, 3, 4, 5}, the process we describe would output Hall
sets {A,B} and {C,D}, not necessarily in that order. This
does not matter for our purposes (so long as we are using

the “u” proof rule rather than a series of “p” steps to de-
scribe the search tree, as discussed in the following section).
However, if it would for some reason be preferable to output
Hall sets {A,B} and {A,B,C,D} (which justify the same
deletions from E, independently of the order in which they
are carried out), this may be done by outputting every ver-
tex in the residual graph which is reachable from the end of
the deletion edge, rather than looking at strongly connected
components.

Justifications Versus Explanations

Much of what we have discussed resembles the explana-
tions produced by lazy clause generation constraint pro-
gramming solvers (Ohrimenko, Stuckey, and Codish 2009;
Downing, Feydy, and Stuckey 2012). Lazy clause genera-
tion solvers will create new clauses on the fly as the result of
propagations, allowing for SAT-style conflict analysis to be
mixed with constraint programming propagation. However,
explanations can be created “out of nowhere” without jus-
tification: an explaining propagator merely asserts that the
clause it produces is valid, and does not have to demonstrate
its derivation. Nonetheless, there is potential for crossover
between these two areas going forward: in one direction,
perhaps generating more expressive PB constraints and us-
ing PB conflict analysis will lead to better lazy clause gen-
eration solvers, and in the other direction, it may be possible
to reduce the amount of work needed to produce justifying
propagators by building upon what is known about explana-
tions.

Another related piece of work is the constraint program-
ming solver described by Veksler and Strichman (2010),
which fits somewhere in between justifications and explana-
tions. This solver produces proof logs, but in a format which
requires the proof verifier to support specialised inference
rules for every new global constraint. In contrast, our ap-
proach shows that practical proof logging is still possible
even without requiring the proof verifier to know about the
propagation behaviour of any global constraint.

A Justifying Constraint Programming Solver

Finally, we briefly describe the implementation of a small
constraint programming solver which can output a justifi-
cation of all of the choices it makes.3 This solver is im-
plemented in C++, and supports the all different constraint
with full GAC propagation, as well as equals, not-equals,
and (forward checking) table constraints. The solver has not
been designed for performance, but rather to identify the
best engineering decisions for implementing a proof logging
solver.

The solver differs from a conventional constraint pro-
gramming solver in three areas: being able to compile mod-
els to the pseudo-Boolean format, being able to log search
operations, and being able to log propagation.

Compilation. As well as solving a constraint program-
ming model, a proof-logging solver must be able to trans-

3https://github.com/ciaranm/certified-constraint-solver, https://
doi.org/10.5281/zenodo.3549712
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late the model into an equivalent pseudo-Boolean model.
We described the theory behind this in the previous sec-
tion. From an implementation perspective, this was reason-
ably straightforward: the solver must track the PB variable
naming used for each variable-value which it encodes, and
some constraints must remember the line number used when
outputting some of their rules (for example, the all different
constraint must be able to recall the appropriate “at most
one” line for each of the values in its scope).

Search. Proof logging during search is remarkably simple
when using reverse unit propagation. Whenever the solver
backtracks (either due to propagation failure, or a domain
wipeout), it suffices to output a proof line of the form

u -1 xA_3 -1 xB_4 -1 xC_1 >= -2 ;

where the variables are the decision variables on the solver’s
trail—that is, the solver is asserting that whatever it just
guessed “obviously” leads to a contradiction, and so at least
one of the guessed assignments must be incorrect. Ulti-
mately, this leads to the solver outputting

u >= 1 ;

after backtracking on the first decision variable, which can
then be followed by the assertion of contradiction.

Propagation. Due to reverse unit propagation, it is not
necessary to make any changes at all for the equals and not-
equals constraints—these propagations need not be logged.
For the all different constraint, it suffices to output “p” rules
for every Hall violator and Hall set which leads to a contra-
diction or propagation, as described in the previous section.
(Again due to the use of reverse unit propagation, there is no
need to adapt these constraints to mention the trail.)

We believe this demonstrates the simplicity of proof log-
ging in this format. In earlier prototypes not making use of
reverse unit propagation, the burden upon the solver writer
was vastly greater, with a trail-aware “p” rule being required
for every single propagating step.

Experiments

To test our solver and proof verifier, we generated a number
of 25× 25 unsatisfiable Sudoku instances. Solving such in-
stances in a reasonable amount of time requires the full capa-
bilities of all-different propagation, and tests all of the func-
tionality of our tools. For a representative instance which re-
quired 1,691 guessed decisions to solve, our solver took 41
seconds to prove unsatisfiability, which increased to 42 sec-
onds when logging a proof (we stress that this implementa-
tion has not been designed for performance). The proof log
contained 109,519 Hall set propagations, and 846 Hall vio-
lators, and could be verified in 6 seconds.

We also tried deliberately introducing bugs into our
solver—for example, by failing to find maximum cardinal-
ity matchings that required two augmenting steps, and by
randomly omitting logging for a small number of Hall sets.
In each case the proof verifier caught the mistakes, although
only if the instances selected actually triggered the faulty

behaviour. (For example, it is surprisingly rare for multiple
augmenting path steps to be required to find a maximum car-
dinality matching, when starting from a greedy matching.)
Because our solver was designed from the ground up with
proof logging, we were also able to use proof logs to catch
bugs early on in the development process that had not been
detected by conventional testing techniques.

Conclusion
We have shown that it is both possible and practical for a
constraint programming solver to produce a pseudo-Boolean
proof log for unsatisfiability, even when all different con-
straints are in use. This is unexpected: pseudo-Boolean rea-
soning knows nothing about graphs, matchings, augmenting
paths, or strongly connected components, all of which are
required for all different propagation. This suggests that we
should be more broadly interested not just in algorithms for
propagation, but in languages for justifying propagation—
unlike in the Boolean satisfiability community, these con-
cepts are not equivalent. We therefore intend to investigate
which other families of global constraint can be justified eas-
ily using pseudo-Boolean reasoning. Obviously, any con-
straint for which we already know a strongly-propagating
SAT or pseudo-Boolean encoding requires no further work,
but we believe that several other common constraints are
also justifiable.

One might ask whether a new proof format is really nec-
essary. The main difference to the existing DRAT proof for-
mat used by SAT solvers is that we are using cutting planes
proofs instead of resolution proofs. This makes it very sim-
ple to express the counting arguments we are using to justify
propagations and conflict of the all-different constraint. This
kind of reasoning cannot be done efficiently with resolution.
However, DRAT allows the introduction of new variables,
which is known to be very powerful. (Our proof format cur-
rently does not have this capability but an extension is in
progress.) In theory, using additional variables allows DRAT
to verify cutting planes reasoning and hence to justify the
all-different constraint.

A natural and interesting question, therefore, is how
DRAT proof logging would compare to our approach. As we
already mentioned previously, though, the problem is that
DRAT proof logging for cardinality reasoning is a theoreti-
cal result. The fact that DRAT logging can be done in princi-
ple, with at most a polynomial blow-up, does not mean that it
is possible to do in practice, and to the best of our knowledge
no-one has been able to produce any implementation that
can be used to run practical experiments. This means that
we cannot compare the performance of our pseudo-Boolean
proof logging with DRAT proof logging, not because DRAT
would run so much more slowly, but because it is so much
more complicated that no-one has even implemented it. In
contrast, our pseudo-Boolean proof logging is both fast and
simple.

The approach we describe does still require the user to
trust that the pseudo-Boolean model file produced corre-
sponds exactly to the high level constraint programming
model given as input. This should not necessarily be taken
as given—not all global constraints can be encoded in as
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straightforward a manner as all different, and addition-
ally the compilers for higher-level constraint modelling lan-
guages such as Essence and MiniZinc could introduce fur-
ther bugs. It may therefore be worthwhile to investigate tech-
niques from conventional compilers to verify this part of the
process.

We stress that our approach does not prove that a solver
is correct—it simply ensures that if a solver ever produces
an incorrect answer, then this can be detected and a human
brought in to fix the problem. On the other hand, when a
justifying solver does produce a correct answer by legitimate
means, the proof can be archived for posterity. We can thus
always be confident that the answer is indeed correct, even
if we do not trust the solver that produces the proof or the
person who is claiming that the proof was produced by a
trustworthy solver. And finally, we note that proof logging
will catch more esoteric problems such as compiler bugs,
hardware errors, and cosmic rays that could make a correct
solver output an incorrect answer.
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Abstract
We describe the design and implementation of a new constraint programming solver that can produce
an auditable record of what problem was solved and how the solution was reached. As well as a
solution, this solver provides an independently verifiable proof log demonstrating that the solution is
correct. This proof log uses the VeriPB proof system, which is based upon cutting planes reasoning
with extension variables. We explain how this system can support global constraints, variables with
large domains, and reformulation, despite not natively understanding any of these concepts.
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1 Why Trust a Constraint Programming Solver?

Proof logging is now a standard practice in the Boolean satisfiability (SAT) community:
alongside a solution, solvers are expected to produce a proof, in a standard format called
DRAT [19, 18, 33], that can be verified independently to ensure that the correct answer was
reached through legitimate reasoning. As well as reducing the number of bugs in solvers, this
has been vital for the social acceptability of computer-generated mathematical proofs [21].
These successes mean that proof logging is now being considered in other areas, including
mixed integer programming [9] and subgraph-finding algorithms [14, 13], and a similar
paradigm known as certifying algorithms exists for polynomial-time solvable problems [23].

We believe that a practical proof logging system would also be extremely useful for the
constraint programming (CP) community. In the 2021 MiniZinc challenge, at least 45 out
of 3,500 claimed solutions were incorrect (either through falsely claiming unsatisfiability
or optimality, or by providing infeasible “solutions”), and previous years saw similar rates.
Furthermore, this was not limited to one solver, one problem, or one global constraint.
Although this high error rate does not necessarily reflect what we might see in practice, it
strongly suggests that we should not be complacent. And even if we are completely convinced
that our solvers are correct, thanks to extensive testing using domain-specific methods [1, 12],
there are still benefits to be had from proof logging. When CP is used for life-affecting
decision-making, having a solver that can produce an independently verifiable record of
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2 An Auditable Constraint Programming Solver

what the problem was and how it was solved would be much better for public confidence in
algorithms than saying “trust us, we tested it carefully”. In effect, we would be making the
solving process auditable, and removing the need for trust.

In some applications, compiling a CP model to SAT and re-using SAT proof logging might
be a viable approach for auditability. However, this is not a universal solution: even if the
loss of solving power from switching representations is not a problem, why should we trust
that a complex compilation process is correct? And what if we need to solve enumeration or
optimisation problems, neither of which are supported by DRAT? Nor is it practical to make
CP solvers output DRAT proofs, even for decision problems: attempts at expressing the
strong reasoning carried out by simple global constraints like all-different have introduced
intolerable overheads [28, 10], and DRAT does not seem well-suited even for the parity
reasoning done by some modern SAT solvers [15]. One alternative would be to introduce
a much stronger and more complex proof format, that is aware of the meaning of every
global constraint and every kind of propagation that could be performed [31] and every kind
of reformulation ever invented—but why should we trust such a complicated proof logging
system, and how would we even know that it is consistent? This is not a trivial concern:
even the relatively simple DRAT format has had issues in this respect [26].

This paper describes an alternative approach to proof logging which addresses all of these
problems. It uses an existing proof verifier, VeriPB, which was designed for pseudo-Boolean
models. VeriPB’s proof format uses cutting planes reasoning [5] and redundance-based
strengthening [15], which is only a small step up in complexity from the DRAT approach of
using Boolean models and extended resolution. However, this small change in underlying
proof system suddenly means that proof logging for many kinds of constraint becomes both
efficient and easy to implement, despite the system not having any explicit notion of global
constraints or even non-binary variables. Thanks to this, we have been able to implement
a new prototype constraint programming solver which can produce proof logs for all of
its reasoning, with support for global constraints like all-different, integer linear inequality
(including for variables with very large domains), table, minimum / maximum of an array,
element, and absolute value, as well as some simple automatic reformulation.

Our aim in this work is not to produce the world’s fastest solver, but rather to explore
the design decisions necessary to provide auditable solving when operating with diverse
constraints, and to explain how to understand and adopt proof logging technology. The main
differences between our solver and a basic conventional solver such as MiniCP [24] are:

The solver can describe the semantics of variables and each constraint in a low-level
format, which is discussed in Section 2.1. We give examples in Section 3. This is the only
part of the process that is not directly auditable: we discuss this further in Section 5.1.
Whenever the solver backtracks during search, it creates a proof step asserting that
its current sequence of guesses “obviously” (but verifiably) implies a contradiction, as
described in Section 2.3. When enumerating or optimising, solutions must also be logged.
Any piece of code that potentially removes a value from a variable’s domain (or instantiates
it, or changes its bounds) must be able to provide a justification that can be added
to the proof log. This justification can be “this is immediately obvious”, “use reverse
unit propagation” (Section 2.3), or occasionally, “use the following explicit proof steps”
(Section 2.2). In many ways this resembles lazy clause generation solvers [25], except
that justifications must be derived in a sound and verifiable manner, rather than being
introduced from nowhere. We give examples in Section 4.
Finally, some constraints make use of reformulations, which must also be justified;
examples are in Section 4.5.
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Together, these additions mean that if the solver ever produces an incorrect answer, this can
be detected—even if it is due to a compiler or hardware fault rather than a solver bug. Our
results demonstrate that proof logging for constraint programming is rapidly becoming a
technologically viable approach, and one that will be worth adopting in other solvers. We
conclude by outlining how we might realise this goal of auditable constraint solving.

2 The VeriPB Proof System

We begin with an overview of the relevant parts of the model and proof system used by
VeriPB.1 It is important to stress immediately that solvers do not need to understand or
implement this proof system (in the same way that most SAT solvers do not “know” that
they are searching for resolution proofs). Indeed, the prototype solver we describe later in
this paper produces proofs through templates, never manipulates proof steps directly, and
does not know enough about the VeriPB proof system to be able to verify its own proofs.

In this section we will primarily be talking about proofs of unsatisfiability. Both VeriPB
and our solver also support optimisation, enumeration, and satisfiable decision problems,
but the core of the proof system concerns unsatisfiability. The idea behind a proof is that
we start off with known facts, which come from the input model. Then, at each step in
the proof, we derive a new fact which is “obviously” a consequence of some combination of
previous facts. We finish by deriving a fact which is clearly a contradiction, which in turn
means it must be the case that the input is unsatisfiable.

2.1 Pseudo-Boolean Models
VeriPB takes as input a pseudo-Boolean model, which is a very restricted kind of constraint
programming model. A pseudo-Boolean model is defined by a set {xi} of {0, 1} integer
variables, and a set of integer linear inequalities

∑
i cixi ≥ n for integers ci and n. In

this paper we will use lowercase variable names to refer to pseudo-Boolean variables, and
uppercase variable names to refer to constraint programming variables. We will also write
some constraints using ≤ instead of ≥, and will write

∑
i cixi = n as shorthand for two

inequalities. We use the convention that x = 0 means false, and x = 1 means true; we write
x to mean 1 − x. Observe that Boolean satisfiability constraints in conjunctive normal form
(CNF) can easily be written as pseudo-Boolean constraints, because e.g. (x1 ∨x2 ∨x3) holds if
and only if (x1 + x2 + x3 ≥ 1). For clarity we will sometimes mix logical and pseudo-Boolean
notation, and write expressions like (x1 ∧ x2 ∧ x3) → (2x4 + 3x5 + −4x6 ≥ 7) rather than
the more cumbersome 11x1 + 11x2 + 11x3 + 2x4 + 3x5 + −4x6 ≥ 7.

There is a standard textual file format for pseudo-Boolean models, known as OPB [27].
VeriPB supports this format, with extensions: for example, it allows variables to have
descriptive names, which is convenient for readability, and can include implications to avoid
the need for solver authors to calculate appropriate coefficients manually.

2.2 Cutting Planes
Alongside an OPB file, VeriPB takes a proof log file that claims to show that the pseudo-
Boolean model is unsatisfiable, and checks the proof’s validity. This proof log is a text file,
which describes a sequence of steps using the cutting planes proof system [5]. In cutting

1 https://gitlab.com/MIAOresearch/VeriPB
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planes, we can add two constraints together, multiply a constraint by a non-negative integer
constant, and divide existing constraints by a positive integer constant (with rounding);
we may also assert that any literal is non-negative. The aim is to derive a constraint
saying that 0 ≥ 1, which serves as a contradiction. The cutting planes proof system is
complete for pseudo-Boolean models, in the same way that resolution is complete for Boolean
models. However, it is exponentially stronger than resolution: for example, resolution requires
exponential length proofs for all-different constraints, whereas cutting planes can justify
Hall set reasoning in (small) polynomial length [10]. For more details on the theoretical
background, see, e.g., the survey by Buss and Nordström [3].

2.3 Unit Propagation and Reverse Unit Propagation

For solver authors, working directly with cutting planes can be difficult, and would require
every part of a solver to keep careful track of every operation carried out. This difficulty can
be avoided through the use of reverse unit propagation (RUP) proof steps [16, 30, 10], which
are in effect shorthand for a sequence of cutting planes steps.

For CNF clauses, unit propagation means identifying any clause where all but one of its
literals has already been set the wrong way, and propagating the remaining literal to the
value that avoids violating the clause, repeating until either a contradiction is reached or no
further unit clauses exist. This notion generalises to pseudo-Boolean constraints, where unit
propagation means achieving integer bounds consistency [4]. A constraint C is said to be
RUP if asserting its negation leads to a contradiction via unit propagation; in such a case, it
is obviously permissible to introduce C as a new constraint without altering whether the
underlying model is satisfiable.

RUP steps in a Boolean setting form the core part of the DRAT proof format. This is
useful for solver authors because for a typical CDCL SAT solver, every learned clause is
RUP, and so writing a proof log requires only that a solver output every clause it learns in
turn. In our constraint programming setting, RUP clauses will similarly form the backbone
of the proofs we generate, with a RUP clause being written every time a solver backtracks.
However, we will also use explicit cutting planes steps where necessary, to justify complex
propagations. In one sense, RUP is purely a convenience for solver authors, in that with more
work, cutting planes steps could be used instead; however, this would require substantially
more book-keeping in the solver.

The following pieces of intuition may be helpful in what follows: a fact follows from unit
propagation if it is so immediately obvious that it is not worth stating. A fact follows from
reverse unit propagation if, once you have been told that it is a fact, it is obviously true (but
that it might not be immediately obvious if you are not told). In some ways this resembles
failed literal probing, or the difference between generalised arc consistency and singleton arc
consistency; this intuition may become clearer following the example in Section 4.1.

2.4 Extension Variables and Redundance-Based Strengthening

An extension variable is a new variable introduced as part of a proof. In VeriPB, extension
variables are supported using a rule called redundance-based strengthening (which, for readers
familiar with SAT proof logging, is the natural analogue of the RAT rule in DRAT) [15]. We
do not need the full power or definition of that rule for this paper. It suffices to say that,
for an arbitrary pseudo-Boolean constraint C and a new variable y that has not previously
appeared in the model or proof, we are allowed to introduce the reified constraints y ↔ C
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at any point during the proof. As well as being extremely convenient for solver authors,
extension variables also give an exponential increase in reasoning power [3].

2.5 Satisfiable Instances, Enumeration, Optimisation, and Deletions
For satisfiable decision problems, VeriPB supports solution checking by including a solution
in a proof log. Enumeration problems may also be verified this way: whenever a solution is
logged, VeriPB treats this as introducing a new constraint saying “but not this solution”,
and so a proof is effectively a proof by contradiction that there are no solutions other than
the ones listed. Optimisation is handled similarly, via an optional objective expression in the
OPB file. Finally, in practice it is important to delete constraints from the proof that will
not be re-used later on. This is straightforward, but will not be discussed in this paper.

3 Encoding Constraint Programming Models

In the previous section, we learned that if we wish to use VeriPB to verify constraint
programming proofs then we must provide two things: a pseudo-Boolean model in OPB
format, and a proof log. We now discuss how the first of these two steps may be generated
by a CP solver, looking first at how we turn CP variables into pseudo-Boolean variables, and
then at how we represent constraints. When compiling CP to a lower level format for solving,
selecting a good encoding involves considering propagation and consistency; in contrast, for
proof logging we need only something that is simple and reasonably compact.

3.1 Variables
The most straightforward way of encoding an integer variable X with domain ℓ . . . u is to
create u − ℓ + 1 pseudo-Boolean variables x=i, where x=i is true if and only if X = i, together
with supporting constraints saying that

∑
x=i = 1. Such an approach was used for proof

logging the all-different constraint by Elffers et al. [10]. However, this is impractical for
variables with large domains that are only involved in bounds-consistent constraints such
as integer linear inequalities. Instead, we define a binary encoding. Let h be the least
strictly positive number such that 2h−1 ≥ max(1, |u|, |ℓ|). Then we introduce variables xbi

for i ∈ 0 . . . h − 1, and, if ℓ < 0, we additionally introduce an xneg variable to give us a two’s
complement style representation. The two constraints ℓ ≤ −2hxneg +

∑h−1
i=0 2ixbi ≤ u then

define the meaning and bounds of these variables (with the leading sum term omitted if
ℓ ≥ 0). For example, if we have a constraint programming variable A with domain {−3 . . . 9},
we would define

−32aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 + 16ab4 ≥ −3 and
32aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 + −16ab4 ≥ −9.

Although compact, experienced modellers know that such an encoding often leads to extremely
poor propagation. This is a problem if the encoding is to be used for solving, but for proof
logging this is not an issue because the encoding only restricts how we write a proof, not how
a solution is reached. However, when expressing constraints or propagation, it is often useful
to be able to use variables x=i and x≥i for selected values of i. If these variables are used
when the constraints appear in the pseudo-Boolean model, we can define them immediately.
We have found the most convenient way of expressing these variables to be

x≥i ↔ −2hxneg +
h−1∑
i=0

xbi ≥ i
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6 An Auditable Constraint Programming Solver

and similarly for x≥i+1. Additionally, we constrain that x≥i+1 → x≥i, and force x≥i to be true
or false respectively if i defines a lower or upper bound. We then define x=i ↔ x≥i ∧ x≥i+1.

However, what if these values are only used for branching or propagation, such as when
dealing with linear inequalities (discussed below)? The whole point of using a binary encoding
was to avoid having to define variables for values that never appear in a constraint or a
proof. Fortunately, it is possible to introduce these additional variables as extension variables
with the same defining constraints, so long as it is done in exactly the order described
above. In such a case, we also introduce the RUP constraints x≥i → x≥j and x≥h → x≥i for
the closest two values h and j that already have equality variables, if they exist. Finally,
when propagating certain constraints such as all-different, it is also convenient to have an
at-least-one constraint

∑u
i=ℓ x=i ≥ 1. If all the x=i variables are defined, then this constraint

can also be introduced via RUP as needed, and does not need to be defined in the model.
This can make the pseudo-Boolean model much more manageable: for example, for the
implementation of the “cake” problem discussed in Section 5, our solver introduces a total of
one hundred x=i or x≥i variables in the proof, rather than defining several hundred thousand
of them in the OPB file.

Note finally that the details of this encoding are largely irrelevant to most constraints. In
particular, it is possible for the part of a solver that deals with proof logging to treat 0/1
variables separately with almost no impact on the rest of its code.

3.2 Constraints
Next, we must represent every constraint in pseudo-Boolean form. This topic is relatively
well-understood, because pseudo-Boolean constraints are a superset of CNF—and again, it is
not necessary to find a good encoding, only a simple and correct one. We now give some
examples that illustrate general concepts.

Integer linear inequalities can easily be expressed in pseudo-Boolean form by adding
multiples of the bit encodings together. For example, suppose we have the CP constraint
2A + 3B + 4C ≤ 42, where each of the variables has domain {−3 . . . 9}. This would be
translated into

−64aneg + 2ab0 + 4ab1 + 8ab2 + 16ab3 + 32ab4

+ − 96bneg + 3bb0 + 6bb1 + 12bb2 + 24bb3 + 48bb4

+ − 128cneg + 4cb0 + 8cb1 + 16cb2 + 32cb3 + 64cb4 >= 42.

We may use a pair of such constraints to define equality and sum constraints. If we were
solving using these constraints, we would get very weak propagation, but we will explain
why this does not matter in the following section.

Not equals constraints can be expressed using two half-reified linear inequalities: we
introduce a Boolean flag f , and define the constraints f → (A−B > 0) and f → (B −A > 0).
These can be expressed in pseudo-Boolean form as integer linear inequalities with the addition
of a suitably large coefficient on the negation of the flag to handle the implication. A similar
encoding can be used for the absolute value constraint.

All-different can be expressed by a set of at-most-one constraints, such as a=2+b=2+c=2 ≤ 1,
or by a clique of not-equals constraints. Again, solving using either kind of constraint would
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give weaker propagation than the usual GAC all-different constraint, but this is not a concern
for proof logging.

Table constraints can be expressed in terms of an auxiliary variable, which selects which
tuple is matched. For example, given the tuple sequence [(1, 2, 3), (1, 3, 4), (2, 2, 5)] applied as
a table constraint to the variables [A, B, C], we could express this by adding an auxiliary
variable T ∈ {0 . . . 2} (called the tuple selector variable), and using implication constraints
t=0 → (a=1 ∧ b=2 ∧ c=3) etc.

Element constraints come in a variety of forms. For example, consider a 2D element
from constants constraint, which says that a variable V takes the [I, J ]th entry in a two
dimensional m×n array A of constants. This shows up in various places, such as the MiniCP
quadratic assignment problem benchmark discussed in Section 5 (where solvers are expected
to achieve generalised arc consistency on the two index variables, and bounds consistency on
the assigned variable) [24]. The only constraints we will define are the unary constraints i≥0,
i≥m, j≥0 and j≥n, and then (i=x ∧ j=y) → v=A[x,y] for each array entry. Such constraints,
on their own, obviously do not enforce the desired consistency levels, but they have the
advantage of being simple. This technique also generalises. For example, if the array A is
not constant then the implication constraints can become half-reified equalities instead—and
this in turn makes it easy to define array minimum and array maximum constraints.

Other constraints are usually similarly easy to express. The critical point is that encodings
need only be correct, not good, and so if we know how to express the constraint at all in
CNF or as integer linear inequalities then that is sufficient. Similarly, if a constraint easily
fits in a table, then it can be handled that way. Combined with the ability to use auxiliary
variables, even constraints like “forms a connected subgraph” are manageable [13].

4 Proofs for Search and Propagation

The core of a proof for an unsatisfiable constraint satisfaction problem is a description of the
solver’s search tree. This is expressed as a RUP statement for every backtrack, and ends
with a contradiction when we backtrack from the root node. The idea is that whenever the
constraint solver backtracks, it should be “obvious” that the sequence of guesses made leads
to a dead end, and is thus a RUP clause. Gocht et al. [13] provide a worked example of this
process in a branch and bound setting for a clique algorithm.

In order to make this process work with global constraints, we will need to include
additional proof statements to justify non-obvious propagations (in the same way that Gocht
et al. had to justify the clique algorithm’s bounds). The core invariant we use is that at every
backtrack, any variable-value deletion that is known to the CP solver (and thus part of the
decision to backtrack) must be visible to the proof verifier either through unit propagation,
or through reverse unit propagation of the backtrack clause. This section elaborates on what
this means for various global constraints.

4.1 RUP Justifications and Table Constraints
Achieving generalised arc consistency for table constraints involves two kinds of inference:
detecting when a tuple becomes infeasible, and detecting when a variable’s value is no longer
supported by any feasible tuple. There are several different propagation algorithms for
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performing this inference [29, 22, 7, 20, 32], but from a proof logging perspective it does not
matter how the inference is performed, only what is inferred.

A tuple becoming infeasible requires no justification. Recall that tuples are defined with
constraints like t=0 → (a=1 ∧ b=2 ∧ c=3). If, for example, A loses the value 1 from its domain,
this constraint will unit propagate, setting t=0 to false. This also holds when assignments are
guessed: by the core invariant, asserting through RUP that the guessed assignments imply
false will propagate the value loss, which in turn propagates the tuple becoming infeasible.

In contrast, suppose we have only two tuples supporting A = 1, and these are both made
infeasible by other variables, so a solver infers A ̸= 1. Let G be the set of equality variables
corresponding to our current set of guessed assignments (for example, {b=2, c=5}). Then
the assignment a=1 does not follow by unit propagation in the proof under the assertion of
∧G, which means it must be justified in some way. Fortunately, this is very simple, and we
need only give a small hint to the proof verifier: we claim that ∧G → a=1 will be a RUP
constraint. Indeed, its negation is (∧G) ∧ a=1. Now consider each tuple t supporting a=1 in
turn. There must be some constraint derived that, under ∧G, falsifies a different variable in
this tuple, which in turn forces the tuple selector variable to not equal t. Additionally, we
know that A must take at most one value, and so for each i ̸= 1, a=i will propagate to false;
this in turn propagates every other tuple selector variable to false. Finally, we know that
the tuple selector variable must take at least one value, but we have ruled out every value it
could take, giving the desired contradiction.

Putting these facts together, the only proof logging needed for a table constraint is to
log one RUP step whenever a variable loses a value due to lack of support. Intuitively,
infeasibility of tuples is so obvious that we need not mention it. In contrast, loss of support is
not immediately obvious to detect, but if we tell the proof verifier that it has in fact occurred
then it is easy to check that we are telling the truth.

4.2 Explicit Justifications and Integer Linear Inequalities

Some constraints require more work. Elffers et al. [10] have already shown how both
propagation and failure detection for the all-different constraint can be justified using cutting
planes proofs. Their approach works in our setting, with one caveat: they require at-least-one
constraints for certain CP variables, which we do not have in our model. However, recall
that these constraints can be introduced using RUP where needed.

Integer linear inequalities are a similar case. Suppose we have a constraint 2A+3B+4C ≤
42, with all three variables non-negative. In a typical CP solver, this constraint will achieve
integer bounds consistency [17, 4]. As an example, suppose we know that under some set of
guessed assignments G that A ≥ 5 and C ≥ 3, then a CP solver will infer that ∧G → B ≤ 6.
We can derive this fact in a proof as follows. By assumption, we either have or can introduce
RUP constraints that ∧G → a≥5 and ∧G → c≥3. This in turn means we either have or can
introduce RUP constraints for the binary representation, saying that ∧G →

∑h−1
i=0 2iabi ≥ 5

and ∧G →
∑h′−1

i=0 2icbi ≥ 3 for appropriate values of h and h′. Now using cutting planes
steps, we can multiply the first of these by 2 and the second by 4 (their coefficients in the
original linear inequality), add both to the constraint defining the linear inequality, and
divide the result by the coefficient of B, 3. It can be verified that the resulting mess is
now sufficient to make ∧G → b≥7 a RUP constraint. It is also routine to prove that this
example generalises to arbitrary integer linear inequalities (although negative variables and /
or coefficients require several awkward case by case analyses).
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4.3 Element Constraints
Recall the special case of a two-dimensional element from constants constraint, where a
variable V takes the [I, J ]th entry in a two dimensional m × n array A of constants. In the
interests of having a simple pseudo-Boolean encoding, we defined this using (i=x ∧ j=y) →
v=A[x,y] constraints. However, we wish for our solver to achieve generalised arc consistency
on I and J , and bounds consistency on V . One way to proof log this reasoning is as follows.
As a one-time operation at the start of search, we will use extension variables to turn this
into a one-dimensional element constraint. We will introduce m × n new variables sk, each
of which is true if and only if a different i=x ∧ j=y holds. We will then build an at-least-one
constraint over the sk variables via a sequence of O(m × n) RUP steps, as follows. For each
value x for the first index variable I, we are going to derive via RUP that

∑
k sk + i=x ≥ 1.

For this to hold, we first derive via RUP that for each value y for the second index variable
J , that

∑
k sk + i=x + j=y ≥ 1. The desired at-least-one constraint now follows via RUP; in

effect, we have performed an exhaustive backtracking search over the pair of variables I and
J under the assertion that the desired at-least-one constraint does not hold, and shown that
no solution satisfying I and J exists. From this point forwards, we are effectively dealing
with a one-dimensional element constraint.

(Of course, one could ask why we convert from two dimensions to one dimension in the
proof, and not in the model when we define the element constraint. We could certainly do
things this way. However, our point here is to demonstrate that we don’t have to handle
model reformulations by changing the model: instead, we can use the most straightforward
low-level model imaginable, and then prove that our reformulations are valid as part of the
proof. We will explore this further below.)

We can also view our new encoding as being like a table constraint, but where the tuple
selector variable is channeled to the two index variables. If we wished to achieve generalised
arc consistency on the assigned variable V , we would simply reuse the inference techniques
discussed in Section 4.1. However, this would require introducing a pseudo-Boolean equality
variable v=n for each value in V ’s domain. This is potentially not what is desired, if the
range of the constants is large and V is only otherwise used in a bounds-consistent manner.
Therefore, instead of justifying that V does not take each value no longer present in feasible
parts of A in turn, we would like to assert a bounds change using a v≥n variable. This
does not immediately follow by RUP on its own, although it will if we repeat the iteration
technique used in creating the index variable, but iterating only over feasible array entries.

A downside to this approach is that it produces a proof containing O(m × n) steps to
justify each bounds propagation. As Michel et al. [24] explain, by storing the array in a
sorted manner, it is possible for a propagator to avoid looking at most array entries most of
the time, and so have better than O(m × n) performance in the typical case. We suspect
that this algorithm can be replicated in a proof efficiently, if we are prepared to establish a
set of ordering constraints at the start of the proof.

Finally, an observant reader might have noticed that deletions on the one-dimensional
array index will not unit propagate backwards to I and J . In fact, these deletions are RUP.

4.4 Not Equals
At this point, it should be clear how the not equals constraint can be handled: when one
variable A is instantiated to a value v, it follows using RUP that the other variable B cannot
also be v since the flag f would have to be both true and false to allow f → (A − B > 0) and
f → (B − A > 0) to hold simultaneously. However, there is another alternative, which we
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will see is more efficient in some scenarios. Instead of deriving under a sequence of guesses
G that ∧G ∨ a=v → b=v, we could simply introduce the RUP constraint a=v + b=v ≥ 1,
independently of the guesses. Propagation of the not equals constraint for v would then
follow by simple unit propagation.

4.5 Autotabulation and Other Reformulations

Linear equality constraints can be defined and propagated as two linear inequalities. However,
sometimes a solver may wish to achieve generalised arc consistency on a linear equality.
This is NP-hard, but is still a good idea sometimes for small variables—for example, if
2X + 2Y + Z = 7 then Z must be odd, but this will not be inferred from the inequalities.
One way a solver might handle such constraints is by automatically turning the two linear
inequalities into a table constraint. An implementation of this process might, of course, be
buggy, and so we would like to prove that this tabulation is valid, rather than simply defining
the table constraint in the pseudo-Boolean model. This is indeed possible, using a more
advanced form of the kind of argument previously used to turn a 2D element constraint into
a 1D element constraint.

Let us start by finding the set of solutions to the constraint. For each solution, we
introduce an extension variable ts which is true if and only if that solution is selected, in the
same way as for a table constraint. We also introduce an extension variable g which is true if
and only if at least one of these ts variables is true. Next we perform and log a backtracking
search to find all of the solutions to the constraint, except that we use g as an additional
guessed assignment at every stage. At the end of the search, we have a proof that g must be
true, which in turn gives us an at-least-one constraint over the ts variables. We have now
created all the constraints we need to define a table constraint.

We expect that similar techniques will be useful for many other kinds of reformulation
as well, re-emphasising our ability to prove more than just the core solving process. One
modelling technique that likely cannot easily be handled this way is symmetry breaking
constraints. However, Bogaerts et al. [2] show that a slight extension to the VeriPB proof
system would make this possible: this raises the intriguing possibility of taking a symmetry
breaking lex or ordering constraint that is defined in a high level model, omitting it from the
pseudo-Boolean model, and then efficiently proving that the constraint is in fact valid.

5 An Implementation

We have implemented a basic constraint programming solver which supports proof logging
(see supplementary material). Our solver generally follows a conventional design, similar to
MiniCP [24], although we have chosen for novelty reasons to make use of some modern C++
features like lambdas and variant types instead of a pure object-oriented design. We were
not aiming for sheer speed, and so our solver does not include optimisations like multiple
propagation queues, backtrackable variables, stateful or support-tracking propagators, or
special handling of binary variables. The solver supports only integer variables, and imple-
ments the absolute value, all different, comparison (with half and full reification), element,
linear equality and inequality, minimum and maximum, and table constraints. We include
example programs implementing four of the five MiniCP benchmarks (a quadratic assignment
problem, n-queens, magic series, and magic square; the TSP example is not included because
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we do not yet have a circuit constraint), as well as the MiniZinc cake optimisation problem2,
the classic “send more money” and Crystal Maze problems, the world’s hardest Sudoku
puzzle3, and an odd-even sum problem using an auto-tabulated GAC sum constraint.

Throughout the development process, we have not tried particularly hard to produce a
solver which is free from bugs. Instead, our goal is to produce a solver that will not produce
undetectable incorrect outputs. The rest of this section describes the key aspects of the solver
design that involve proof logging, discusses what we have learned from using the VeriPB
system in a constraint programming setting, and evaluates its performance.

5.1 Constraint Compilation, or Why Trust the OPB File?
To create the OPB file, we use a single pass approach, outputting definitions as soon as
variables and constraints are generated. Variables are handled centrally, whilst each constraint
is responsible for providing its own pseudo-Boolean encoding. OPB creation is done purely
using text, and the solver stores only the model line numbers for certain constraints—it does
not explicitly store any pseudo-Boolean information.

An obvious difficulty with our proposed process is that this compilation from a CP model
to an OPB model is not verified. This is somewhat offset by the deliberate use of extremely
simple encodings, but one must ask: “why are the authors so sure that they have designed
and implemented the encoding correctly, particularly for fiddly global constraints?”. The
answer to this question is that we are not sure at all, and so we rely upon a special test system,
as follows. For a given constraint, we generate many different possible input domains for its
variables. For each set of inputs, we use a small generate-and-test program that provides
the full set of solutions to the constraint, making no use of the constraint programming
solver or any clever logic or programming. (This can be moderately slow, for example for
the element constraint.) We then use the constraint solver to solve the problem consisting
of just that constraint on those inputs, and verify that the set of solutions found this way
is identical. Finally, we verify the proof produced by this solving process: because this is
an enumeration problem, this verifies that the OPB file also has exactly the same set of
solutions (and additionally that the propagator found them all legitimately, although this is
not the main point of the test).

This process is not perfect, but it does severely reduce the scope for errors: for example, it
immediately flagged a typo where a reified greater than or equal constraint had accidentally
been implemented as a reified greater than constraint, and a bug when the index constraint
for an element constraint contained only out-of-range values.

5.2 Producing the Proofs
Recall that to produce a proof, we need to log our backtracking search, and certain variable-
value eliminations. In the design of our solver, we opted for a careful separation of the notion
of a variable and its current state: the former we represent as a handle, whilst the latter is
stored separately in a central location to allow for easy backtracking. It was therefore natural
to force every modification to a variable’s values to go through a common set of functions,
and to make these functions take a mandatory argument that can be either “no justification
needed”, “output a RUP statement for this”, or “call the following piece of code to produce
an explicit set of proof steps”. Making this argument mandatory forces constraint authors to

2 https://www.minizinc.org/doc-2.5.5/en/modelling.html#an-arithmetic-optimisation-example
3 https://abcnews.go.com/blogs/headlines/2012/06/can-you-solve-the-hardest-ever-sudoku
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think explicitly about justifications, and avoids the potential for illicit modifications to be
hiding in places where they can not easily be found by inspecting a proof log.

For backtracking search, we treat guessing on a branching variable to be a special kind of
inference. Outputting the proof log then simply consists of tracing the search as backtracks
are performed. Again, at no point was it necessary to manipulate pseudo-Boolean constraints
or proof steps as anything other than simple strings created using a template.

5.3 Identifying Solver Bugs
Our experience has been that once the core solver is working and producing proofs for simple
problems, it is somewhat more common to have bugs in the proof-producing code for new
propagators than in the propagators themselves. Usually these bugs are extremely easy to
fix, because VeriPB immediately flags the faulty line of the proof, and our solver can include
a comment line immediately above any proof line saying exactly where in its source code that
line originated. Similarly, propagator bugs are usually obvious from proof logs. For example,
when we first implemented propagation for linear inequalities, we did not yet have a full
proof logging setup for variables with large domains. We therefore used a VeriPB feature
which allows for unchecked assertions to be included in the proof log (subject to an angry
warning being issued at the end of the verification process) so that the remainder of the
proofs could be verified. However, our implementation contained a bug, because one of the
authors did not realise they did not understand the rules for rounding and integer division
when both a variable and its coefficient are negative. Throughout conventional testing on
the remainder of the solver, we never saw a single wrong answer being produced by this
bug—but as soon as proof logging was implemented, we were told the exact line of code in
our solver that was incorrect, even though correct sets of solutions were still being produced.
Of course, one could claim that better testing would have identified this, but this relies upon
the tester having intimate knowledge of how the propagator works and remembering that
integer division of negative numbers could be a source of errors.

It can sometimes be harder to understand the problem when faulty proofs arise from
insufficient justifications. For example, for the absolute value constraint, one of the authors
had originally lazily assumed that its propagations would follow by a single RUP step in the
same way as for not equals—and indeed this is often but not quite always the case. (This
experience has left us extremely envious of the skills of authors of lazy clause generation
solvers, who are able to write similar propagators without the benefit of machine verification.)
This can lead to a proof verification error that only occurs several propagation steps later
than the actual bug: the verifier always tells us if something is wrong, but does not always
make it trivial to figure out where. However, because our solver forces all propagations to go
through a central function call, it is easy to change the way proof logs are written so that all
propagations are checked, including those which would usually be implicit.

5.4 Performance and Overheads
Having discussed the design and implementation of proof logging, we now talk about actually
using it. This section answers two questions: “does proof logging work at all?”, and “how
expensive is proof logging in practice when used on large problems?”.

To answer the second question, we must first establish whether our solver is “fast enough”
that its results are likely representative of what would be seen if proof logging were introduced
into a mature solver. For MiniCP, Michel et al. [24] include five benchmarks that are designed
to test solver speed: they specify an exact search order, and propagation strength for global
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QAP: a quadratic assignment optimisation problem with linear inequalities, not equal constraints,
a 2D element constraint, and large variables.
Runtimes: MiniCP: 16.9s OscaR: 7.1s Choco: 11.3s

Anon: 5.6s logging: 149.5s VeriPB: 232,655.1s
Statistics: propagators: 355 recursions: 125,805 inferences: 4,521,801

OPB size: 6.4MBytes log size: 19GBytes
RUP steps: 39,170,568 RPN steps: 413,295 red steps: 101,394

Magic Series: finding the only magic series of length 300, and proving it is unique. Uses linear
equality and reified equality constraints.
Runtimes: MiniCP: 29.6s OscaR: 8.8s Choco: 29.8s

Anon: 8.2s logging: 425.2s VeriPB: est. 39 days
Statistics: propagators: 90,301 recursions: 1,193 inferences: 15,584,073

OPB size: 108MBytes log size: 12GBytes
RUP steps: 7,923,342 RPN steps: 342,401 red steps: 358,800

Magic Square: finding the first 10,000 magic squares of size 5. Uses sum, not equal, and less
than constraints.
Runtimes: MiniCP: 61.1s OscaR: 32.3s Choco: 32.9s

Anon: 31.0s logging: 1894.1s VeriPB: 108,772.8s
Statistics: propagators: 315 recursions: 6,042,079 inferences: 92,891,165

OPB size: 145KBytes log size: 100GBytes
RUP steps: 141,528,806 RPN steps: 70,946,952 red steps: 2,550

Queens: finding the first solution to the 88 queens problem. Uses not equals constraints.
Runtimes: MiniCP: 876.2s OscaR: 477.8s Choco: 438.8s

Anon: 410.0s logging: 3450.5s VeriPB: 60,643.7s
Statistics: propagators: 11,484 recursions: 49,339,390 inferences: 535,852,330

OPB size: 8.9M log size: 104GBytes
RUP steps: 50,130,687 RPN steps: 0 red steps: 31,152

Crystal Maze on the usual 8-vertex graph, all solutions. Uses GAC all-different, absolute
value, and sum constraints.
Runtimes: Anon: 0.01s logging: 0.13s VeriPB: 6.3s
Statistics: propagators: 35 recursions: 259 inferences: 8,737

OPB size: 60K log size: 2.6MBytes
RUP steps: 32,903 RPN steps: 6,685 red steps: 1,496

With autotabulation and GAC propagation on the sum constraints:
Runtimes: Anon: 0.01s logging: 0.06s VeriPB: 3.9s
Statistics: propagators: 52 recursions: 139 inferences: 2,601

OPB size: 60K log size: 2.0MBytes
RUP steps: 29,467 RPN steps: 102 red steps: 2,958

Sudoku on Arto Inkala’s “world’s hardest Sudoku puzzle”, all solutions. Uses GAC all-different
and equals constraints.
Runtimes: Anon: 0.03s logging: 0.05s VeriPB: 0.52s
Statistics: propagators: 48 recursions: 103 inferences: 1,388

OPB size: 320K log size: 484KBytes
RUP steps: 4,561 RPN steps: 460 red steps: 0

Table 1 Experimental results from our anonymous solver on six different problem instances. The
first four problems are from the MiniCP benchmark suite and have a fixed model, search order, and
propagation strength, to allow for a fair comparison between solvers. The final two problems are
relatively simple, but use further global constraints that are not supported in MiniCP.
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constraints, so that every solver is producing the same search tree for a fair speed comparison.
Their aim was not to have the best model or search for a problem, but rather to benchmark
solvers performing the same well-defined task. We support enough global constraints (linear
inequalities, sum, not equals, reified equals, a special element constraint, and less than) to
implement four of these five benchmarks; we do not yet support the circuit global constraint
for the fifth. In the first four rows of Table 1 we present computational results from a machine
with dual Intel Xeon E5-2697A v4 CPUs, 512GBytes RAM, and a pair of solid state drives
in a RAID 0 configuration, running Ubuntu 20.04.3 LTS, and benchmarking against the
versions of the other solvers included in the supplementary material provided by Michel et al.
In each case our solver is faster than the fastest of MiniCP, OscaR, and Choco, although
sometimes only by a few percent. We therefore believe that the results that follow cannot be
said to be unfairly optimistic due to the use of a slow solver.

Table 1 also shows runtimes for running our solver with proof logging enabled, together
with statistics showing the size of the OPB models and VeriPB proof logs produced, and
the number of RUP steps, groups of cutting planes steps (VeriPB works with sequences of
cutting planes steps in reverse Polish notation, RPN, rather than one step per line), and
redundance-based strengthening steps (red; two such steps are used to introduce an extension
variable). On the four MiniCP benchmarks we see a slowdown of between 8.4 and 61.1 from
proof logging. This should not be particularly surprising: without proof logging, our solver is
making between eight hundred thousand and three million successful inferences per second,
and the proof logs to justify these inferences range from ten to over a hundred GBytes in
size. Furthermore, our implementation of proof logging is deliberately pessimal. We make
use of C++ text output streams for file writing, which are notoriously inefficient. We write
comments for most proof log lines generated, we make use of expressive variable names
(which require several string concatenation operations and a hash table lookup for each
variable written out), and proof lines are manipulated as strings for ease of implementation;
all of these decisions are extremely helpful for exploratory research, but not for performance.
Finally, these MiniCP benchmarks make use of only relatively simple and extremely fast
propagators, which is where proof logging is most expensive. We therefore consider these
performance results to be close to a worst case scenario, and would not be surprised if the
overheads could be cut by at least a factor of five for some problems if implemented in a
production solver that aimed purely for performance rather than for research and teaching.

Returning to the first question, we were able to verify the entire proofs for three of the
four MiniCP problems; based upon the first ten percent of the proof for the remaining magic
series problem, VeriPB estimates it will take 39 days to verify. We were able to verify entire
proofs for smaller instances of the magic series problem. We have also produced and verified
proofs for a range of other problems that make heavier use of global constraints—we show
two of these in the bottom of Table 1, and other example problems and per-constraint tests
are included in our supplementary material. Considering these results, and all the bugs that
have been identified during development, we are comfortable in claiming that proof logging
can be effective in practice. Although it may not (yet) scale practically to some of the more
challenging combinatorial benchmark instances, it is already able to handle moderately sized
problems involving several different global constraints, large variables, and reformulation.

6 Conclusion and Future Work

Proof logging gives us a way to trust outputs, not solvers. Trusting solvers seem to be a long
way from being a practical reality for for constraint programming: even relatively simple
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propagators like all different have resisted attempts at formally verified implementation [8]
even without the extensive optimisations used by modern solvers [11]. In contrast, we have
shown that, with the right proof format, it is relatively easy to add proof logging to a wide
variety of propagators, without requiring the proof verifier to understand anything about
constraint programming—and this does not stand in the way of propagator optimisations
such as greediness and incrementality.

There is still a lot of work to do before proof logging can be used by everyone all of the
time. Firstly, there are many more global constraints and propagators to consider. Most of
these will be straightforward, and will re-use existing strategies for proof logging in familiar
ways. However, some will not be, and it is an open question as to whether cutting planes
with extension variables give a sufficiently strong system to provide practical proof logging in
every situation. We expect that recent work in proof logging for symmetry and dominance
relations [2] might be necessary to justify certain propagators, as well as for reformulations
involving symmetries, and would be interested in a deeper investigation into the relationship
between constraint programming propagators and proof systems (with the caveat that “this
system polynomially simulates natural deduction and so it can do everything” is not a helpful
answer unless the polynomial is of very low order and with small constants).

Secondly, we must think about performance. Using formatted text output and string
lookups to produce proof logs is useful for development and exploratory purposes, but for a
production solver a better approach is probably needed. Verification performance is also a
concern, although we have many reasons to be optimistic that this will improve. For example,
very small changes to how proofs are written can give a huge improvement to verification
times. We discussed two different ways of proof logging the not equals constraint, one of
which involved justifying every propagation subject to the current guessed assignments, and
the other which produced new clauses to assist unit propagation. On the MiniCP queens
benchmark, using the former would have produced a 1.1TByte proof log that would take an
estimated 138 days to verify, rather than a 100GByte proof that could be verified in under
a day. If we are prepared to put slightly more cleverness into a solver, and abandon the
gratuitous use of RUP steps in favour of a little more logic, we expect that proof sizes for
some other constraints can be reduced by a similar factor.

An automated tool that performs proof minimisation would also be useful in this respect.
Although potentially expensive to run, this would be very useful for auditability where proofs
are to be stored, shared, and potentially verified more than once by different people. Such a
tool could also provide annotations that would make RUP steps much quicker to verify—such
an approach is already used for formally verified verifiers for DRAT, which actually verify a
simplified format called LRAT [6].

On the other hand, relatively slow verification is not a fatal flaw. Proof logging is
very good at catching solver bugs that will not be detected by conventional testing, even
on relatively small instances. Because the same logic and code paths in a solver can be
used whether or not proof logging is enabled, it is a useful feature to support even if it is
not enabled all of the time. And, of course, many useful problems with serious real-world
consequences derive most of their difficulty from the variety of constraints involved, rather
than from being close to the limit of what we can solve computationally.

And thirdly, although we have a reasonably good solution for being confident in our
translation from a constraint programming model into OPB, we have not discussed the
further difficulty of verifying compilation from high level languages like Essence or MiniZinc.
Perhaps it would be worth investigating techniques from formally-verified compilers to help
with this translation.

167



16 An Auditable Constraint Programming Solver

References
1 Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Meta-

morphic testing of constraint solvers. In John N. Hooker, editor, Principles and Practice of
Constraint Programming - 24th International Conference, CP 2018, Lille, France, August
27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science, pages 727–736.
Springer, 2018. doi:10.1007/978-3-319-98334-9\_46.

2 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry
and dominance breaking for combinatorial optimisation. In Thirty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2022, 2022.

3 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

4 Chiu Wo Choi, Warwick Harvey, J. H. M. Lee, and Peter J. Stuckey. Finite domain bounds
consistency revisited. In AI 2006: Advances in Artificial Intelligence, 19th Australian Joint
Conference on Artificial Intelligence, Hobart, Australia, December 4-8, 2006, Proceedings, pages
49–58, 2006.

5 William J. Cook, Collette R. Coullard, and György Turán. On the complexity of cutting-
plane proofs. Discrete Applied Mathematics, 18(1):25–38, 1987. doi:10.1016/0166-218X(87)
90039-4.

6 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-
Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor, Automated Deduction
- CADE 26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden,
August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages
220–236. Springer, 2017. doi:10.1007/978-3-319-63046-5\_14.

7 Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume Perez, Laurent Perron,
Jean-Charles Régin, and Pierre Schaus. Compact-table: Efficiently filtering table constraints
with reversible sparse bit-sets. In Michel Rueher, editor, Principles and Practice of Constraint
Programming - 22nd International Conference, CP 2016, Toulouse, France, September 5-9,
2016, Proceedings, volume 9892 of Lecture Notes in Computer Science, pages 207–223. Springer,
2016. doi:10.1007/978-3-319-44953-1\_14.

8 Catherine Dubois. Formally verified constraints solvers: a guided tour (invited talk). CICM.
2020.

9 Leon Eifler and Ambros M. Gleixner. A computational status update for exact rational mixed
integer programming. In Mohit Singh and David P. Williamson, editors, Integer Programming
and Combinatorial Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA,
USA, May 19-21, 2021, Proceedings, volume 12707 of Lecture Notes in Computer Science,
pages 163–177. Springer, 2021. doi:10.1007/978-3-030-73879-2\_12.

10 Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differ-
ences using pseudo-Boolean reasoning. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 1486–1494. AAAI
Press, 2020. URL: https://aaai.org/ojs/index.php/AAAI/article/view/5507.

11 Ian P. Gent, Ian Miguel, and Peter Nightingale. Generalised arc consistency for the alldifferent
constraint: An empirical survey. Artif. Intell., 172(18):1973–2000, 2008. doi:10.1016/j.
artint.2008.10.006.

12 Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of con-
straints. In Thomas Schiex and Simon de Givry, editors, Principles and Practice of Constraint
Programming - 25th International Conference, CP 2019, Stamford, CT, USA, September 30
- October 4, 2019, Proceedings, volume 11802 of Lecture Notes in Computer Science, pages
565–582. Springer, 2019. doi:10.1007/978-3-030-30048-7\_33.

168



S. Gocht and C. McCreesh and J. Nordström 17

13 Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and
James Trimble. Certifying solvers for clique and maximum common (connected) subgraph
problems. In Helmut Simonis, editor, Principles and Practice of Constraint Programming -
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020,
Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,
2020. doi:10.1007/978-3-030-58475-7\_20.

14 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets
cutting planes: Solving with certified solutions. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
1134–1140. ijcai.org, 2020. doi:10.24963/ijcai.2020/158.

15 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 3768–3777. AAAI Press, 2021. URL: https://ojs.aaai.
org/index.php/AAAI/article/view/16494.

16 Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Design, Automation and Test in Europe Conference (DATE), pages 10886–10891.
IEEE Computer Society, 2003.

17 Warwick Harvey and Joachim Schimpf. Bounds consistency techniques for long linear con-
straints. In Proceedings of TRICS: Techniques foR Implementing Constraint programming
Systems, pages 39–46, 2002.

18 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs.
In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October
20-23, 2013, pages 181–188. IEEE, 2013. URL: http://ieeexplore.ieee.org/document/
6679408/.

19 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with exten-
ded resolution. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th
International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.
Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer,
2013. doi:10.1007/978-3-642-38574-2\_24.

20 Linnea Ingmar and Christian Schulte. Making compact-table compact. In John N. Hooker,
editor, Principles and Practice of Constraint Programming - 24th International Conference,
CP 2018, Lille, France, August 27-31, 2018, Proceedings, volume 11008 of Lecture Notes in
Computer Science, pages 210–218. Springer, 2018. doi:10.1007/978-3-319-98334-9\_14.

21 Evelyn Lamb. Two-hundred-terabyte maths proof is largest ever. Nature, 545:17–18, 2016.
22 Christophe Lecoutre. STR2: optimized simple tabular reduction for table constraints. Con-

straints An Int. J., 16(4):341–371, 2011. doi:10.1007/s10601-011-9107-6.
23 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying al-

gorithms. Comput. Sci. Rev., 5(2):119–161, 2011.
24 Laurent D. Michel, Pierre Schaus, and Pascal Van Hentenryck. MiniCP: a lightweight

solver for constraint programming. Math. Program. Comput., 13(1):133–184, 2021. doi:
10.1007/s12532-020-00190-7.

25 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation = lazy clause generation.
In Christian Bessiere, editor, Principles and Practice of Constraint Programming - CP 2007,
13th International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Pro-
ceedings, volume 4741 of Lecture Notes in Computer Science, pages 544–558. Springer, 2007.
doi:10.1007/978-3-540-74970-7\_39.

26 Adrian Rebola-Pardo and Luís Cruz-Filipe. Complete and efficient DRAT proof checking. In
Nikolaj Bjørner and Arie Gurfinkel, editors, 2018 Formal Methods in Computer Aided Design,
FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, pages 1–9. IEEE, 2018.
doi:10.23919/FMCAD.2018.8602993.

169



18 An Auditable Constraint Programming Solver

27 Olivier Roussel and Vasco M. Manquinho. Input/output format and solver requirements for
the competitions of pseudo-Boolean solvers. Revision 2324. Available at http://www.cril.
univ-artois.fr/PB16/format.pdf, January 2016.

28 Peter J. Stuckey. Certifying optimality in constraint programming, February 2019. Talk at
KTH Royal Institute of Technology.

29 Julian R. Ullmann. Partition search for non-binary constraint satisfaction. Inf. Sci.,
177(18):3639–3678, 2007. doi:10.1016/j.ins.2007.03.030.

30 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th
International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2008.
http://isaim2008.unl.edu/index.php?page=proceedings.

31 Michael Veksler and Ofer Strichman. A proof-producing CSP solver. In Maria Fox and David
Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010. URL: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1754.

32 Hélène Verhaeghe. The extensional constraint. PhD thesis, Catholic University of Louvain,
Louvain-la-Neuve, Belgium, 2021. URL: http://hdl.handle.net/2078.1/252859.

33 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory
and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,
2014. doi:10.1007/978-3-319-09284-3\_31.

170



Paper G





Subgraph Isomorphism Meets Cutting Planes: Solving With Certified Solutions

Stephan Gocht1,2 , Ciaran McCreesh3 and Jakob Nordström2,1

1Lund University, Lund, Sweden
2University of Copenhagen, Copenhagen, Denmark

3University of Glasgow, Glasgow, Scotland
stephan.gocht@cs.lth.se, ciaran.mccreesh@glasgow.ac.uk, jn@di.ku.dk

Abstract
Modern subgraph isomorphism solvers carry out
sophisticated reasoning using graph invariants such
as degree sequences and path counts. We show that
all of this reasoning can be justified compactly us-
ing the cutting planes proofs studied in complex-
ity theory. This allows us to extend a state of the
art subgraph isomorphism enumeration solver with
proof logging support, so that the solutions it out-
puts may be audited and verified for correctness and
completeness by a simple third party tool which
knows nothing about graph theory.

1 Introduction
The subgraph isomorphism decision problem is to find a copy
of a small “pattern” graph inside a larger “target” graph, or to
show that no such copy exists; the enumeration problem is to
find all copies. These problems occur in many applications—
we refer to Archibald et al. [2019] for a partial list. Al-
though the problems are NP- and #P-complete respectively,
a series of algorithms based upon constraint programming
[Zampelli et al., 2010; Solnon, 2010; Audemard et al., 2014;
McCreesh and Prosser, 2015; Archibald et al., 2019] have
culminated in a practical way of tacking all but the hardest
instances [McCreesh et al., 2018; Solnon, 2019]. These al-
gorithms exploit various combinatorial and graph invariants,
such as matchings, degree sequences, and number of paths
between vertices, in a bid to reduce the number of combina-
tions which must be considered. As a result, the solvers im-
plementing these algorithms are rather complex, and even af-
ter extensive testing it is hard to be convinced that the solvers
are definitely free from bugs.

This paper discusses proof logging as a way of verifying
the solutions produced by of one of these solvers: the idea
is that the solver is modified to produce a “certificate” or
proof file as part of its output, which can then be verified
by a (much simpler) external tool. For satisfiable decision in-
stances for NP problems, such certificates are always small,
and (usually) easy to check. For demonstrating unsatisfiabil-
ity, or for showing that a solver has not missed any solutions
when enumerating, no way of guaranteeing short certificates
is known. However, theoretical worst cases are overly pes-
simistic, and modern subgraph isomorpism solvers often per-

form much better than exponential worst-case performance
bounds would suggest. In the same way, we will show that
with the right proof format, certificates can be simple to ver-
ify, yet still only be proportional in size to the amount of work
carried out by a solver.

We stress that proof logging does not prove that a solver
is correct: unless a solver actually exhibits buggy behaviour
when producing a proof, a proof verifier will not complain.
On the other hand, proof verifiers will detect if a correct
solver is run on faulty hardware or is compiled with a buggy
compiler, if that leads to the solver performing incorrect rea-
soning. In other words, proof logging gives us a way of trust-
ing solver outputs, not solvers.

Proof logging in the Boolean satisfiability community is
usually done using a format known as DRAT [Heule et al.,
2013b; Heule et al., 2013a; Wetzler et al., 2014]. Recently,
Elffers et al. [2020] proposed a different proof-logging format
based upon cutting planes proofs for pseudo-Boolean mod-
els, and showed that (unlike DRAT) it could easily handle
the all-different reasoning used in constraint programming
solvers. Because subgraph isomorphism solvers also make
use of strong all-different reasoning and similar counting ar-
guments, we will be using this format. Our first contribu-
tion is to show that cutting planes proofs are also powerful
enough to compactly express reasoning about graph degrees,
neighbourhood degree sequences, and counts of short paths
in graphs. This is sufficient to represent all of the reasoning
carried out by the Glasgow Subgraph Solver [Archibald et al.,
2019], which is the current strongest subgraph isomorphism
solver on hard instances [Solnon, 2019]. This is a surpris-
ing result: cutting planes proofs know nothing about graphs,
and the solver’s inference algorithms were not designed with
proof logging in mind. Our second contribution is to demon-
strate that this approach is actually practical: we extend the
Glasgow solver with proof logging support, and produce and
verify solution certificates for over a thousand standard enu-
meration benchmark instances.

2 Background
We begin by introducing notation, and providing the neces-
sary background on graphs and on pseudo-Boolean formulae.

Graphs. Let G be a graph with vertex set V(G), and let
v ∈ V(G). We write N(v) for the neighbourhood of (set of
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vertices adjacent to) v, and deg(v) for the cardinality of the
neighbourhood; we write deg(G) for the mean of the degrees
of all vertices of G. For simplicity, every graph appearing in
this paper is undirected, unlabelled, and does not have loops
(vertices adjacent to themselves), although every result we
describe can be extended to these more general cases.

Subgraph isomorphism. Given a pattern graph P and a
target graph T , the non-induced subgraph isomorphism prob-
lem is to find an injective mapping from V(P ) to V(T ) such
that adjacent vertices in P are mapped to adjacent vertices
in T . The induced problem additionally requires that non-
adjacent vertices be mapped to non-adjacent vertices—again,
we do not discuss this further in this paper, although our re-
sults are also easily applicable to this problem. The enumer-
ation problem is to find every such mapping. (Some works
instead consider the unlabelled enumeration variant, defined
as finding every image of such a mapping.)

Pseudo-Boolean formulae. A pseudo-Boolean (PB) for-
mula consists of a set of {0, 1}-valued variables {x1, . . . , xn}
together with a set of linear constraints

∑n
i=1 ai`i ≥ A,

where each ai and A is an integer, and each `i is either a
literal xi or a negated literal xi, where xi + xi = 1. We
can convert a Boolean satisfiability (SAT) problem instance in
conjunctive normal form (CNF) into a PB formula because,
e.g. x1 ∨ x2 ∨ x3 is satisfied iff x1 + x2 + x3 ≥ 1, but in
general the PB format is exponentially more expressive.

Cutting planes proofs. The cutting planes (CP) proof sys-
tem [Cook et al., 1987] allows us to reason about the satis-
fiability or unsatisfiability of a PB formula, in a similar way
to the resolution system for SAT. Briefly, starting with the in-
put constraints, we may generate new constraints by adding
existing constraints, multiplying them by an integer constant,
dividing by a positive integer constant (with rounding up),
and introducing literal constraints `i ≥ 0. The VeriPB tool
[Elffers et al., 2020] provides a way of encoding CP proofs in
such a way that they can be verified by machine: we refer to
the tool’s documentation1 for details.

Simplification and reverse unit propagation. As well as
accepting manual derivations of new constraints from exist-
ing ones, VeriPB has two ways of introducing a constraint
which is specified explicitly during a proof log. The first is
if the new constraint is semantically implied by an existing
constraint (that is, if it may be obtained by weakening co-
efficients and cancelling literals). The second is through re-
verse unit propagation (RUP) [Goldberg and Novikov, 2003;
Elffers et al., 2020]: if the negation of the new constraint
combined with every existing constraint is “obviously” un-
satisfiable through unit propagation, then the new constraint
may be added. Note that RUP constraints add no new expres-
sive power and can be relatively expensive for the verifier,
but using them appropriately can make solver implementa-
tion vastly more straightforward.

Logging of solutions. To support enumeration problems,
VeriPB allows solutions to be logged. These are checked as
they are encountered, and then their negations are added as

1https://github.com/StephanGocht/VeriPB/

new constraints. Thus, a proof log for an enumeration prob-
lem is effectively a list of solutions, plus an unsatisfiability
proof showing there are no further solutions that were missed.

3 Reasoning about Subgraphs
We will now demonstrate that all of the preprocessing and
reasoning carried out by the Glasgow subgraph solver can be
justified compactly using CP proofs. We will discuss all of
the kinds of reasoning carried out by the Glasgow solver, but
we will not describe precisely how these different steps fit
together to make an algorithm—we refer to McCreesh and
Prosser [2015] and Archibald et al. [2019] for those details.
We will also touch upon kinds of reasoning carried out by
other subgraph solvers, showing the generality and limita-
tions of these results. However, because the VeriPB tool only
understands PB formulae, we must first explain how we en-
code a subgraph isomorphism problem as a PB formula.

3.1 A Pseudo-Boolean Encoding
In the common constraint programming encoding for sub-
graph isomorphism used by the Glasgow solver, we have a
variable for each vertex in the pattern graph, and each domain
ranges over the vertices of the target graph. In other words,
we are building a mapping from the pattern graph to the tar-
get graph. In a pseudo-Boolean model, we replace each con-
straint programming variable with a set of Boolean variables,
one for each value in its domain—each of these variables xp,t

represents a pair consisting of a pattern vertex p and a tar-
get vertex t, and is set to true precisely if p is to be mapped
to t. Conveniently for the enumeration problem, solutions to
this PB formula will be in one-to-one correspondence with
solutions to the actual problem.

Our first set of constraints says that each pattern vertex
must be mapped to exactly one target vertex:∑

t∈V(T )

xp,t ≥ 1 p ∈ V(P )

∑
t∈V(T )

−xp,t ≥ −1 p ∈ V(P )

We then express injectivity, by saying that each target vertex
may be used at most once:∑

p∈V(P )

−xp,t ≥ −1 t ∈ V(T )

Finally, we must express the adjacency constraints. The most
obvious way to do this is by saying that edges cannot be
mapped to non-edges:

−xp,t +−xq,u ≥ −1 p ∈ V(P ), q ∈ N(p),

t ∈ V(T ), u ∈ V(T ) \N(t)
However, it is more convenient and compact (particularly if
the target graph is sparse) to reformulate this by saying that
if a vertex p is mapped to a vertex t, then every vertex in
the neighbourhood of p must be mapped to a vertex in the
neighbourhood of t:

xp,t +
∑

u∈N(t)

xq,u ≥ 1 p ∈ V(P ), q ∈ N(p), t ∈ V(T )
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All of these constraints must then be expressed in the OPB
file format2. For readability, VeriPB allows us to name xp,t

variables with strings like xp t, whereas many PB solvers
accept only numerical variable names like x123. Because
the encoding process is not verifiable and the verifier cannot
detect bugs in the encoding process, we keep the encoding as
simple as possible and do not perform any reasoning here.

Note that this encoding has O(|V(P )| deg(P )|V(T )|)
constraints, and that each adjacency constraint is potentially
O(|V(T )|) long (although for sparse target graphs the length
will be considerably shorter). The Glasgow solver instead
represents the constraints using two bitset matrices, requiring
only O(|V(P )|2 + |V(T )|2) size, whilst some other solvers
use even smaller adjacency list representations. This does
provide us with a fairly moderate limit on the size of graphs
with which we may use this verification process, compared
to what subgraph solvers can handle. This is also one of the
reasons that feeding such an input to a pseudo-Boolean (or
Boolean satisfiability) solver is not a particularly good way
of solving the problem in practice: dedicated subgraph iso-
morphism solvers give much better performance. However,
the proof logs we will produce will correspond to a sequence
of steps which could, in theory, have been carried out by a
pseudo-Boolean solver working on these models.

3.2 Adjacency and Backtracking Search
Elffers et al. [2020] described how the recursive calls car-
ried out by a standard backtracking constraint programming
search algorithm could be logged using reverse unit propaga-
tion constraints, requiring one RUP constraint for every back-
track. They point out that with this approach, there is no need
to log any inference steps carried out by a logging solver if
they are no stronger than unit propagation on the associated
OPB model. The Glasgow solver only performs inference on
adjacency constraints when it is decided that a specific pat-
tern vertex must be mapped to a specific target vertex, and so
the following proposition is immediate.

Proposition 1. PB unit propagation on adjacency constraints
carries out the same reasoning as the Glasgow solver, and so
requires no explicit logging when using RUP.

This result, combined with a limited application of all-
different justification [Elffers et al., 2020], is already enough
to deal with simple-but-fast subgraph isomorphism solvers
like RI [Bonnici et al., 2013] and VF2 [Cordella et al., 2004]
which do not use constraint programming techniques and
which do not perform any further strong inference during
search. To log the behaviour of “cleverer” constraint pro-
gramming style algorithms like the Glasgow solver, how-
ever, we need to be able to justify several other kinds of
preprocessing and reasoning. In the same way that Elffers
et al. [2020] produced proofs by combining RUP with addi-
tional explicitly-derived constraints for verifying all-different
reasoning in a constraint programming solver, we next show
how to provide the verifier with enough additional informa-
tion that every variable-value deletion in the subgraph solver
will be reflected in the PB representation following RUP.

2http://www.cril.univ-artois.fr/PB12/format.pdf

3.3 Reasoning About Degrees
A pattern vertex p of degree deg(p) can never be mapped
to a target vertex t of degree deg(p) − 1 or lower in any
subgraph isomorphism. Expressing this fact using resolu-
tion proofs would require exponential length [Haken, 1985],
but in cutting planes a proof may easily be derived. We
demonstrate this by example. Suppose N(p) = {q, r, s} and
N(t) = {u, v} for some pattern vertex p and target vertex t:
we wish to derive xp,t ≥ 1. We start with the three adjacency
constraints,

xp,t + xq,u + xq,v ≥ 1

xp,t + xr,u + xr,v ≥ 1

xp,t + xs,u + xs,v ≥ 1,

whose sum is

3xp,t + xq,u + xq,v + xr,u + xr,v + xs,u + xs,v ≥ 3.

Observe that due to injectivity, at most one of the column
xq,u, xr,u, and xs,u can be true, and similarly for the column
of x−,v variables. Adding the injectivity constraints for target
vertices u and v to the sum of the adjacency constraints gives

3xp,t +
∑

p∈V(P )\{q,r,s}
−xp,u +

∑
p∈V(P )\{q,r,s}

−xp,v ≥ 1,

which is almost what we want except that we have acquired
some additional variables from the injectivity constraints.
This is not a problem: we can remove these stray xp,− vari-
ables by adding literal axioms (since xi ≥ 0 for any vari-
able xi) and then finally divide the resulting expression by
3, to obtain xp,t ≥ 1 as desired. In proof logging terms,
this whole process can be expressed in a single “p” (“reverse
Polish expression”) rule in the VeriPB format, optionally fol-
lowed by an “e” (“equals”) rule for sanity-checking purposes.
With added line breaks and comments, this could look like:
p 18 19 + 20 + * sum adj constraints
12 + 13 + * sum inj constraints
xp_u + xp_v + * cancel stray xp_*
xo_u + xo_v + * cancel stray xo_*
3 d 0 * divide, and we’re done

e 74 1 ˜xp_t >= 1 ; * check what we just did

Alternatively, because the desired constraint only using weak-
ening of coefficients and cancellation of literals, we may use
a “j” (“implies and add”) rule to avoid listing the steps explic-
itly:
p 18 19 + 20 + * sum adj constraints
12 + 13 + 0 * sum inj constraints

j 74 1 ˜xp_t >= 1 ; * and simplify the above

In general, following the above process can justify any de-
gree reasoning step:
Proposition 2. If a pattern vertex p cannot be mapped to a
target vertex t due to degree, then we can justify this using a
single “p” rule containing deg(p)+deg(t) additions of model
axioms, and a single “j” rule.

The Glasgow solver does not just reason about degrees,
though: it also reasons about global and neighbourhood de-
gree sequences, using a result due to Zampelli et al. [2010].
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Let S(v) be the sequence consisting of the degrees of the
neighbours of vertex v, from largest to smallest. Then a pat-
tern vertex p can only be mapped to a target vertex t if S(p)
is pointwise less than or equal to S(t). Similarly, if the sorted
global degree sequence of the pattern graph as a whole is not
pointwise less than or equal to the sorted global degree se-
quence of the target graph, then the problem is unsatisfiable.
Proposition 3. We may justify unsatisfiability due to global
degree sequence reasoning using no more than O(|V(P )| +
|V(T )|) extra steps, following degree reasoning.

To do this, let i be the position of the first mismatch of the
sequence. We first perform degree reasoning to eliminate the
ith and all subsequent lower degree target vertices from the
first i pattern vertices in the sequence. Then the first i pattern
vertices and the first i−1 target vertices in the sequence form
a Hall violator, which may be used to demonstrate unsatisfia-
bility following the process described by Elffers et al. [2020].

Neighbourhood degree sequence reasoning is also express-
ible as a CP proof—we will demonstrate by example. Sup-
pose a pattern vertex p has neighbourhood degree sequence
(5, 4, 3, 1) from neighbours (q, r, s, o), and a target vertex t
has neighbourhood degree sequence (5, 4, 2, 2) from vertices
(u, v, w, x). In this case, the third item in the degree sequence
is the first mismatch, so we will sum up the adjacency con-
straints for the first three pattern vertices to get

3xp,t +xq,u + xq,v + xq,w + xq,x

+xr,u + xr,v + xr,w + xq,x

+xs,u + xs,v + xs,w + xs,x ≥ 3.

Now observe that, because the mismatch starts at the third
item in the sequence, the third and subsequent columns of
x−,w and x−,x variables all correspond to assignments which
are impossible due to degree. We may therefore remove these
variables by adding in the x−,w ≥ 1 clauses created using the
steps in the previous subsection. This leaves us with

3xp,t + xq,u + xq,v + xr,u + xr,v + xs,u + xs,v ≥ 3.

At this point, we are in a very similar situation to with de-
gree reasoning, above: the x−,u and x−,v sets of variables
can both contribute at most one to the sum, due to injectivity.
So, we add the injectivity constraints as before, and then ei-
ther explicitly eliminate stray variables and divide, or simply
ask the proof verifier to derive the exact constraint by impli-
cation from this sum. By generalising this example, we can
conclude the following proposition.
Proposition 4. If a pattern vertex p cannot be mapped to a
target vertex t due to neighbourhood degree sequence, then
we can justify this using a single “p” rule containing no more
than deg(p)+deg(t) additions of model axioms, and no more
than deg(t)|V(P )| additions of previously derived rules, fol-
lowed by a single “j” rule for simplification.

Zampelli et al. [2010] also make use of dynamic degree se-
quences in their solver: if a target vertex no longer appears
in the domain of any pattern vertex (either initially, or dy-
namically inside search), then it is considered deleted and de-
grees and degree sequences are recalculated. The Glasgow

solver does not use this inference, but if it did it would not
be a problem for proof logging, as we would simply add in
the derived constraints showing that no pattern vertex can be
mapped to the target vertex in question. In the same way as
for the all-different constraint, reverse unit propagation will
automatically handle the current set of guessed assignments.

3.4 Reasoning About Paths
Audemard et al. [2014] implemented a solver named SND
which propagated based upon distances as well as adjacency:
if the distance between two pattern vertices p and q is d, and
they are mapped to target vertices t and u respectively, then
the distance between t and u must be no more than d. This fil-
tering was refined in an early iteration of the Glasgow solver
[McCreesh and Prosser, 2015] and in the PathLAD solver
[Kotthoff et al., 2016] as follows: call two vertices v and w
[k,d]-adjacent if they have at least k simple paths of exactly
length d between them. Then if p and q are [k,d]-adjacent
for any k and d, then t and u must also be [k,d]-adjacent.
This form of filtering is extremely expensive computationally
if d and k are arbitrary, so the current version of the Glasgow
subgraph solver uses only d = 2 and k ≤ 4.

Instead of using path counts directly for filtering, the Glas-
gow solver generates additional sets of graph pairs P [k,d] and
T [k,d], which have the same vertex sets but with vertices v
and w adjacent in G[k,d] if they are [k,d]-adjacent in G. The
solver then uses adjacency, degree, and degree sequence rea-
soning over all of these graph pairs, in a way which requires
the full strength of the following proposition.

Proposition 5. For fixed k, for every pair of vertices p and q
that are [k,2]-adjacent in P , and for every target vertex t, PB
reasoning can derive in polynomial length a new constraint in
exactly the form xp,t+

∑
u xq,u ≥ 1, where the u sum ranges

over vertices that are [k,2]-adjacent to t.

This process is somewhat intricate, so we give only a
sketch of how it works. First we establish that if p maps
to t, then q maps to a vertex which is a walk of length two
away from t, by summing each (p, r, t) adjacency constraint
for r in N(p) ∩ N(q). We then resolve this with each (r, q,
u) adjacency constraint in turn for each u ∈ N(t), and sim-
plify. We then use injectivity and a second simplification step
to strengthen the generated constraint to paths of length two.
This requires two expressions with O(|V(P )||V(T )|) terms,
and two semantic implication steps.

Finally, for k > 1, we must cancel out any xq,u which has
insufficiently many paths of length exactly two between it and
t. For each such item in turn, we use a simple counting and
injectivity argument over the set of potential target vertices
for each r to generate a binary clause xp,t + xq,u ≥ 1. These
are all then added to the original constraint. This requires a
further O(|V(T )|) expressions of size O(|V(P )|+ |V(T )|),
and O(|V(T )|) simplifications.

We suspect it is also possible to use PB reasoning to justify
arbitrary-length distance filtering in polynomial length. How-
ever, the short exact path count filtering used in the Glasgow
solver appears to be both more efficient and more powerful in
practice, and no solver since SND has used arbitrary distance
filtering.
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3.5 Other Algorithmic Features
There are four other core algorithmic features of the Glasgow
solver. The first is all-different propagation, which is used as
a powerful way of reasoning about injectivity. The Glasgow
solver uses a bit-parallel all-different propagator, rather than
the usual generalised arc consistency propagator—however,
it still performs deletions and backtracking based upon Hall
sets, and so the approach described by Elffers et al. [2020]
for justifying the all-different constraint may be used with no
additional work required.

The second feature is restarts with nogood recording.
Archibald et al. [2019] showed that rather than performing a
simple backtracking search, it is better to repeatedly perform
a small amount of search and then restart the solver with a
new branching strategy. At every restart, a set of nogoods
[Lecoutre et al., 2007; Lee et al., 2016] is recorded, so that
the solver does not duplicate work it has already carried out.
These nogoods are expressed as CNF clauses and are prop-
agated internally using unit propagation, which means they
can simply be logged as-is in the proof file.

The third is that if the input graph is a clique, the solver
switches to an entirely different algorithm to solve the prob-
lem. Implementing proof logging for this second algorithm is
a work in progress. The fourth is parallel search. Our experi-
ments will show that proof logging is heavily I/O bound, and
parallelism would make this worse.

Other constraint programming inspired subgraph isomor-
phism solvers make use of features like arc consistency, and
all different filtering on edges. Although not discussed here,
these features are also justifiable in polynomial length.

4 Implementation and Evaluation
We implemented3 the proof logging techniques described
above in the Glasgow Subgraph Solver; we also used
VeriPB’s support for deletion of intermediate and temporary
constraints, which cut down on verifier memory usage. Criti-
cally, we were able to do all this without making any changes
to the core functions or data structures of the solver, beyond
adding in extra optional calls to the proof logging routines: all
of the information needed was already either present or easily
accessible from within the solver. (This would not have been
the case if we could not use RUP constraints.)
Evaluation. There are currently no other proof logging
subgraph isomorphism solvers, so we cannot compare our
technique to another solver. However, we can demon-
strate that the techniques we have described can be imple-
mented, and that producing and verifying subgraph isomor-
phism proofs works in practice, at least on smaller graphs.
Hardware setup. Our experiments are performed on a
cluster of machines with dual Intel Xeon E5-2697A v4 CPUs
and 512GBytes RAM, running Ubuntu 18.04. The perfor-
mance measurements for writing the proof logs are largely
governed by hard disk speed, not CPU overheads, and our
machines are all equipped with a single conventional hard
disk which limits write speeds to around 100MBytes/s. We
therefore do not expect our logging times to be reproducible.

3https://github.com/ciaranm/glasgow-subgraph-solver

Instances. We use the instances collected by Kotthoff et
al. [2016] for evaluation. This is a mix of real-world and ran-
domly generated instances, of a varying range of difficulties.
Some of the instances are very large, and so even generating
OPB files for them would be infeasible. We therefore select
every instance where the target graph has no more than 260
vertices, and where the unmodified Glasgow solver without
proof logging can enumerate every solution in no more than
ten seconds. (We focus on the enumeration problem because
it is more of a stress test than proof logging for decision in-
stances would be.) This gives us a total of 1,227 instances,
789 of which are unsatisfiable, with the remainder having
somewhere between one and 50,635,140 solutions; 498 of
the instances were solved without any guessing, whilst the
hardest solved satisfiable and unsatisfiable instances required
53,605,482 and 2,074,386 recursive calls respectively.
Successful results. Our main result is that the technique
works. For all but five of these 1,227 instances, we were
able to produce proofs and verify their correctness. For the
remaining five instances, the verifier took over three days to
run (without yet having found any mistakes). Each of these
instances were small satisfiable instances with very many (be-
tween fourteen and fifty million) solutions, requiring more
than twenty million recursive calls to solve, and with proof
log files of between twenty and fifty GBytes.
Time costs of proof logging and verification. In the top
row of Figure 1 we show the time costs of performing proof
logging and verification on these instances. The first plot
shows the cumulative number of instances solved over time
without proof logging, with proof logging enabled, and for
proof verification. The plot suggests a four orders of magni-
tude slowdown in aggregate for easy instances, dropping to
two orders of magnitude for harder instances. Meanwhile,
verifying proofs is approximately one order of magnitude
slower than producing them. The second plot shows how
much slower producing proofs is on an instance by instance
basis—we discuss this further below. The third plot shows
how many times harder it is to verify a proof than it is to pro-
duce it, and shows a close linear correlation.
OPB and proof log sizes. The second row of Figure 1 looks
at the size of the generated OPB and proof log files. The
largest OPB file (bearing in mind our pre-selection of small
instances) is 425MBytes, for a pattern graph with 121 vertices
and a target graph with 128 vertices. Meanwhile, some of
our proof logs reached many tens of GBytes—although this
sounds large, recall that the subgraph solver can carry out
over fifty million backtracks within ten seconds.
Where the costs come from. Although not ideal, the slow-
downs to the solver from proof logging are to be expected for
two reasons. Firstly, the Glasgow solver employs bit paral-
lelism and other algorithmic techniques and data structures
designed to allow it to carry out inference extremely quickly.
When working with relatively small target graphs, it is able
to carry out a full round of inference, variable selection, and
recursion in under 0.2 microseconds. If each such round re-
quires 1KByte of logging, we would need to be able to write
to disk at around 5GBytes per second to keep up—this is al-
ready a factor of fifty higher than what our hardware is capa-
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Figure 1: The performance of proof logging and verification on the 1,227 benchmark instances. The top left plot shows the cumulative
number of instances solved, solved with proof logging, and verified, for increasing time limits. The bottom left plot shows the cumulative
number of instances for which the OPB and proof log files are no more than a given size. The top centre scatter plot shows the increase in time
required to enable proof logging, whilst the top right scatter plot shows the verification time, in comparison to the time needed to generate
proof files; in both cases, lighter point colours indicate larger disk space requirements. The bottom centre scatter plot shows the size of the
proof log file, compared to the number of recursive calls made by the solver (and lighter point colours indicate longer verification times).
Finally, the bottom right scatter plot shows output sizes as proof logging times increase.

ble of. The bottom right plot of Figure 1 confirms that I/O is
our main problem: performance is very closely correlated to
the amount of data that is written out.

Secondly, producing the additional constraints for the
additional graph pairs can be expensive: although it
is a polynomial operation, moving from the solver’s
O(|V(P )2| + |V(T )|2) size requirements to the potential
O(|V(P )2||V(T )|2) size needed for a PB model can be pro-
hibitive. The additional graph pairs make this worse: they
can be either sparser or denser than the inputs, and there are
instances where the OPB file is relatively small, but where the
additional graph pair constraints are close to the worst possi-
ble size. We can see this in the middle column of Figure 1:
there are instances where no search is performed, where pro-
ducing the additional graph pairs takes many hundreds of sec-
onds and several GBytes of proof log space.

5 Conclusion
We have shown, for the first time, that it is possible to carry
out proof logging and verification for a sophisticated graph
algorithm—and that we can do so without the proof veri-
fier needing to be aware of any graph theory. Although there
were limits on input we could consider, this method gave us
a practical way of verifying the solutions to over a thousand
instances. This is especially helpful because some of these in-
stances were too hard for any other solver, meaning we were
not previously completely confident that the Glasgow solver
was obtaining correct results through legitimate means.

We hope that solvers for other NP-complete problems will
start adopting this technology, particularly since increasingly
sophisticated reasoning is now being implemented and used
in practice. Although the overheads mean it may not be as
practical to use proof logging for all instances as it is in the
SAT community, we would still prefer to see solvers which
could output proofs at least some of the time. For this reason,
we consider it particularly relevant that introducing proof log-
ging into the Glasgow subgraph solver was straightforward
and non-intrusive. The combination of RUP and simple justi-
fications for counting arguments meant that our main imple-
mentation difficulties came from remembering to handle all
the special cases like loops and directed and labelled edges,
rather than from proof logging itself. We would be especially
interested to see whether cutting planes proofs are similarly
effective in other domains.
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Abstract. An algorithm is said to be certifying if it outputs, together
with a solution to the problem it solves, a proof that this solution is
correct. We explain how state of the art maximum clique, maximum
weighted clique, maximal clique enumeration and maximum common
(connected) induced subgraph algorithms can be turned into certifying
solvers by using pseudo-Boolean models and cutting planes proofs, and
demonstrate that this approach can also handle reductions between prob-
lems. The generality of our results suggests that this method is ready for
widespread adoption in solvers for combinatorial graph problems.

1 Introduction

McConnell et al. [40] argue that all algorithm implementations should be cer-
tifying : that is, along with their output, they should produce an easily verified
proof that the output is correct. Given the relative frequency of bugs in con-
straint programming (CP) solvers and in dedicated algorithms for hard combi-
natorial problems [7,12,25,42], it would be desirable to see certification becom-
ing a social requirement for all new solvers—as has already happened in the
Boolean satisfiability community through proof logging formats such as RUP
[27], TraceCheck [5], DRAT [29,30,74], LRAT [13] and GRIT [14]. A proof log
is a particular kind of certificate which records the steps taken by a solver in
such a way that the correctness of each step can easily be checked, given that
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all previous steps are known to be correct; the intent is that verifying a proof
log should be very simple, even if solvers carry out complex reasoning.

Until recently, it was generally assumed that proof logging for more pow-
erful CP-style solvers would require either very complicated (and hard to ver-
ify) certificates that must be aware of every kind of propagation performed by
every constraint [72], or an exponential slowdown [22]. However, it has recently
been shown that reasoning over pseudo-Boolean formulae can compactly express
all-different reasoning [19], as well as all of the reasoning carried out by state-
of-the-art subgraph isomorphism solvers [26], despite pseudo-Boolean reasoning
not knowing anything about Hall sets, matchings, vertices, degrees, or paths.

The general idea behind this proof logging is that a constraint satisfac-
tion problem (or other hard problem) is compiled to a pseudo-Boolean (PB)
formula—that is, a 0–1 integer linear program. Then, either a witness of satis-
fiability is provided, or a proof showing that the PB formula implies 0 ≥ 1 is
given. (Optimisation and enumeration problems are also supported.) The proofs
of unsatisfiability demonstrated so far have consisted of a mix of “reverse unit
propagation” (RUP) steps [19,24] to describe the backtracking search tree pro-
duced by the solver, and assistance in deriving any information used by propaga-
tors that is not immediately apparent to unit propagation (such as Hall sets and
Hall violators). In this work, we report that this approach can be used in a more
general way to obtain certifying algorithms (with proofs that can be checked by
the VeriPB verifier [19]) for a range of other hard problems:

– We show how a wide variety of maximum clique algorithms from the literature
can all be enhanced with proof logging, using very similar proof techniques.
We also explain how to adapt this proof logging method to cover the inference
used by a state of the art maximum weight clique solver. Finally, we discuss
certification for all maximal clique enumeration algorithms.

– We also demonstrate proof logging for a state of the art CP-style maximum
common induced subgraph algorithm, including for the connected variant of
the problem.

– Finally, we look at a reduction from maximum common induced subgraph to
maximum clique, which outperforms CP approaches on certain graph classes.
We show that this reduction can be expressed inside the proof log, so we can
take a PB model that was generated for the CP encoding, but then provide
a proof from a clique algorithm—this is a bit like channelling [8], but for
proofs. There are also clique-like algorithms with a propagator to enforce
connectedness. Because the reduction can be viewed as a bijection, we can
continue to express the connectedness constraint only on the CP encoding
(where it is much easier to understand than on the clique encoding), but still
validate clique-like proofs.

Our main conclusion is that proof logging using pseudo-Boolean reasoning is
general and powerful enough to concisely describe the inference used in a wide
range of combinatorial graph algorithms. Although the current implementation
does not scale well enough to deal with the largest instances, it can already
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be used to provide, for the first time, fully verifiable proofs of correctness for
some highly nontrivial medium-sized instances. Also, even if the overhead is
currently too high to have proof logging switched on by default in production,
it provides an excellent tool for debugging of nontrivial optimisation techniques
during solver development. This is because incorrectly implemented steps are
likely to lead to incorrect proofs, which can be detected even when the results
produced by the solver happen to be correct. We believe this tool is mature
enough for widespread adoption, and that requiring all solvers be able to output
proofs would be a natural and desirable step to increase the confidence in the
correctness of state-of-the-art solvers.

2 Clique Problems

A clique in a graph is a set of vertices, where every vertex in this set is adjacent
to every other in this set. The problem of finding a maximum-sized clique in a
graph is broadly applicable, and there are many dedicated solvers for the problem
(which we will discuss below). However, as McCreesh et al. [42] note, at least
some of these solvers are buggy—including the one [35] which was used as a sub-
component by the winner of the 2019 PACE Implementation Challenge [28]. We
therefore begin with a worked example, showing how a machine-verifiable proof
could be constructed to demonstrate and prove the correctness of a solution for
a simple maximum clique instance.

Consider the graph in Fig. 1. To prove that the maximum clique size of this
graph is four, we have to show two things: that it has a clique of four vertices,
and that there is no larger clique. To do so, we use the VeriPB proof verifier,
which takes two files as its input: a pseudo-Boolean model in the standard OPB
format [55], and a proof log which provides a verifiable solution to this model.
Therefore, our first step is to encode the problem of finding a maximum clique in
this graph as a pseudo-Boolean model. We have a 0–1 variable xi for each vertex
i in the graph, an objective which is to maximise the sum of the vertices taken,
and for every non-adjacent pair of vertices, a constraint saying they cannot both
be taken simultaneously. In OPB format, this looks like:

* #variable= 12 #constraint= 41
min: -1 x1 -1 x2 -1 x3 -1 x4 ...and so on... -1 x11 -1 x12 ;
1 ~x3 1 ~x1 >= 1 ;
1 ~x3 1 ~x2 >= 1 ;
1 ~x4 1 ~x1 >= 1 ;
* ...and a further 38 similar lines for the remaining non-edges

Here the first line is a special header comment, the second line specifies that
the objective is to minimise

∑12
i=1 −xi (i.e. to maximise the number of vertices

selected,
∑12

i=1 xi, but OPB supports only minimisation), and subsequent lines
specify constraints. An expression like 1 ~x3 1 ~x1 >= 1 corresponds to the
linear inequality 1x3 + 1x1 ≥ 1, where the overline means negation, xi = 1 − xi.
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Fig. 1. On the left, a graph, with a 4-vertex clique highlighted. On the right, an illustra-
tion of the proof tree used in our worked example to show that this clique is maximum.
The solid arrows show the solver’s view of the search tree, and are labelled either
with a vertex number being accepted or an overlined vertex number being rejected.
Shaded boxes represent states in the search tree where we have accepted the vertices
labelled “A” and can potentially accept the ones labelled “P”, dashed boxes represent
states that are eliminated by a bound, and clear boxes are candidate solutions. Roman
numerals denote states discussed in the text. Dotted lines show the search tree used by
the proof: the crosses with labels correspond to statements that justify a backtrack.

Note the simplicity of this encoding. This is important: the proof we will
produce is expressed in terms of this encoding, and because this process is not
formally verified, any errors in the encoding could potentially lead to a proof
which “proves the wrong thing” being accepted.1

Now we move on to the proof. We could produce proofs of the decision
problems for 4- and 5-cliques, but the VeriPB format also allows us to verify a
branch-and-bound search directly. We now give such a proof, tracing a possible
(and intentionally not very good) algorithm execution as we do so. The proof
log must begin with a header, as follows (asterisk lines are comments):

pseudo-Boolean proof version 1.0
* load the objective function, and the 41 model constraints
f 41 0

Typically, maximum clique algorithms maintain two sets during search: a set
of accepted vertices, A, which is always a growing clique, and a set of possible
vertices P , each of which is adjacent to every vertex in A. Rather than a binary
branching scheme, we will iterate over each vertex in P in turn and first accept

1 We are not aware of any obstacles for providing formal verification for this translation
step. However, since this translation is so simple, in this paper we focus on the more
challenging task of formally verifying the correctness of solvers’ reasoning.
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that vertex, then reject it and accept a second vertex instead. We will carry out
a typical depth-first branch and bound search, with a rather ad hoc bound for
illustration purposes. Our solver will begin in the state labelled i in Fig. 1, with
no vertices accepted and every vertex being possible.

Suppose our solver first branches by deciding to accept vertex 12. Then by
adjacency, only vertices 1, 6, 7 and 9 remain acceptable; we are in state ii.
Suppose now we also accept vertex 7. This leaves vertices 6 and 9 possibly to be
accepted; we are in state iii. We accept vertex 9, which is not adjacent to 6. We
have found a maximal clique with three vertices. We therefore record this in the
proof log, using an “o” rule. This rule tells the verifier to check that the solution
we specified is in fact feasible, and then to create a new constraint,

∑12
i=1 xi ≥ 4,

saying that any future solution must be better; this constraint also allows us to
backtrack, which is marked as “obj1” in Fig. 1. We log this as:

o x7 x9 x12

We are now back to having accepted vertices 7 and 12, but now only 6 remains
possible; this is state iv. Now that we have introduced a new constraint saying
we must set at least four variables to true, it is obvious to a human that we are
at a dead-end and must backtrack. We now have two options: we can explicitly
justify why we can backtrack by deriving a new constraint manually, or we can
rely upon some help from the proof verifier.

To derive the constraint manually, we would proceed as follows. If we sum
the objective line, every non-adjacency constraint involving x7 or x12, and the
non-adjacency constraint involving x6 and x9, we get x2 + x3 + x4 + x5 + 6x7 +
x8 + x10 + 6x12 ≥ 7. Now, for any variable xi, we have an axiom xi ≥ 0. By also
adding these axioms for each i ∈ {2, 3, 4, 5, 8, 10}, and normalising by using the
fact that xi + xi = 1, the sum reduces to 6x7 + 6x12 ≥ 1, which we may then
divide by 6 to get x7 + x12 ≥ 1 as desired. We could express these steps explicitly
in the proof log—and we could also explain an algorithm a solver could use to
know exactly which constraints to sum together and what constant to divide by.
But fortunately, there is an easier approach. By using a “u” rule, we may tell
the proof verifier to introduce a new constraint which is “obviously” true, given
what it knows already. So, we may simply assert:

u 1 ~x12 1 ~x7 >= 1 ;

and the proof verifier will work out the rest. It is able to do this because this new
constraint follows by reverse unit propagation (RUP) [19,24]: that is, if we add
the negation of this constraint and unit propagate,2 then contradiction follows
without search. We may verify this: the negation of the constraint x12 + x7 ≥ 1
is x12 + x7 ≥ 2. From this, unit propagation infers that both x7 and x12 are
1. Then, using the non-adjacency constraints, all variables except x6 and x9

2 In a PB setting, unit propagation is equivalent to achieving integer bounds consis-
tency [9] on all constraints. This is identical to SAT unit propagation on clausal
constraints, but is stronger in general.
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will unit propagate to 0. Now, looking at the new objective constraint, we have
to set at least four variables to 1, so x6 and x9 must both be 1. However,
vertices 6 and 9 are non-adjacent, and so there is a constraint forbidding them
both to be 1. Thus, RUP can derive a contradiction, and can safely add the
asserted constraint—without our hypothetical solver authors having to perform
any complicated bookkeeping. This new constraint is labelled “b1” in Fig. 1.

Our solver is now back in the state that it has accepted vertex 12, and it
has vertices 1, 6, and 9 to choose from; this is state v. Observe that vertices 1
and 6 are non-adjacent, and so it is not possible to make a 4-clique using vertex
12 plus a subset of these vertices. We may therefore backtrack—again, this fact
follows using RUP. We label this “b2” in the figure, and log it as:

u 1 ~x12 >= 1 ;

We are now back at the top of the search tree, having rejected vertex 12
entirely. Suppose we accept vertex 11 next: this leaves vertices 1, 3, 7, 9, and 10
as possibilities, state vi. Then suppose we accept vertex 10, leaving vertices 1,
3, and 9 as possibilities, state vii. Note that none of these vertices are adjacent,
and so we may select at most one of these. To a human, it is now obvious that
we may backtrack, but we must give the proof verifier a little help. Before we
can use a RUP rule to backtrack, we must derive an at-most-one rule showing
that x1 + x3 + x9 ≤ 1. We may do this as follows:

p 1 2 * 19 + 21 + 3 d
p 42 47 +
u 1 ~x11 1 ~x10 >= 1 ;

However, these two “p” lines are not easy to read, as expressed: some of the
numbers are literal constants, some refer to constraints in the model file, and
some refer to constraints we have generated earlier in the verification process.
For this discussion, we will therefore take a few liberties with the proof format in
our running example. Instead of writing “42” for the objective constraint (which
got that number because it was the first introduced constraint, and there are 41
model constraints before it), we will write obj1. Similarly, rather than writing
19 to refer to the model constraint x1+x9 ≥ 1, we will write nonadj1 9. Finally,
we will use the notation � name to give a name to the result of a rule that we
will refer to later on in the proof, or to refer to a point in Fig. 1. After this, any
remaining numbers are literal constants. Thus, the above snippet becomes:

* at most one [ x1 x3 x9 ]
p nonadj1_3 2 * nonadj1_9 + nonadj3_9 + 3 d � tmp1
p obj1 tmp1 +
u 1 ~x11 1 ~x10 >= 1 ; � b3

and we may explain the two “p” rules more easily. In the cutting planes proof
system for pseudo-Boolean formulae [11] upon which VeriPB is based, we can
add together existing constraints, multiply existing constraints by a non-negative
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integer constant, and divide existing constraints by a positive integer constant.
A “p” rule expresses these steps in reverse Polish notation. The first “p” rule
multiplies the non-adjacency constraint x1 + x3 ≥ 1 by 2 to get 2x1 + 2x3 ≥ 2,
adds two more non-adjacency constraints to get 3x1+3x3+2x9 ≥ 4, and divides
this by 3 to get the at-most-one constraint x1+x3+x9 ≥ 2. The second “p” rule
adds this to our objective constraint,

∑12
i=1 xi ≥ 4, to show that the remaining

nine variables must sum to at least 3. This is now sufficient for reverse unit
propagation to justify backtracking step “b3”.

A very similar argument allows us to backtrack again: having accepted ver-
tex 11, and rejected vertices 10 and 12, we may pick at most one of vertices 1, 3,
and 7, plus possibly vertex 9 (state viii). We must help the verifier by generating
another at-most-one constraint:

* at-most-one [ x1 x3 x7 ]
p nonadj1_3 2 * nonadj1_7 + nonadj3_7 + 3 d � tmp2
p obj1 tmp2 +
u 1 ~x11 >= 1 ; � b4

We are back at the top of search. Having rejected vertices 11 and 12, if we now
branch accepting vertex 8 (state ix ), and then vertex 5 (state x ), the remaining
possible vertices 1 and 2 can both be added to form a clique. We thus log this
as a solution, which generates a new objective constraint

∑12
i=1 xi ≥ 5.

o x1 x2 x5 x8 � obj2
u 1 ~x8 1 ~x5 >= 1 ; � b5

Backtracking to the top of the search tree from state xi can be justified by
observing that we may pick at most one of vertices 1 and 9:

p obj2 nonadj1_9 +
u 1 ~x8 >= 1 ; � b6

Finally, having rejected vertices 8, 11, and 12 at the top of search, we are in
state xii, and the remaining nine vertices can be partitioned into independent
sets to create three at-most-one constraints. To allow RUP to unset all nine
vertices, we will combine these constraints incrementally, as follows.

* at-most-one [ x1 x3 x7 ] [ x2 x4 x9 ] [ x5 x6 x10 ]
p nonadj1_3 2 * nonadj1_7 + nonadj3_7 + 3 d � tmp3
p obj2 tmp3 +
p nonadj2_4 2 * nonadj2_9 + nonadj4_9 + 3 d � tmp4
p obj2 tmp3 + tmp4 +
p nonadj5_6 2 * nonadj5_10 + nonadj6_10 + 3 d � tmp5
p obj2 tmp3 + tmp4 + tmp5 +

The proof terminates by asserting that we have proved unsatisfiability—that
is, there is nothing remaining that can beat the best solution we have found.
This is done through a RUP check for contradiction, i.e. that 0 ≥ 1, followed by
a “c” rule to terminate the proof.
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u >= 1 ; � done
c done 0

Having produced this log, we may now hand it and the associated pseudo-
Boolean model file to VeriPB, which will successfully verify it.

There is one other important detail that we have omitted from this proof: in
practice, it is extremely helpful to the verifier if we delete temporary constraints
when they are used, as well as intermediate backtracking constraints after we
have backtracked further up the tree. (This is also crucial for the performance
of proof logging for SAT [74].) VeriPB supports both deletion of numbered con-
straints, and a notion of “levels” which allow all constraints generated below a
certain depth to be deleted simultaneously.

2.1 Maximum Clique Algorithms in General

The majority of maximum clique algorithms that are aimed at hard, dense graphs
make use of backtracking search with branch and bound [4,33,35–37,39,44,51,
53,57,58,60,62,66–69,71]. The inference on adjacency performed by all of these
algorithms is straightforward, with all of the cleverness being in branching and
how bounds are computed [1]. We may therefore produce proof logs for all of
these algorithms using only RUP, logging of solutions as they are found, and
some additional help for the bounds.

Colour Bounds. If a graph can be coloured using k colours (where adjacent ver-
tices must be given different colours) then it cannot contain a clique of more
than k vertices. Producing an optimal colouring is hard (and typically harder
in practice than finding a maximum clique), but various greedy methods exist,
and have been used to give a dynamic bound during search inside clique algo-
rithms. Suppose we have, after branching, our set of accepted vertices A, a set
of undecided vertices P , and have already found a clique of n vertices. If c(P ) is
the number of colours used in some legal colouring of the subgraph induced by
P , then if |A| + c(P ) ≤ n, we can immediately backtrack.

Using cutting planes, if we are given a colouring then it is easy to produce a
proof that this bound is valid. By definition, for each pair of vertices in a given
colour class, the PB model must have a constraint saying that both vertices can-
not be taken simultaneously (because they do not have an edge between them).
As we saw in the worked example, it is routine to combine these constraints
into an at-most-one constraint, using a single sequence of arithmetic operations
that mentions each pairwise constraint only once. We can then sum these new
at-most-one constraints, add them to the objective constraint, and the rest of
the work follows by unit propagation.

Incremental Colour Bounds. Producing a colouring can be relatively expensive.
In order to reduce the number of colourings needed, many solvers reuse colour-
ings. Suppose we have produced colour classes C1, . . . , Cc. Instead of making a
single branching decision, we may branch on accepting each vertex in colour class
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Cc in turn first, followed by those in Cc−1, then Cc−2 and so on, stopping after
we have visited only n − |A| + 1 colour classes. Ideally, in a proof log, we would
not have to produce individual statements to justify not exploring each vertex
in each remaining colour class. This is indeed possible: we derive an at-most-one
constraint for colour class C1, and remember its number �1. We then add this
constraint to the objective constraint. Next, we derive an at-most-one constraint
for colour class C2, add this to �1, and remember its number �2. Now we sum
the objective constraint, �1, and �2. We continue until we reach a colour class
which was used for branching—again, the worked example made use of this.

Other changes to the details of how colour bounds are produced has formed
a substantial line of work in maximum clique algorithms [33,51,53,57,58,62,66–
69]. However, proof logging is completely agnostic to this: we care only that we
have a valid colouring, and do not need to understand any of the details of the
algorithm that produced it.

Stronger Bounds. Even when a good colouring is found, colour bounds can be
quite weak in practice. Some clique solvers identify subsets of k colour classes
which cannot form a clique of k vertices. For example, San Segundo et al. [60]
will find certain cases where there is a pair of colour classes C1 and C2, together
with a vertex v, such that no triangle exists using v and a vertex each from C1

and C2, and uses this to reduce the bound by one for vertex v. If such a case
is identified, RUP is sufficient to justify it. Similarly, because pseudo-Boolean
unit propagation is at least as strong as SAT unit propagation, bounds using
MaxSAT reasoning on top of colour classes [35–37] are also easily justified.

Algorithm Features Not Affecting Proof Logging. Maximum clique algorithms
have used a variety of different search orders [44]; as with the details of how
colourings are produced, these details are irrelevant for proof logging. Similarly,
bit-parallelism [59,61] has no effect on proof logging; thread-parallelism [16,43,
45] remains to be seen, but since proof logging is largely I/O bound, it is likely
that gains from multi-core parallelism will be lost on current hardware when
logging. And finally, running a local search algorithm and “priming” the branch
and bound algorithm with a strong initial incumbent [4,39,71] requires only
that the new incumbent be logged before the search starts, regardless of how
that incumbent was found.

Implementation. We implemented proof logging for the dedicated clique solver
which is included in the Glasgow Subgraph Solver [48], and tested it on a system
with dual Intel Xeon E5-2697A v4 CPUs, 512 GBytes RAM, and a conventional
hard drive, running Ubuntu 18.04. Without proof logging, this solver is able to
solve 59 of the 80 instances from the second DIMACS implementation challenge
[32] in under 1,000 s. With proof logging enabled, we produced proof logs for 57
of the 59 instances, incurring a mean slowdown of 80.1; the final two instances
were cancelled when their proof logs reached 1 TByte in size. We were then able
to verify all 57 of these proofs, with verification being a mean of 10.1 times
more expensive than writing the proofs. Note that the logging slowdown is to
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a: 2

b: 5

c: 2

d: 7

e: 2

f: 2

pseudo-Boolean proof version 1.0

f 8 0

o xa xd � obj

p nonadja_e 2 * nonadja_f + nonadje_f + 3 d 2 * � cc1

p nonadjb_d 5 * � cc2

p nonadjc_d 2 * � cc3

p obj cc1 + cc2 + cc3 + � done

c done 0

Fig. 2. On the left, a weighted graph, with a clique of weight ten from vertices a and
d highlighted. On the right, a proof that there is no heavier clique.

be expected [26]: the original solver is able to carry out a full recursive call and
bounds calculation in under a microsecond. If each such call requires 1 KByte of
logged information then this already exceeds the 100 MBytes per second write
capabilities of a hard disk by an order of magnitude.

2.2 Weighted Clique Algorithms

In the maximum weight clique problem, vertices have weights, and we are now
looking to find the clique with the largest sum of the weights of its vertices, rather
than the most vertices. A simple bound for this problem is to produce a colouring,
and then sum the maximum weight of each colour class. Consider the example
in Fig. 2, and the three colour classes {a, e, f}, {b, d} and {c}. By looking only at
the largest weight in each colour class, we obtain a bound of 2+7+2 = 11. This
bound may be justified in a cutting planes proof by generating the at-most-one
constraints for each colour class as previously, and then multiplying each colour
class by its maximum weight before summing them. However, better bounds can
be produced by allowing a vertex to appear in multiple colour classes, and by
splitting its weight among these colour classes. If we allow vertex d to appear in
the second colour class with weight 5 and in the third colour class with weight
2, then our bound is 2+5+2 = 9. This technique originates with Babel [2], and
is used in algorithms due to Tavares et al. [64,65], which are the current state
of the art for many graph classes [46]. From a proof logging perspective, this
splitting does not affect how we generate the bound, and so we may generate
the proof shown on the right of Fig. 2.

Implementation. We implemented a simple certifying maximum weight clique
algorithm using the Tavares et al. [64,65] bound in Python. With a timeout
of 1,000 s, we were able to produce proof logs for 174 of the 289 benchmark
instances from a recent collection [46]; all were verified successfully.

2.3 Maximal Clique Enumeration

Finally, in some applications we want to find every maximal clique (that is,
one which cannot be made larger by adding vertices without removing vertices).
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This problem also has a straightforward PB encoding: we express maximality
by having a constraint for every vertex v saying that either xv is selected, or at
least one of its non-neighbours is.

The classic Bron-Kerbosch algorithm [6] uses a simple backtracking search,
employing special data structures to minimise memory usage; it ensures maxi-
mality through a data structure called a not-set. We do not explain this data
structure here, because it turns out to be equivalent in strength to unit propaga-
tion on the above PB model—indeed, to create a proof-logging Bron-Kerbosch
algorithm, one needs only output a statement for every found solution, and a
statement on every backtrack. More recent variations on this algorithm make use
of different branching techniques [20,49,56,70] and supporting data structures
[15,21,56], but although these new techniques can make a huge difference to
theoretical worst-case guarantees and to empirical runtimes, they do not require
any changes to how proof logging is performed.

We are interested in proof logging for this problem because there are discrep-
ancies in tables of published results for some common benchmark instances—for
example, does the “celegensneural” instance from the Newman dataset have 856
[21], 1,386 [20], or some other number of maximal cliques? We implemented proof
logging for Tomita et al.’s variant of the algorithm [70], and were able to confirm
that 1,386 is the correct answer. We were also able to confirm the published val-
ues of Eppstein et al. [20] for all of the BioGRID instances, the listed DIMACS
instances, and for the Newman instances with no more than 10,000 vertices. We
were unable to produce certified results for larger sparse graphs, because the
OPB encoding size is linear in the number of non-edges in the inputs.

3 Maximum Common Induced Subgraph Algorithms

The maximum common induced subgraph problem can be defined in various
equivalent ways, but the most useful is that we are given two graphs, and must
find an injective partial mapping from the first graph to the second, where adja-
cent vertices are mapped to adjacent vertices and non-adjacent vertices are
mapped to non-adjacent vertices, mapping as many vertices as possible. The
problem arises in applications including in chemistry and biology [18,23,54].
However, in many cases, the common subgraph is required to be connected : that
is, if we take any two assigned vertices from the first graph, then we must be
able to find a path from one to the other without using unassigned vertices.

McCreesh et al. [41] compared two approaches to the problem, one based
upon CP [50,73] and one based upon reduction to clique [3,17,34,54], and found
that the best approach varied depending upon the kinds of graph being used.
Since then, improvements have come from two different lines of research: one
based upon weakening subgraph isomorphism algorithms [31], and one called
McSplit which replaces general algorithms and data structures used in CP with
much faster domain-specific ones [38,47]. We will discuss CP and McSplit, and
then the clique reduction later, but first we must provide an appropriate PB
encoding.
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3.1 Pseudo-Boolean Encodings

To encode maximum common induced subgraph in PB form, we may adapt the
subgraph isomorphism encoding of Gocht et al. [26]. For each vertex f in the first
graph F , and for each vertex s in the second graph S, we have a variable xf,s

which takes the value 1 if f is mapped to s; we also have a variable xf,⊥ if f is
unassigned. We then have exactly-one constraints over each set of xf,− variables,
at-most-one constraints over each set of x−,s variables for injectivity, and induced
adjacency constraints which are expressed using Gocht et al.’s second encoding,

xf,⊥ +
∑

s∈V(S)

xf,s = 1 f ∈ V(F )

∑

f∈V(F )

xf,s ≤ 1 s ∈ V(S)

xf,s + xg,⊥ +
∑

t∈N(s)

xq,t ≥ 1 f ∈ V(F ), q ∈ N(f), s ∈ V(S)

xf,s + xg,⊥ +
∑

t∈N(s)

xq,t ≥ 1 f ∈ V(F ), q ∈ N(f), s ∈ V(S)

and the objective is to maximise the sum of the non-⊥ variables.
For the connected version of the problem, expressing connectedness as a con-

straint is a little trickier. Our encoding is informed by two simple observations:
a subgraph with k vertices is connected if, for every pair of vertices in the sub-
graph, there is a walk of length no more than k between them, and secondly, for
k > 1, there is a walk of length 2k between two vertices f and g if and only if
there is some vertex h such that there are walks of length k between f and h
and also between h and g.

Therefore, we first introduce auxiliary variables x1
f,g for every pair of vertices

f and g in the first graph.3 If f and g are non-adjacent, these variables are forced
to false; otherwise we add constraints to specify that x1

f,g is true if and only if
both xf,⊥ and xg,⊥ are false. In other words, x1

f,g is true precisely if f and g
are adjacent and in the chosen subgraph. Writing f ∼F g and f �∼F g to mean
vertices f and g are adjacent or not adjacent in the graph F respectively, this
is:

x1
f,g ≥ 1 f, g ∈ V(F ), f �∼F g

x1
f,g + xf,⊥ ≥ 1 f, g ∈ V(F ), f ∼F g

x1
f,g + xg,⊥ ≥ 1 f, g ∈ V(F ), f ∼F g

x1
f,g + xf,⊥ + xg,⊥ ≥ 1 f, g ∈ V(F ), f ∼F g

Next, we introduce auxiliary variables x2
f,g, which will tell us if there is a

walk of length 2 between vertices f and g. To do this, for each other vertex h,
3 In all of what follows, these variables are equivalent under the exchange of f and g,

and so we may halve the number of variables needed by exchanging f and g if f > g.
We do this in practice, but omit this in the description for clarity.
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we have a variable x2
f,h,g which we constrain to be true if and only if there is a

walk of length 1 from f to h, and from h to g. Now, x2
f,g may be constrained to

be true if and only if either there is a walk of length 1 between f and g, or at
least one x2

f,h,g variable is true. We then repeat this process for walks of length
4, 8, and so on, until we reach a length k which equals or exceeded the number
of vertices in the first graph. For k ∈ {2, 4, 8, . . . , 2�log|V(F )|�}:

x
k/2
f,h + xk

f,h,g ≥ 1 f, g, h ∈ V(F ), h �= f, h �= g

x
k/2
h,g + xk

f,h,g ≥ 1 f, g, h ∈ V(F ), h �= f, h �= g

xk
f,h,g + x

k/2
f,h + x

k/2
h,g ≥ 1 f, g, h ∈ V(F ), h �= f, h �= g

xk
f,g + x

k/2
f,g +

∑

h∈V(F )\{f,g}
xk
f,h,g ≥ 1 f, g ∈ V(F )

xk
f,g + xk

f,h,g ≥ 1 f, g, h ∈ V(F ), h �= f, h �= g

xk
f,g + x

k/2
f,g ≥ 1 f, g ∈ V(F )

Finally, to enforce connectedness, for each pair of vertices f and g, we require
that either xf,⊥ or xg,⊥ or xk

f,g is true.

xf,⊥ + xg,⊥ + xk
f,g ≥ 1 f, g ∈ V(F ), k = 2�log|V(F )|�

An important property of this encoding is that all the auxiliary variables
are dependent : that is, for every solution to the maximum common connected
induced subgraph problem, there is exactly one feasible way of setting the aux-
iliary variables. In other words, the number of solutions to the PB encoding is
exactly the same as the number of solutions to the real problem.

3.2 Proof Logging for Constraint Programming Algorithms

The McSplit algorithm [47] performs a CP-style backtracking search [50,73],
looking to map as many vertices from the first graph as possible to distinct
vertices in the second graph. We will therefore continue to use RUP to gener-
ate proofs. For adjacency and non-adjacency constraints, McSplit’s reasoning is
equivalent to unit propagation on our PB constraints, and so no help is needed.
For the bound, McSplit performs “all different except ⊥” propagation, but with
the number of occurrences of ⊥ constrained to beat the best solution found so
far. Due to the special structure of the domains during search, it is able to do
this in linear time, without needing the usual matching and components algo-
rithm [52]. However, when it fails, it produces a sequence of Hall sets, and so we
may reuse the justification technique described by Elffers et al. [19] with only a
simple modification to cope with the objective function.

For the connected variant, McSplit uses a restricted branching scheme [47,73]
rather than a conventional propagator: once at least one vertex is assigned a
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non-null value, it may only branch on vertices adjacent to a vertex already
assigned a non-null value. If no such vertices exist, it backtracks. Interestingly,
this requires no explicit support in proof logging: by carefully stepping through
the auxiliary variables in the PB encoding, level by level, it can be seen that
RUP will propagate all remaining variables to false when in this situation.

Therefore, implementing proof logging in McSplit requires four kinds of state-
ment to be logged. Firstly, any new incumbent must be noted, as in the previous
section. Secondly, all backtracks must be logged using a RUP rule. Thirdly,
whenever the bound function detects that the current state may be pruned, we
must derive a new constraint justifying this. And fourthly, it is extremely help-
ful to delete intermediate constraints using “level” statements. Again, this proof
logging is completely agnostic to changes to the branching heuristic [38].

We implemented this proof logging inside the original McSplit implemen-
tation, and tested it for both the connected and non-connected variants of the
problem on a commonly used set of benchmark instances [10,63]. We successfully
verified McSplit’s solutions to all 16,300 instances of no more than 25 vertices.
Proof logging introduced a mean slowdown of 67.0 and 298.9 for non-connected
and connected respectively, whilst verification was a further 13.4 and 21.6 times
slower; again, writing to hard disk was by far the biggest bottleneck, as McSplit
can make over five million recursive calls per second.

3.3 Maximum Common (Connected) Subgraph via Clique

An alternative approach to the maximum common subgraph problem is via a
reduction to the maximum clique problem [3,34,54]. This reduction resembles
the microstructure encoding of the CP representation, and is the best known
approach on labelled graphs; we refer to McCreesh et al. [41] for a detailed expla-
nation. From a proof logging perspective, one might expect that this encoding
would require a whole new PB representation, or perhaps a large change to how
proof logging is performed by a maximum clique algorithm. However, this is not
the case: given the PB model for a maximum common subgraph problem from
earlier in this section, we can derive the non-adjacency constraints needed for
the clique model described in the previous section using only RUP, whilst the
objective function needs no rewriting at all. Therefore, the only changes needed
to a proof-logging clique algorithm is in the lookup of constraint identifiers.

McCreesh et al. [41] also show how a maximum clique algorithm can be
adapted to deal with the connected variant of the problem, by embedding a
propagator inside the clique algorithm. From a proofs perspective, we can work
with the PB model and the clique reformulation, similar to channelling [8]—
and since connectedness propagation requires no explicit proof logging with the
original PB representation, it also requires no proof logging when performed
inside a clique algorithm.

We therefore reimplemented McCreesh et al.’s clique common (connected)
subgraph algorithm [41], and added proof logging support. Proof logging imme-
diately caught a bug in our reimplementation that testing had failed to identify:
we were only updating the incumbent when a maximal clique was found, which
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is correct in conventional clique algorithms but not for the connected variant,
but this very rarely caused incorrect results. Once corrected, for both variants of
the problem, we were able to verify all 11,400 instances of no more than 20 ver-
tices from the same set of instances [10,63]. Proof logging introduced an average
slowdown of 28.6 and 39.7 for non-connected and connected respectively, and
verification was on average a further 11.3 and 73.1 times slower.

4 Conclusion

We have shown that pseudo-Boolean proof logging is sufficiently powerful and
flexible to make certification possible for a wide range of graph solvers. Partic-
ularly of note is how proof logging is largely agnostic towards most changes to
details in algorithm behaviour (such as search order, methods for calculating
bounds, and underlying algorithms and data structures), and how it is able to
deal with reformulation or changes of representation. This suggests that requir-
ing certification should not be an undue burden on solver authors going forward.
We also stress the simplicity of implementation: for every algorithm we consid-
ered, proof logging only required access to information that was already easily
available inside the existing solvers. In particular, we do not need to implement
any form of pseudo-Boolean constraint processing in order to generate these
proofs, nor does a solver have to in any way understand or otherwise reason
about the proofs it is producing. Furthermore, in each case, adding in support
for proof logging was considerably easier than implementing the algorithm itself.

It is important to remember that proof logging does not prove that any
algorithm or solver is correct. Instead, it provides a proof that a claimed solution
is correct—and if a solution was produced using unsound reasoning, this will
be caught, even if the solution is correct, or if it was produced by a correct
algorithm being run on faulty hardware or with a buggy compiler. Additionally,
this process does not verify that the encoding from a high level model to the PB
representation is correct. To offset this, the encodings we use are deliberately
simple, and when a more complex internal representation is used (such as in the
clique model for maximum common subgraph), we can log the reformulation and
verify the log in terms of the simpler model. This reformulation also suggests
that for competitions, providing a standard encoding would not be a problem.

Although proof logging introduces considerable overheads (particularly when
compared to the techniques used in the SAT community, which do not need to
deal with powerful but highly efficient propagators), it can still be used to ver-
ify medium-sized instances involving tens of millions of inference steps. Given
the abundance of buggy solver implementations that usually produce correct
answers, we suggest that all authors of dedicated graph solvers should adopt
proof logging from now on, and that competition organisers should strongly
consider requiring proof logging support from entrants. For larger and harder
instances, proof logging can be disabled, but because proof logging does not
require intrusive changes to solver internals, this would still give us a large
increase in confidence in the correctness of results compared to conventional
testing.
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33. Konc, J., Janežič, D.: An improved branch and bound algorithm for the maximum
clique problem. MATCH Commun. Math. Comput. Chem. 58(3), 569–590 (2007)

34. Levi, G.: A note on the derivation of maximal common subgraphs of two directed
or undirected graphs. CALCOLO 9(4), 341–352 (1973). https://doi.org/10.1007/
BF02575586
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Abstract

The conflict-driven clause learning (CDCL)
paradigm has revolutionized SAT solving over
the last two decades. Extending this approach to
pseudo-Boolean (PB) solvers doing 0-1 linear pro-
gramming holds the promise of further exponential
improvements in theory, but intriguingly such gains
have not materialized in practice. Also intriguingly,
most PB extensions of CDCL use not the division
rule in cutting planes as defined in [Cook et al., ’87]
but instead the so-called saturation rule. To the
best of our knowledge, there has been no study
comparing the strengths of division and saturation
in the context of conflict-driven PB learning, when
all linear combinations of inequalities are required
to cancel variables.

We show that PB solvers with division instead of sat-
uration can be exponentially stronger. In the other
direction, we prove that simulating a single satu-
ration step can require an exponential number of
divisions. We also perform some experiments to see
whether these phenomena can be observed in actual
solvers. Our conclusion is that a careful combina-
tion of division and saturation seems to be crucial
to harness more of the power of cutting planes.

1 Introduction

Although the Boolean satisfiability (SAT) problem is NP-
complete [Cook, 1971], and hence expected to be intractable
from a theoretical point of view, there has been enormous
progress in performance in the last 15–20 years of SAT solvers
based on conflict-driven clause learning (CDCL) [Marques-
Silva and Sakallah, 1999; Moskewicz et al., 2001].1 Today
CDCL solvers are routinely used for large-scale real-world
problems in a wide range of areas [Biere et al., 2009].

Annoyingly, however, there also exist tiny formulas that
are completely beyond reach even for the best CDCL solvers,
which highlights two limitations of this approach:

• The conjunctive normal form (CNF) used for CDCL input
is a weak formalism for encoding constraints.

1A similar idea in the context of constraint satisfaction problems
was independently developed in [Bayardo Jr. and Schrag, 1997].

• The resolution method of reasoning used in CDCL
solvers is quite weak.

Pseudo-Boolean (PB) constraints can be exponentially more
concise than CNF, and PB reasoning (which can be thought
of as 0-1 integer linear programming with conflict analysis) is
exponentially more powerful than resolution in theory. Extend-
ing the conflict-driven framework to a pseudo-Boolean setting
would therefore seem like an attractive option. However, al-
though there are crafted benchmark formulas on which PB
solvers exponentially outperform CDCL-based approaches, in
practice they are often less efficient.

In this work, we study the rules of reasoning used in PB
solvers and how they compare to the cutting planes method on
which they are based. Interestingly, the most popular conflict-
driven PB solvers use the so-called saturation rule instead
of the division rule in [Cook et al., 1987]. Our focus is on
understanding the relative strengths of division and saturation.

Let us review some background. In this paper, by pseudo-
Boolean (PB) constraints we always mean 0-1 integer linear
constraints. In what follows, all such constraints are assumed
to be written in normalized form as non-negative linear combi-
nations of literals

∑
i aiℓi ≥ A, where the coefficients ai ∈ N0

are non-negative integers, the degree (of falsity) A ∈ N+ is
a positive integer, and literals ℓi represent variables xi or
negated variables xi (which cancel to produce xi + xi = 1,
and where at most one of xi and xi appears in any constraint).

A disjunctive clause x ∨ y ∨ z is just a special case
x+ y + z ≥ 1 of a PB constraint, and we will refer to col-
lections of such constraints as CNF formulas. Cardinality
constraints are another special case where all coefficients are 1
but the degree can be larger. By a pseudo-Boolean (PB) for-
mula we mean any collection of (general) PB constraints.

One approach to solving PB formulas is to convert them
to CNF, either lazily by learning clauses from PB constraints
during conflict analysis, as in one of the version in the Sat4j li-
brary [Le Berre and Parrain, 2010], or eagerly by re-encoding
the whole formula to CNF and running a CDCL solver as in,
e.g., MiniSat+ [Eén and Sörensson, 2006], Open-WBO [Mar-
tins et al., 2014], or NaPS [Sakai and Nabeshima, 2015].
Here we are more interested in solvers doing native pseudo-
Boolean reasoning, such as PRS [Dixon and Ginsberg, 2002],
Galena [Chai and Kuehlmann, 2005], Pueblo [Sheini and
Sakallah, 2006], Sat4j [Le Berre and Parrain, 2010], and
RoundingSat [Elffers and Nordström, 2018] (related, but
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slightly different, ideas were also explored in bsolo [Man-
quinho and Marques-Silva, 2006]). Needless to say, this dis-
cussion is far from a complete overview of PB solving or the
even richer area of PB optimization—see, e.g., the excellent
survey in [Biere et al., 2009, Chapter 22] for more information.

The cutting planes proof system [Cook et al., 1987] can be
defined as consisting of rules for literal axioms

ℓi ≥ 0
, (1)

linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA+ cBB

[cA, cB ∈ N0] , (2)

and division
∑

i aiℓi ≥ A∑
i⌈ai/c⌉ℓi ≥ ⌈A/c⌉

[c ∈ N+] . (3)

A toy example just to illustrate the rules is the derivation

6x+ 2y + 3z ≥ 5 x+ 2y + w ≥ 1
Linear comb.

8x+ 6y + 3z + 2w ≥ 7
Division

3x+ 2y + z + w ≥ 3

(4)

The setting in this paper is that the input is a PB formula
without 0-1 solutions, and the goal is to prove unsatisfiability
by deriving 0 ≥ 1. For readers more interested in optimization,
this is also the situation when the solver should prove that the
objective function cannot be better than in the current solution.

When we want to understand the power of a method of
reasoning, we ignore algorithmic aspects and study what can
be achieved assuming optimal use of the derivation rules. (This
can also be a fruitful perspective because the sophisticated
heuristics in modern solvers are typically beyond rigorous
analysis.) In this context, it is known that cutting planes
is exponentially stronger than the resolution proof system
underlying CDCL [Haken, 1985; Cook et al., 1987].

It can be noted that literal axioms and linear combinations
are sound also over the reals, so division is where the power
of cutting planes lies. In example (4) no information is lost
when dividing the constraint, but this does not hold in general—
for instance, a further division by 3 would yield the clause
x+ y + z + w ≥ 1, which is a strictly weaker constraint.

In conflict-driven solving, linear combinations (2) are al-
ways made to cancel some variable on which the two con-
straints disagree, giving rise to the more restricted generalized
resolution rule (going back to [Hooker, 1988; 1992])

ajxj +
∑

i6=j aiℓi ≥ A bjxj +
∑

i6=j biℓi ≥ B
∑

i6=j

(
c
aj
ai +

c
bj
bi)ℓi ≥ c

aj
A+ c

bj
B − c

, (5)

where c = lcm(aj , bj). What is more, PB solvers based on
[Chai and Kuehlmann, 2005] do not use the division rule (3)
but instead the saturation rule

∑
i aiℓi ≥ A∑

i min{ai, A} · ℓi ≥ A
(6)

saying that no variable coefficient need be larger than the
maximum contribution required from that variable. Note that

saturation, too, is a “Boolean” rule in that it is not sound over
the reals. The derivation

2x+ y + z ≥ 2 3x+ 2y + u+ w ≥ 3
Res. on x

7y + 3z + 2u+ 2w ≥ 6
Saturation

6y + 3z + 2u+ 2w ≥ 6

(7)

shows how resolution and saturation can be combined.
As discussed in [Vinyals et al., 2018], this leads to the fol-

lowing combinations of cutting planes rules to consider from
an applied PB solving perspective (where 1(b)+2(b) corre-
sponds to [Cook et al., 1987]):

1. Boolean rule: (a) saturation or (b) division.

2. Linear combinations: (a) resolution or (b) no restrictions.

The use of generalized resolution seems inherent in a conflict-
driven context, but which Boolean rule to prefer is less
clear. Saturation was used in the seminal paper [Chai and
Kuehlmann, 2005] and has also been the rule of choice in
what is arguably the most popular PB solver Sat4j [Le Berre
and Parrain, 2010]. Division appeared only recently in Round-
ingSat [Elffers and Nordström, 2018] (although it was sug-
gested in a more general integer linear programming setting
in [Jovanovic and de Moura, 2013]).

But before choosing between these two Boolean rules, it
seems natural to ask how they compare in strength! Very little
is known about this. [Vinyals et al., 2018] initiated a study
of different subsystems of cutting planes, but in the context
of PB solving, when linear combinations are restricted to be
instances of generalized resolution, they failed to differentiate
between division and saturation. This limited understanding
stands in striking contrast to the extensive research on different
versions of the resolution proof system in the context of CDCL
(in, e.g., [Beame et al., 2004; Buss et al., 2008; Atserias et al.,
2011; Pipatsrisawat and Darwiche, 2011]).

In this work, we obtain the following results:

1. For cutting planes with saturation, it holds that linear
combinations can be restricted to generalized resolution
without (any significant) loss of proof power.

2. Cutting planes with division and generalized resolution
can be exponentially stronger than cutting planes with
saturation and unrestricted linear combinations.

3. To simulate a single combination of generalized reso-
lution plus saturation (as in example (7)) can require a
number of division steps that is exponential in the bitsize
of the coefficients in the constraints, even if unrestricted
linear combinations are allowed.

The first contribution is a strengthening of [Vinyals et al.,
2018], which obtained an analogous result when the input is
in CNF and all coefficients in the inequalities are restricted
to be of at most polynomial magnitude, but as far as we are
aware the second and third results are the first of their kind.

As a complement to these theoretical contributions, we
also report on a limited empirical evaluation of whether these
separations can be observed in practice as well.

The rest of this paper is organized as follows. We present the
proofs of the three results listed above in Sections 2, 3, and 4,
respectively. After discussing the results from our experiments
in Section 5, we make some concluding remarks in Section 6.
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2 On the Strength of Generalized Resolution

Let us start by investigating how much of a restriction the gen-
eralized resolution rule is. It is known that this can be a severe
limitation—on CNF inputs it causes cutting planes to collapse
to the much weaker resolution proof system regardless of
whether division or saturation is used [Vinyals et al., 2018].
Hence, for cutting planes with division this restriction incurs
an exponential loss in strength. However, we show that com-
bined with saturation the generalized resolution rule in fact
affords the same power as unrestricted linear combinations.

By way of a quick review of preliminaries, a cutting planes
derivation π from a PB formula F is a sequence of PB con-
straints π = (C1, C2, . . . , CL) such that each Ci is either
from F or is derived from previous constraints using some sub-
set of the rules (1)–(3) and (5)–(6) (depending on the flavour
of cutting planes under study). The length of a derivation is the
number of constraints in it. We say that a derivation π is a proof
(of unsatisfiability) for F , or refutation of F , if CL

.
= 0 ≥ A

for A ∈ N+ (where
.
= denotes syntactic equality). For the rest

of the paper we will use the following terminology:

• A resolution derivation is a derivation where (a) the input
is in CNF and (b) the only derivation rule is generalized
resolution (5) followed by saturation (6) in one step.

• Cutting planes with division is the proof system using
rules (1)–(3), and a division derivation (refutation) is a
derivation (refutation) in this proof system.

• Cutting planes with saturation is the system with rules
(1), (2), and (6) yielding saturation derivations.

If the linear combination rule (2) is restricted to be an in-
stance of generalized resolution (5), we say that we have a
division/saturation derivation with (generalized) resolution.
With these conventions we can now state our first theorem.

Theorem 2.1. If a PB formula F over n variables has a satu-
ration refutation π in length L, then F also has a a saturation
refutation π′ with generalized resolution in length O

(
n2 · L

)
.

Furthermore, if F is a CNF formula, then the refutation π′

obtained in Theorem 2.1 can be converted to a resolution refu-
tation of F of the same length as π′. To see this, it is sufficient
to verify that the degree of falsity in π′ can never go above 1,
meaning that the constraints are always semantically equiv-
alent to clauses. Note that coefficients larger than 1 are not
an issue when the degree is 1—they can simply be viewed as
clauses containing the same literal multiple times. Formalizing
this argument properly yields the following corollary.

Corollary 2.2. If a CNF formula F over n variables has a
saturation refutation π in length L, then there is a resolution
refutation of F in length O

(
n2 · L

)
.

A weaker form of Corollary 2.2 was shown in [Vinyals et al.,
2018], namely with the added (and significant) restriction that
all coefficients in the original refutation π have to be small.

In what remains of this section we will prove Theorem 2.1.
Starting with the refutation π = (C1, C2, . . . , CL), we will
construct π′ by representing each Ci by a set of mi constraints
Dij

.
=

∑n
k=1 aijkℓk ≥ Aij for j ∈ [mi] and associated

factors δij ∈ N+, writing Di =
{
(δij , Dij)

∣∣j ∈ [mi]
}

to

denote the constraints and factors for Ci. We will require the
following invariants to hold for all i ∈ [L]:

1. Di represents Ci in the sense that
∑mi

j=1 δij ·Dij = γ ·Ci

for some γ ∈ N+ (where the summation notation denotes
taking linear combinations as in (2) but of arbitrary arity).

2. Di has size |Di| = mi ≤ n+ 1.

3. Every variable in Di occurs with only one polarity (i.e.,
cannot appear both negated and unnegated in Di).

4. If Ci is derived from Ci′ (and Ci′′) then all constraints
in Di can be derived from Di′ (and Di′′) using at most
O
(
n2

)
generalized resolution and saturation steps.

Let us argue that Theorem 2.1 follows immediately from a
construction maintaining these invariants. The refutation π′

will consist of the constraints in the sets Di concatenated with
the intermediate derivation steps in invariant 4, using only
generalized resolution and saturation. Since the final line in the
refutation π is CL

.
= 0 ≥ A for some A ∈ N+, it follows that

all constraints in DL are of the form 0 ≥ A′, A′ ∈ N+ (since
adding all constraints in Di must yield a multiple of 0 ≥ A by
invariant 1 and no variables can cancel by invariant 3). Finally,
the length of π′ is O

(
n2 · L

)
because each constraint Ci is

replaced by n+ 1 constraints by invariant 2 in addition to the
O
(
n2

)
constraints that are used to derive Ci by invariant 4.

We can take care of invariant 2 directly, arguing similarly to
the proof of Caratheodory’s theorem. We omit the proof due to
space constraints, but the idea is that if a positive integer linear
combination of a set of constraints D yields some constraint C,
then we only need a linearly independent subset of at most
n+ 1 constraints to get a multiple of C. We now present an
inductive construction that maintains the other invariants.

Base Case: Ci ∈ F or Ci
.
= ℓ ≥ 0. Set Di = {(1, Ci)}.

The invariants hold trivially.
Saturation: If Ci is obtained by saturation of Ci′, which

we denote Ci = sat(Ci′), then we let Di consist of the set{
(δ, sat(D))

∣∣(δ,D) ∈ Di′
}

plus possibly {(δk, ℓk ≥ 0)} for
some literals ℓk in Di′ as discussed below. Invariant 3 holds
by construction, as it already holds for Di′. Let us argue that
Invariants 1 and 4 can be made to hold as well.

First note that if we would sum over Di′ and then saturate,
we would obtain the desired constraint sat(

∑mi′

j=1 δi′jDi′j) =

sat(γCi′) using invariant 1 and the fact that sat(γCi′) =
γ · sat(Ci′) = γCi, but now we are saturating before tak-
ing the summation. However, the degree of falsity in the
final constraint does not depend on the order of saturation and
summation, as there are no cancellations when adding the con-
straints in Di′ due to invariant 3, and saturation does not affect
the degree. Therefore, the only difference when saturating first
are the coefficients, and the only thing that can happen to them
is that they get smaller, making the final constraint stronger.

For a fixed literal ℓk, the coefficient when saturation hap-
pens first is

∑mi

j=1 δijaijk =
∑mi′

j=1 δi′j min(ai′jk, Ai′j) ≤
min(

∑
j∈[mi′]

δi′jai′jk,
∑

j∈[mi′]
δi′jAi′j), where the last ex-

pression is the coefficient if summation is done before satura-
tion. Therefore, all that is needed to get

∑mi

j=1 δijDij = γCi

is to add ℓk ≥ 0 to Di for literals ℓk with too small coefficients.
Linear Combination: If Ci is derived by linear combina-

tion, i.e., Ci = cCi′+ c′Ci′′ then we join the sets Di′,Di′′ and
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multiply the factors for each constraint by c or c′ to obtain
D′

i = {(cδ,D) | (δ,D) ∈ Di′} ∪ {(c′δ,D) | (δ,D) ∈ Di′′}.
Summing all constraints in D′

i will yield a multiple of Ci by
invariant 1 and because addition of constraints is associative,
i.e., the order of addition does not matter.

However, D′
i might be violating invariant 3. To fix this, for

every variable x and every pair of constraints containing x
with opposite polarities we can replace one of the constraints
by their resolvent over x as in (5). After each such step, it
is still true that the constraints in D′

i can be summed up to
yield a multiple of Ci, possibly after adapting the δ-factors.
To formalize this argument we need the next lemma.

Lemma 2.3. Let C1, C2 be any two constraints in which a
variable x occurs with opposite polarities, and let δ1, δ2 ∈ N+.
Then generalized resolution can be used to obtain constraints
D1, D2 such that x does not occur in D1 and there are

γ, δ̂1, δ̂2 ∈ N0 for which γ(δ1C1 + δ2C2) = δ̂1D1 + δ̂2D2.

Proof. Let a1, a2 be the coefficients of x and x respectively
in C1, C2 and let c = lcm(a1, a2), c1 = c/a1, and c2 = c/a2.
Apply generalized resolution to derive D1 = c1 ·C1 + c2 ·C2

(which by construction does not contain x). Assuming without
loss of generality (because of symmetry) that δ1c2 ≥ δ2c1, set

D2 = C1, δ̂1 = δ2, δ̂2 = δ1c2 − δ2c1, and γ = c2. Then it
holds that γ ·(δ1C1+δ2C2) = (δ1c2−δ2c1) ·C1+δ2c1 · C1+

δ2c2 · C2 = δ̂D1 + δ̂2D2, establishing the lemma.

To restore invariant 3, we apply Lemma 2.3 repeatedly to
variables x occurring with opposite polarities in D′

i as fol-
lows. Each time Lemma 2.3 is invoked one constraint (out
of at most n + 1) is replaced by another one that does not
contain x. This continues until x occurs with only one polarity
or has vanished completely, and this is maintained when the
process is repeated for the next variable. Therefore, we will
obtain a set Di that no longer violates invariant 3 after O

(
n2

)

applications of the generalized resolution rule.

3 On the Strength of Division

We now turn to studying how the division and saturation rules
compare in strength assuming that linear combinations are
restricted to generalized resolution, as is the case in conflict-
driven PB solving. Without this restriction, [Vinyals et al.,
2018] exhibited a family of CNF formulas witnessing that di-
vision can be exponentially stronger than saturation in cutting
planes. CNF formulas are of no use here, since for such inputs
cutting planes with generalized resolution is the same as the
resolution proof system regardless of which Boolean rule is
used, but nevertheless it is helpful to study these separating
CNF formulas. They contain many subsets of clauses

ℓ1 + ℓ2 + ℓ3 ≥ 1 (8a)

ℓ1 + ℓ2 + ℓ4 ≥ 1 (8b)

ℓ1 + ℓ3 + ℓ4 ≥ 1 (8c)

ℓ2 + ℓ3 + ℓ4 ≥ 1 (8d)

which can be summed up to get

3ℓ1 + 3ℓ2 + 3ℓ3 + 3ℓ4 ≥ 4 (9)

after which division by 3 recovers the cardinality constraint

ℓ1 + ℓ2 + ℓ3 + ℓ4 ≥ 2 . (10)

Although the constraints (9) and (10) are semantically equiva-
lent over the integers the former constraint is weaker over the
reals, and it turns out to be crucial to have constraints of the
latter form in order to prove contradiction efficiently.

The reason this yields nothing in a setting with generalized
resolution is that there are no literals with opposite polarity
in (8a)–(8d), and so there is no legal way to sum up these
constraints to give division the chance to go from (9) to (10).
However, a moment of thought reveals that we can “cheat” by
changing our formula to a “morally equivalent” but syntac-
tically different one. The trick is to re-encode (8a)–(8d) by
introducing helper variables x, y and z, writing

x+ y + z + ℓ1 + ℓ2 + ℓ3 ≥ 1 (11a)

x+ ℓ1 + ℓ2 + ℓ4 ≥ 2 (11b)

y + ℓ1 + ℓ3 + ℓ4 ≥ 2 (11c)

z + ℓ2 + ℓ3 + ℓ4 ≥ 2 (11d)

(where x, y, z are unique to this subset of constraints). Since
the helper variables cancel, it is now legal to apply generalized
resolution to all constraints. This results in (9), after which
division yields the inequality (10) as desired. Applying this re-
encoding trick to the separating CNF formulas used in [Vinyals
et al., 2018] leads to the following theorem.

Theorem 3.1. There is a family of PB formulas {Fn}n∈N+

with O(n) variables and constraints that can be refuted in
length O(n) in cutting planes with division and generalized
resolution, but for which any saturation refutations, even with
unrestricted linear combinations, have length exp(Ω(n)).

Proof. Let {Fn} be subset cardinality formulas as in [Mikša
and Nordström, 2014] that require exponential length for the
resolution proof system but that, once cardinality constraints
are recovered, have short refutations in cutting planes with
generalized resolution as shown in [Vinyals et al., 2018].

Let F ′
n be the formula obtained from Fn by introducing

helper variables as in (11a)–(11d). We argued above that gen-
eralized resolution followed by a division step recovers (10),
after which we can use the efficient refutation with generalized
resolution in [Vinyals et al., 2018]. It remains to argue why
F ′
n is exponentially hard for cutting planes with saturation.
Note that if we assign the helper variables to false

in (11a)–(11d), then we get back the clauses (8a)–(8d) in the
original formula Fn. Letting ρ be the partial assignment, or
restriction, that sets all helper variables in the whole formula
to false, we write C↾ρ for the result of applying ρ to a con-
straint C, and extend this notation to sets of constraints by
taking unions. It is not hard to show that if π is a saturation (or
division) refutation of F with unrestricted linear combinations,
then applying ρ to the lines of π results in a saturation (or divi-
sion, respectively) refutation π↾ρ of F↾ρ, except that we might
need to insert some linear combinations with literal axioms to
make sure that the derivation stays syntactically valid (but this
can only increase the length by a factor of n.)

Let π′ be a saturation refutation of F ′
n. Applying ρ yields

a saturation refutation π′↾ρ of F ′
n↾ρ = Fn that is at most
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a factor O(n) longer. Appealing to Corollary 2.2, we ob-
tain a resolution refutation π∗ at most a factor O(n2) longer
than π′↾ρ. But by [Mikša and Nordström, 2014] we know
that any resolution refutation π∗ of Fn must have exponential
length, and hence an exponential lower bound holds also for
the saturation refutation π′ of F ′

n. The theorem follows.

4 On the Strength of Saturation

So far in the paper we have given evidence that the division
rule can be exponentially stronger than the saturation rule in
certain contexts. In this section we show that there are settings
in which saturation can be significantly stronger than division.
Unfortunately, we are not able to get a analogous result to
Theorem 3.1, but what we can prove is that in order to go from

C1(R)
.
= Rx+Ry +

∑R
j=1 zj ≥ R (12a)

C2(R)
.
= Rx+Ry +

∑2R
j=R+1 zj ≥ R (12b)

to
CL(R)

.
= Rx+

∑2R
j=1 zj ≥ R , (13)

which can be done with one resolution step followed by one

saturation step, at least Ω
(√

R
)

applications of the division
rule are required (in addition to other steps). Note that this is
exponential in the bitsize of R.

A formal proof follows below, but let us first sketch the idea.
It can be shown by a simple inductive argument that for any
constraint containing negated literals x or zj we can instead
derive the same constraint without these literals. Therefore, it
is only necessary to consider constraints Ci of the form

aix+ biy + ciy +
∑2R

j=1 dijzj ≥ Ai (14)

(where min{bi, ci} = 0). For such a constraint Ci we write
Bi = 2ai + bi + ci and define the potential P(Ci) to be

P(Ci) = ln
(
Bi/Ai

)
. (15)

Note that P(C1(R)) = P(C2(R)) = ln(3) > ln(2) =
P(CL(R)). What we will prove in Lemma 4.2 is that only
division can decrease the potential of derived constraints, and

only does so by an amount of at most 1/
√
R. This shows that

Ω(
√
R) divisions are required to derive CL(R) from C1(R)

and C2(R). Our formal result is as follows.

Theorem 4.1. Let R = K2 for K ∈ N+ and let π be a divi-
sion derivation of CL(R) from C1(R) and C2(R) (with unre-

stricted linear combinations). Then π contains Ω(
√
R) appli-

cations of the division rule.

We remark that the lower bound is tight except possibly for
the square root. As discussed in [Vinyals et al., 2018], for con-
straints with coefficients of size at most R it is always possible
to simulate saturation with O(R) division and unrestricted
linear combination steps.

To establish Theorem 4.1, we start with a preprocessing step
to ensure that the degree Ai of any constraint Ci ∈ π obtained

by division is sufficiently large, namely Ai ≥
√
R+ 1.

Suppose Ai1 <
√
R+ 1 for some constraint Ci1 resulting

from division. Since
√
R is an integer by assumption, we have

Ai1 ≤
√
R. We claim that Ci1 can be satisfied by setting at

most
√
R variables zj to true. To see why, note that C1(R)

and C2(R) are satified by setting all zj to true, and hence
any constraint derived from them must also be satisfied by
this assignment since the proof system is sound. Furthermore,

for Ci1 it must be sufficient to assign a subset of at most
√
R

variables zj , since every zj contributes at least 1 to the left-

hand side and the degree on the right is Ai1 ≤
√
R. Let ρ1 be

such a partial assignment to at most
√
R variables zj fixing Ci1

to true and consider the restricted derivation π↾ρ1
(where Ci1↾ρ

has been removed since it is now a trivial constraint).

Suppose the derivation π↾ρ1
, contains some constraint Ci2

with degree Ai2 <
√
R + 1 (note that degrees might have

decreased after the restriction ρ1). Argue as above to find a

restriction ρ2 to at most
√
R variables zj satisfying Ci2 , and

continue with the derivation π↾ρ1∪ρ2
. We repeat this procedure

for T steps if possible as long as T ≤
√
R/6. If at the end

of this process there is still some constraint Ci with degree

Ai <
√
R+ 1, then we have counted

√
R/6 division steps,

which is enough to obtain the lower bound in Theorem 4.1.
Otherwise, it now holds for ρ = ρ1 ∪ · · · ∪ ρT that all con-

straints in π↾ρ have degree Ai ≥
√
R + 1 and that ρ assigns

at most (
√
R/6) ·

√
R = R/6 variables zj .

For the rest of the proof we will focus on the restricted
derivation π↾ρ. It is immediate from (15) that the poten-
tial of the constraints can only increase compared to π,
since restricting variables can only cause the degree of fal-
sity to go down. Hence, for the initial constraints we have
min{P(C1(R)↾ρ) ,P(C2(R)↾ρ)} ≥ ln(3). But the potential
does not increase too much—since ρ sets at most R/6 vari-
ables zj , for the final constraint we have P(CL(R)↾ρ) ≤
ln(2R/(R−R/6)) = ln(12/5). Therefore, the difference is
still at least ln(3) − ln(12/5) = ln(15/12) ≥ 1/6. We will
now show that the potential can only decrease after a division

step, and only by 1/
√
R, which establishes Theorem 4.1.

For convenience, we split the linear combination rule (2)
into two rules for multiplying a constraint and adding two
constraints. Also, when dividing a constraint C by k ∈ N+

as in (3), which we denote div(C, k), we assume k divides
all coefficients in C. This is without loss of generality, since
literal axioms (1) can be added as needed to make this true.

Lemma 4.2. For any constraints Ci and Ci′ of the form (14)
derived from (12a) and (12b) (possibly with some variables zj
restricted to true), for any literal axiom E as in (1), and for
any k ∈ N+, it holds that:

1. P(k · Ci) = P(Ci).

2. P(Ci + k · E) ≥ P(Ci).

3. P(Ci + Ci′) ≥ min{P(Ci) ,P(Ci′)}.

4. P(div(Ci, k)) ≥ P(Ci) − 1/
√
R, assuming that

div(Ci, k) has degree at least
√
R+ 1.

Proof. Part 1 is obvious from the definition in (15).

Part 2 is trivially true if no cancellation occurs as only
the numerator in the potential can increase. Suppose that
the degree decreases by k′ ≤ k through cancellation on x.
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Analogously to the argument in the preprocessing step, set-
ting x to true satisfies C1(R) and C2(R) and hence also Ci.
Thus, ai ≥ Ai and Bi ≥ 2 · Ai, from which it follows that
exp(P(Ci + k · E)) = (Bi − 2k′)/(Ai − k′) ≥ Bi/Ai =
exp(P(Ci)). It is straightforward to verify that if the cancella-
tion is due to some other variable than x, then the numerator
can only be larger, and hence so will the potential.

For part 3, assuming that P(Ci) ≤ P(Ci′) (without loss of
generality due to symmetry), we have (Bi+Bi′)/(Ai+Ai′) ≥
Bi/Ai. As in part 2, we have Bi ≥ 2 ·Ai and Bi′ ≥ 2 ·Ai′. Let
k be the decrease in degree due to cancellation on y (other vari-
ables do not occur negated in (14) and cannot cancel). Then we
get exp(P(Ci + Ci′)) = (Bi +Bi′ − 2k)/(Ai +Ai′− k) ≥
(Bi +Bi′)/(Ai +Ai′) ≥ Bi/Ai = exp(P(Ci)).

For part 4, since all coefficients are divisible by k this
also holds for Bi. Therefore, P(Ci) − P(div(Ci, k)) =
ln(Bi/Ai)− ln

(
(Bi/k)/⌈Ai/k⌉

)
= ln

(
⌈Ai/k⌉/(Ai/k)

)
≤

ln
(
(Ai/k + 1)/(Ai/k)

)
≤ k/Ai ≤ 1/

√
R, where the sec-

ond to last inequality is just ln(1+x) ≤ x and the last inequal-

ity holds since Ai/k ≥ ⌈Ai/k⌉ − 1 ≥
√
R by the assumption

about the degree ⌈Ai/k⌉ of div(Ci, k).

5 Empirical Evaluation

We have shown that division and saturation are incomparable
in strength as rules of reasoning. It is important to understand,
however, that these results speak only about the existence of
proofs and not about whether pseudo-Boolean solvers will
actually be able to find such proofs. Although our main focus
in this paper is on the former question, in this section we report
on some limited experiments to shed some light on the latter.

We have run instrumented versions of Sat4j, which uses sat-
uration, and RoundingSat, which defaults to division but has
an option to use saturation instead. All experiments were per-
formed on 4 AMD Opteron 6238 (Interlagos) 12-core 2.6 GHz
processors with 128 GB RAM with a 5000-second time-out.

The heuristics for PB solvers are not at all as well-tuned as
those for CDCL solvers, and small changes in internal settings
can have huge, and currently not so well understood, effects
on performance. In order to measure the overall impact of di-
vision versus saturation—rather than of some other, unrelated
settings—we have therefore run the solvers with several differ-
ent parameter settings and measured for each PB instance the
best result with division and saturation, thus obtaining virtual
best solvers (VBS) for division and saturation, respectively.
More details about the experiments and full results can be
found at www.csc.kth.se/∼jakobn/DivisionVsSaturation.

To obtain benchmarks that are easy for division but hard for
saturation, we use subset cardinality formulas as in Section 3,
generated from 4-regular random bipartite graphs with an addi-
tional random edge added (see [Mikša and Nordström, 2014]

for more details). Almost all the constraints in these formulas
are of the form ℓ1 + ℓ2 + ℓ3 + ℓ4 ≥ 2, and we have compared
solver performance on this “unobfuscated” version with the
“division-friendly” version based on the clausal encoding in
(8a)–(8d), enhanced with helper variables as in (11a)–(11d).
We have run the solvers on instances of increasing size to see
how the performance scales asymptotically.
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Figure 1: Virtual best division/ saturation solver for division-friendly
formula compared to clausal and unobfuscated encoding.

As shown in Figure 1, we have consistently very poor solver
performance for the clausal encoding. This is as expected,
since this version is exponentially hard for both division- and
saturation-based solvers. Furthermore, while the unobfus-
cated encoding is easy for both division and saturation, for
the division-friendly encoding the saturation-VBS again strug-
gles whereas the division-VBS is able to harness the helper
variables to achieve a performance close to that of the unob-
fuscated encoding. This all fits perfectly with theory. Before
we get too carried away by this, however, it should be noted
that this result is rather fragile. Whether the division-based
solver works well or not depends heavily also on how other
internal parameters are adjusted, and it turns out to be even
more crucial exactly how the helper variables are added.

It is not known whether there exist PB formulas that are
easy for saturation but provably hard for division—this is a
very interesting question left open by our work. What we
can do to obtain interesting benchmarks, though, is to use
inspiration from Section 4 to design formulas that are easy for
saturation but appear to be tricky for division. To this end, we
construct a pigeonhole principle-like formula which we think
of as being defined in terms of a (2R+ 2)× (2R+ 1) matrix,
where we scale R to increase the instance size. The variables
are xij , i ∈ [2R+ 2], j ∈ [2R+ 1], with coefficients aii = R
and aij = 1 for i 6= j. We first consider an “unobfuscated”
formula with constraints

∑2R+1
j=1 aijxij ≥ R for i ∈ [2R+ 2] (16a)

∑2R+2
i=1 aijxij ≤ R for j ∈ [2R+ 1] (16b)

which is easily seen to be unsatisfiable by adding all row
constraints (16a) and all column constraints (16b) separately.
This proof can be carried out using only generalized resolution,
and so these formulas are easy in theory for all PB solvers
regardless of which Boolean rule they use.

To get a formula that is easy for saturation but potentially
tricky for division, we observe that for the rows i < 2R+ 2
the constraint (16a) is of the form (13) and can be “split” into

Rxi,i +Ryi +
∑R′

i

j=1;j 6=i aijxij ≥ R (17a)

Rxi,i +Ryi +
∑2R+1

j=R′

i
+1;j 6=i aijxij ≥ R (17b)
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Figure 2: Virtual best division/ saturation solver for saturation-
friendly formula compared to unobfuscated encoding as baseline

similar to (12a)–(12b), where R′
i = R + 1 if i ≤ R and

R′
i = R if i > R. It is straightforward to verify that this

does not change anything from a saturation point of view—
the new formula can still be solved in O(R) steps by first
using generalized resolution plus saturation to go from (17a)
and (17b) back to (16a), reverting the obfuscation, and then
adding all constraints (16a) and (16b) in a cancelling way as
discussed above. If we use division instead of saturation, the
formula can be solved in O

(
R2

)
steps, since each recovery of

a constraint (16a) from (17a)–(17b) can be done with at most
R divisions and linear combinations [Vinyals et al., 2018],
but we know from Section 4 that any proof starting by such

a “recovery phase” requires Ω
(
R ·

√
R
)
= Ω

(
R3/2

)
steps.

Furthermore, it should be noted that the refutation in length
O
(
R2

)
employs non-cancelling linear combinations, and it

is not clear what the best approach is if we insist on using
generalized resolution, as PB solvers do. Thus, we could hope
that formulas of this type should be significantly harder for
solvers using division than for solvers using saturation.

Sadly, however, the experimental results fail to confirm this
intuition. The problem is not that these formulas are too easy
for division, but rather that they are too hard for saturation
(see Figure 2). While the baseline version is easy as expected,
the obfuscated formula is hard for both division and saturation
with no clear difference between the two.

This finding illustrates what we discussed at the begin-
ning of this section, namely the difference between the non-
constructive existence of short proofs and the constructive,
algorithmic search for such short proofs. In this case, not
only the choice of rules is important, but also the order in
which these rules are applied. To illustrate this, let R = 2 and
consider, e.g., the “split” row constraint (17a)–(17b) for i = 1
and the column constraint (16b) for j = 2, i.e.,

2x11 + 2y1 + x12 + x13 ≥ 2 (18a)

2x11 + 2y1 + x14 + x15 ≥ 2 (18b)

x12 + 2x22 + x32 + x42 ≥ 3 (18c)

(where (18c) is just (16b) written in normalized form). Per-
forming generalized resolution on (18a) and (18b) followed
by saturation recovers the unobfuscated row constraint

2x11 + x12 + x13 + x14 + x15 ≥ 2 , (19)

and resolving this constraint with (18c) yields

2x11 + x13 + x14 + x15 + 2x22 + x32 + x42 ≥ 4 . (20)

If we instead apply the resolution rule on (18c) with (18a) and
then resolve the resulting constraint with (18b), we get

4x11 + x13 + x14 + x15 + 2x22 + x32 + x42 ≥ 4 . (21)

Note that the difference between (20) and (21) is that the
coefficient of x11 is 4 instead of 2 in the latter, resulting in a
strictly weaker constraint.

It is possible to force a saturation-based solver to find short
proofs for formulas with obfuscated constraints (17a)–(17b)
(in particular, by hard-coding a specific decision order for
the variables), but this is nothing that a solver with default
heuristics is currently able to do. This suggests that in addition
to carefully choosing the set of derivation rules, optimizing
the order in which these rules are applied during search is an
important part of improving pseudo-Boolean solvers further.

6 Concluding Remarks

In this work we study the relative strength of division and
saturation in pseudo-Boolean reasoning. We show that there
are formulas for which PB solvers using division can be ex-
ponentially faster than solvers using saturation. In the other
direction, we prove that the number of division steps needed
to simulate a single saturation step can be exponential, but
leave open the question of whether saturation-based solvers
can ever be strictly stronger than division-based solvers.

By necessity, the formulas we use to obtain these results
are crafted so as to be amenable to rigorous mathematical
analysis. It would be nice to find more natural benchmarks,
and also to study whether the difference in reasoning power
between division and saturation ever comes into play in an
applied context. Our limited experiments on crafted bench-
marks indicate that other aspects of the search heuristics can
easily become more important, but this also points to room for
improvement of these heuristics (perhaps by, e.g., adaptively
choosing between, or combining, division and saturation).
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