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Abstract
Combinatorial problems have a wide range of applications, including operations research, chip
design and many scheduling problems. Therefore, it is vital that the algorithms used to solve these
problems produce correct results. One way to ensure correct results is the use of proof logging,
where combinatorial solvers are required to produce a proof that their output is correct. This
thesis takes its starting point in the proof logging tool VeriPB, which is one of the most efficient
and successful in verifying proofs from combinatorial solvers. Despite its success, there are still
some techniques which are currently infeasible to be verified by VeriPB. These techniques require
the option to reuse other proofs as "lemmas" many times, without having to verify the proof each
time it is applied. Such at type of reasoning is not supported by VeriPB. These "proofs with
lemmas" can be translated into proofs valid for VeriPB, but they are quite often too long to be
practical. In an attempt to deal with this issue, this thesis explores how proofs with "lemmas", can
be translated more efficiently into proofs that can be verified by the VeriPB proof system. We show
a way to do so, but also argue that it still might be too technical and inefficient to be practical.
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1 Introduction

1.1 Combinatorial Problems
Solving combinatorial problems is fundamental to many scheduling and resource management al-
gorithms which are used every day. With its use case ranging from; scheduling of trains, sports
tournaments and kidney transplants [MTW97, YQLG16, MO15], as well as portfolio optimization
in finance, genomic sequencing in biology and designing of computer chips [GB23, Wat95, Ach09],
it should be no surprise that extensive research has been done to develop efficient algorithms also
called combinatorial solvers for these types of problems.

There is a great variety of combinatorial problems, as it includes decision problems where the
task is to answer "Yes" or "No" to whether a solution exists, as well as optimization problems where
the goal is not only to find a solution but also to find the best one, given some criteria of optimality,
and counting problems where the goal could be to count the number of solutions.

These problems are essential to scheduling and logistics, because all combinatorial problems, to
some extent, revolves around the issue of arranging or counting objects to fit some constraints. For
example, it could be that we wanted to arrange a sports tournament. When doing so, there are some
real world constraints, that we must obey, such as the fact that all teams must play each other, and
teams should not have to play twice in a row. The problem is then to arrange matches such that
this is possible, and we might even want to minimize the number of playing fields needed at the
same time. The problem of arranging the sports tournament would then have to be reformulated
as a formal combinatorial problem, where a combinatorial solver could then solve it, and the result
could be interpreted to see the schedule of the tournament. In computer science and mathematics,
we only consider the formal problems, as they generalize a wide range of real world problems.

We have yet to describe the main characteristics of combinatorial problems, in the formal set-
ting. One of the main characteristics of a combinatorial problem is that the collection of possible
solutions, that one wishes to search through, must be discrete. That is each solution is distinct
and separated from one another. One example could be that the solution must be an integer
Z = {. . . ,−2,−1, 0, 1, 2, . . .}, which there are infinitely many of, but it is nevertheless still discrete.
And in the scheduling of a tournament, the solution consist of determining which matches each
team plays in, and for an algorithm to say that a team would play partly in one match and partly
in another at the same time, would be nonsense.

Now let us look at a particular combinatorial problem. It is probably the most canonical
combinatorial problem, and is known as the Boolean Satisfiability Problem or SAT in short. The
problem is best explained through an example. In SAT we are given a logical statement such as

(x ∨ y) ∧ (¬x ∨ ¬y) (1.1)

where x and y are the variables and can only take the values TRUE (corresponding to 1) or FALSE
(corresponding to 0). The goal is now to assign x and y a value of either 0 or 1, such that the
statement above evaluates to TRUE. This statement consists of two parts, firstly the part (x ∨ y)
which states that either x or y must be set to 1 and secondly (¬x∨¬y) which means that either x
or y must be set to 0. One possible solution satisfying both of these criteria, could be that we set
x = 1 and y = 0. SAT is thus a decision problem. Many combinatorial problems are also closely
related, as the setup might be the same, but the goal ever so slightly different. For example, we
could have the setup as in SAT, but instead ask "How many solutions are there?", which is known
as the problem model counting or #SAT.

4



Another classical combinatorial problem, and the main one in question in this thesis, is Pseudo-
Boolean Satisfaction also known as 0-1 integer programming. In this problem, a collection of linear
inequalities over some variables is given. The objective is then to assign variables a value of 0 or 1,
to satisfy all inequalities. For example, the problem could be:

x+ y ≥ 1 (1.2)
−x− y ≥ −1 (1.3)

where one solution is x = 1 and y = 0. And in fact, the logical formula in equation (1.1) and these
two inequalities encode exactly the same problem. Which highlights a key aspect of combinatorial
problems. Often we can translate from one problem to another, so developing methods to solve one
problem, could also be used to solve the another one, letting us choose whatever viewpoint is most
convenient for the real world problem that we might try to model.

Many combinatorial problems have a continuous counterpart, which feel very similar but when
it comes to solving them, they differ drastically. Take for example the two linear inequalities above,
but instead let x and y be any real numbers, then there are infinitely many solutions to the problem,
but also infinitely many wrong solutions, whereas we only had 4 possible solutions before. At first
glance one might think that the problem becomes more difficult if you expand the number of possible
solutions, as there are way more to sort through. But in fact, it is generally the opposite. When you
allow the solution set to be continuous you gain the benefit of being able to do small adjustments
and tweaks to narrow in on a solution. Whereas for discrete problems, when you take a decision
on a variable, this will often force other decisions, and you can’t just "tweak" the initial decision
later on if any errors occur. Generally for discrete problems, you can’t avoid a type of "trial and
error" approach, whereas for their continuous counterpart, you can often fix mistakes done earlier
without having to backtrack, which means you are always working towards a solution.

Due to the discrete nature of combinatorial problems, they are theoretically very difficult to
solve. The instances we wish to solve in real life often involve thousands of variables and possibly
millions of constraints, and according to the most supported hypothesis in computer science, this
makes them completely unsolvable in full generality. All algorithms which have proofs that guar-
antee their correctness on all possible problem instances, require an astronomical amount of time
to solve real world instances. This issue has led researchers to concurrently develop algorithms
for which they cannot guarantee their performance, in hopes that they would be more efficient
in practice. Both of these approaches were far from solving large instances until around the year
2000, where a heuristic based algorithm prevailed. This algorithm was the Conflict Driven Clause
Learning (CDCL) algorithm [MSS99], and despite the lack of a theoretical proof of good perfor-
mance, it has been used to solve large real world instances of SAT ever since. It has been at the
core of all competitive SAT algorithms for the past 20 years, and the heuristic has been revised,
altered, tweaked an improved upon ever since, and today it is de facto the standard for solving SAT
instances, and thereby many combinatorial problems.

The lack of theoretical guarantees, and instead showcasing performance empirically, has also
brought with it significant increase in the complexity of the algorithms. Algorithms nowadays
combine many techniques, which makes it very difficult to theoretically reason about why the
algorithms should perform well. Moreover, the algorithms are also much more difficult to implement,
and it has been shown repeatedly, that the most thoroughly tested software still contain bugs
[CKSW13, AGJ+18, BLB10]. This is a big issue in some cases, as it is vital that the output of the
software can be trusted.
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1.2 Proof Logging
The most successful solution addressing the issue of correctness, is certifying the output of an
algorithm [MMNS11]. That is an algorithm is required not only to solve the problem, but also
to output a proof or certificate of its correctness, such that this proof can be verified to ensure
that solution is indeed correct/optimal. The research field of how these proofs can be created
is Proof Logging. The idea is then, that an algorithm, independent of the solver, can verify the
proof, such that bugs and errors can be caught automatically. The next natural thought is then;
"if the first algorithm has a chance of being buggy, won’t the verification algorithm as well?". To
answer this there are two parts. First off, because the proof checking is performed independently
of the combinatorial solver, the likelihood that both have the same bug/error is lower. But most
importantly is that certificates are simple as contrasted to the combinatorial solvers, which makes
it easier to reason about and implement correctly.

Certificates consist of a sequence of steps, in which each step applies a simple rule, that is
easy to verify. Then at the very end of the certificate, should be some formal statement from
which it follows that the solver has indeed solved the problem. The rules of reasoning that is
allowed should be mathematically proven to produce correct conclusions. It is exactly these rules
of reasoning or inference that makes up what we call a proof system. If a proof system is too
complex, or its rules are inefficient to verify, then it will not be useful in practice. A secondary
goal of keeping the proof system simple, is also that these verification algorithms can be formally
verified [CFHH+17, CFMSSK17], in which a specific piece of software is proven to be correct on
all possible inputs, thus giving the software the highest level of assurance of correctness.

The field of SAT solving, has actively been using proof logging for a while now and there exists
multiple formats for this [GN03, WHHJ14, CFHH+17, CFMSSK17]. It has been used specifically
for the annual SAT competition, in which algorithms compete in solving SAT instances efficiently,
and since 2013, it has been mandatory for algorithms to output a proof of correctness. Specifically
for SAT solving which is a decision problem, a proof of correctness when a solution exists, is quite
easy, as a solution can just be outputted. Any solutions can be verified quickly, as the values can
just be checked to satisfy all the constraints. The problem arises when the instance is unsatisfiable,
as proving this requires more sophisticated reasoning. We generally call a proof of unsatisfiability
a refutation. There are also many optimization problems related to SAT, which require refutations
in order to prove optimality.

As time progresses more advanced methods are developed, and some of these are not supported
by existing proof formats. Partly to combat this, the tool VeriPB was developed [BGMN23, GN21,
Goc22], and in recent years it has shown great success by supporting proof logging for most advanced
techniques used in state-of-the-art solvers, writing efficient proofs that are quick to verify. VeriPB
is based on the cutting planes proof system [CCT87], which means it reasons on Pseudo-Boolean
formulas, i.e. 0-1 linear inequalities. However, as many combinatorial problems can be translated
into Pseudo-Boolean formulas, it has also shown a wide range of applicability to other combinatorial
problems [GMN21, GMM+20, EGM+20].

Most advanced techniques used by state-of-the-art solvers are supported by VeriPB, however
one that still remains unsupported is the technique symmetric learning [DBB17]. To support this
technique the proof system needs the ability to write a proof once, and the reuse the conclusion
multiple times in other proofs. The most natural parallel, is the use of lemmas in mathematics,
where a lemma can be proven, and then used multiple times to prove a main theorem. It is precisely
reusage of "lemmas" in proof logging that this thesis will focus on, or specifically how proofs with
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lemmas can be translated into proofs that can be verified by VeriPB.
As we will see later, symmetric learning is not fundamentally unsupported by VeriPB, but at

the current time, it is very inefficient to write proofs and thereby verify them for this technique. A
proof system which supports symmetric learning has been proposed [TD20], but it does not support
many of the other modern techniques covered by VeriPB.

1.3 Content of the thesis
In this thesis we will at first cover the fundamentals of Pseudo-Boolean reasoning, the cutting planes
proof system and some aspects of VeriPB. To ease readability we will introduce quite a few bits of
notation, but we will showcase that it lends itself to very natural conclusions. Once we have set
the stage we will introduce what we formally will mean by a proof using lemmas in the context
of Pseudo-Boolean reasoning. The final chapters then cover how such proof with lemmas, can be
translated into a proof that can be verified by VeriPB. This will be done in parts, to first introduce
the core ideas, and then gradually generalize them to work in all cases. At last, we will highlight
that though such a translation is possible, it has its limitations.
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2 Prerequisites

2.1 Pseudo-Boolean Reasoning
To formally define the problem of pseudo-boolean reasoning, we need to introduce some notation
and a few other definitions first. Most of these will be the standards used in the literature, but
some notation is slightly different to ease readability later on.

Definition 2.1 (Variable sets & literals). Let x⃗ := {x1, x2, . . . , xn} be a set of variables, in which
each variable xi take value in {0, 1}. For each variable in x⃗ we also define its negation x0

i = xi :=

1 − xi, and double negation will just be the original variable, i.e. (xi) = xi. A literal over the
variable xi will be denoted as xσi

i , and it is either just the variable or its negation:

xσi
i =

{
xi if σi = 1

1− xi if σi = 0
(2.1)

and the negation of a literal is quite naturally written as x1−σi
i . The set of literals over x⃗ will be

denoted as Lit(x⃗) := {xσi
i | ∀xi ∈ x⃗, ∀σi ∈ {0, 1}}.

It is also quite common in the literature to use the standard first order logic notation of ¬xi

for a negated variable and an arbitrary literal over the variable xi is denoted as li. As we will
be working with multiple variable sets later on, we will need to distinguish between literals over
different variable sets, which the notation xσi

i does.

Definition 2.2 (Assignments and substitutions). Let x⃗ be a variable set, a function
ρ : x⃗ → x⃗ ∪ {0, 1} we call an assignment of x⃗ if it holds that ρ(xi) ∈ {0, 1, xi} for all xi. The most
common notation for such a function will be ρ = {x1 → b1, x2 → b2, . . . , xn → bn}, for bi ∈ {0, 1, xi}.
If it is the case that all bi ∈ {0, 1}, we call ρ a complete assignment, and otherwise we call it a
partial assignment on x⃗. For partial assignments it is often the case that we only explicitly write
the mapping of those xi which are mapped to either 0 or 1, while the rest are implicitly assumed
to be mapped to themselves.

If y⃗ and x⃗ are two variable sets, then an mapping ω : y⃗ → Lit(x⃗)∪ {0, 1} is called a substitution
of y⃗ into x⃗, where we say the substitution can map literals as well, as follows: ω(yσi

i ) = ω(yi)
σi for

all yi ∈ y⃗. We will write substitutions as we do for assignments, and only write those yi which are
not mapped to themselves, in case y⃗ ⊆ x⃗.

From the definition we see that for example the identity on a variable set, i.e. the function
Id : x⃗ → x⃗ in which Id(xi) = xi for all xi ∈ x⃗, is both a partial assignment on x⃗, and a substitution
of x⃗ onto itself (as long as the codomain is chosen accordingly). Now getting to the building blocks
of pseudo-boolean problems, we will define the constraints.

Definition 2.3 (PB Constraints). Let x⃗ be a variable set, a constraint C, sometimes written as
C(x⃗) to indicate the variable set, is a linear inequality over literals of x⃗ on the form

C
.
=

∑
xi∈x⃗

aix
σi
i ≥ A

 (2.2)

for A, ai ∈ N0 := {0, 1, 2, . . .}. The values ai we call the coefficients of C, and we will say that xi

occurs in C if ai ̸= 0, and likewise that xi does not occur in C if ai = 0. To distinguish between
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the inequality inside the constraints and the syntactic equality, that two things are just different
syntax for the same thing, we will use the symbol .

= to exactly define this.
The constant A is known as the degree of the constraint, and is often denoted as deg(C). Since
ai ≥ 0, we say that a constraint is trivial if A = 0. We will define the weight of the constraint as
W (C) :=

∑
xi∈x⃗ ai. We will often omit the indexing in the sum, and instead write C .

=
∑

aix
σi
i ≥ A,

unless the indexing is non-trivial.
If we have an assignment/substitution ω on x⃗, we can restrict C under ω by substituting all xi

with ω(xi). This is written as

C↾ω
.
=

(∑
aiω(xi)

σi ≥ A
)

(2.3)

where we notice that if ω(xi) = 1 then ω(xi)
1 = 1, ω(xi)

0 = (ω(xi) − 1) = 0 and if ω(xi) = 0
then quite opposite ω(xi)

1 = 0 and ω(xi)
0 = 1. Under the restriction we let anything that become

a constant in the sum to be subtracted from both sides of the inequality, and if the subtraction
should make the degree less than 0 we just let it be 0, and thus C↾ω is again a constraint, as the
degree had to be non-negative in our definition.

Here we must note that in what we have just introduced we only consider constraints in what
is known as their normalized form in standard literature, which is when all coefficients are non-
negative integers, each variable occurs only as one literal, and the inequality is "≥". In some
literature, one might see constraints need only to satisfy that ai and A are integers, and we allow
both "≥" and "≤" inequalities.

But as it is the case that any linear equality using ≤ and/or negative coefficients can be rewritten
into normalized form [ES06], it will ease readability to only consider these.

We also say that a constraint is satisfied under an assignment/substitution ω if C↾ω is trivial,
i.e. that deg(C↾ω) = 0. Similarly we say that ω falsifies C if it is the case that

∑
ω(xi)σi ̸=0 ai < A,

and in this case we would have that the weight of C↾ω, i.e. W (C↾ω) is less than A. Any constraint
C in which W (C) < A we say that it is unsatisfiable, as even the assignment which makes all literals
xσi
i in C equal 1, will leave the constraint falsified.

Definition 2.4 (PB Formula). A Pseudo-Boolean formula is a conjunction F
.
=

∧
j≤m Cj of con-

straints. It is often easier to view F
.
= {Cj | ∀j ≤ m} as a set of constraints, where the size of the for-

mula |F | = m is the number of constraints. The restriction of F under an assignment/substitution
ω is defined as

F ↾ω
.
= {Cj↾ω | ∀j ≤ m} (2.4)

A solution to F is a complete assignment ρ, in which each constraint C is satisfied by ρ.

2.2 The Cutting Planes Proof System
To reason about pseudo-boolean formulas, we will have rules of reasoning, which allow us to derive
new constraints from previously known ones. The set of rules make up the proof system considered,
and we will mostly be working with the cutting planes proof system [CCT87]. One of the rules in
cutting planes is:

Literal Axiom
xσi
i ≥ 0

(2.5a)
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Where the notation here, means that the top parts indicate what you already know, and the bottom
part is the conclusion, i.e. what can be derived from the top parts. In this case, that means that
literal axioms have no prerequisites to be derived, and can therefore always be derived. Which
makes logically sense, as literals in PB constraints only take values in {0, 1}, thus xσi

i ≥ 0 should
always hold. The other rules of inference are the following:

Addition
∑

aix
σi
i ≥ A

∑
bix

δi
i ≥ B∑

aix
σi
i +

∑
bix

δi
i ≥ A+B

(2.5b)

Multiplication
∑

aix
σi
i ≥ A∑

caix
σi
i ≥ cA

c ∈ N (2.5c)

Division
∑

caix
σi
i ≥ A∑

aix
σi
i ≥ ⌈A/c⌉

c ∈ N (2.5d)

For (2.5b) we will note that cancelling addition can occur, which is what happens when xi and xi

are added together, and we have xi +xi = 1. So anytime two constraints are added, we will always
cancel out literals when possible and rewrite the constraint to be in normalized form. Take for
example the addition of 2x1 + 3x2 ≥ 4 and x1 + 2x3 ≥ 2 which will result in x1 + 3x2 + 2x3 ≥ 5.
For the division rule we see the requirement that the divider c must divide each coefficient in the
constraint, however using a combination of (2.5a) and (2.5d) we can simulate a generalized division
rule:

Generalized Division
∑

aix
σi
i ≥ A∑

⌈ai/c⌉xσi
i ≥ ⌈A/c⌉

c ∈ N (2.5e)

For our purposes we will swap out this rule of inference for the division rule, which will not change
the proof system fundamentally [BN21].

Though the original cutting planes proof system consists only of rules (2.5a) - (2.5d), the system
has been studied with a multitude of different rules extending it. As we will be working in the
context of VeriPB [Goc22] we will focus only on the extension implemented in this framework, and
specifically only those which are of relevance to this work. One of those rules is the Saturation Rule,
which in some combinatorial solvers, such as sat4j [LBP10], is used instead of the division rule:

Saturation
∑

aix
σi
i ≥ A∑

min(A, ai)x
σi
i ≥ A

(2.5f)

Here it is very important that the constraint is in normalized form, as the non-negativity of the
coefficients is crucial for the rule to be defined like this. Logically it also makes sense to say that, if
ai > A, then it might as well be that ai = A, as both have that if xσi

i is set to 1 in an assignment,
then the constraint is satisfied.

For the remainder of the thesis we will refer to the cutting planes proof system, which will
consist exactly of the rules (2.5a) - (2.5f) excluding the division rule in (2.5d). This is to some a
slight deviation from the standard, but it is the system allowed in VeriPB.
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2.3 Implications and Derivations
For a formula F , we say that F models or implies the constraint C if any satisfying assignment ρ
to F also satisfies C. In this case we will write F ⊨ C. Likewise, for another formula F ′, we would
say that F implies or models F ′ if all constraints in F ′ are implied by F and write

F ⊨ F ′ ⇐⇒ ∀C ∈ F ′ : F ⊨ C (2.6)

Quite similarly if a constraint C can be derived using the cutting planes rules of inference from
a formula F , i.e. using the rules (2.5a) - (2.5f), we say the C is derivable from F and write F ⊢ C.
It is not that difficult to prove that the cutting planes proof system preserve solutions [CCT87],
that is, if ρ is a solution to F , and F ⊢ C, then ρ is also a solution to C. Thus if F ⊢ C then we
also have that F ⊨ C. If we are able to derive the constraint ⊥ .

= 1 ≥ 0 from a formula F , then we
call that derivation a proof of unsatisfiability of F or a refutation of F , because ⊥ is impossible to
satisfy, thus F is impossible to satisfy.

Generally when we talk about derivations, we not only want to know whether a cutting planes
derivation exists, but rather we want to know what the derivation is. Using the notation

π : F ⊢ C (2.7)

we say that π is the derivation of C from F . Specifically π = (E1, E2, . . . , EL−1, EL
.
= C) is a

sequence of constraints Ei, where each Ei is either a constraint in F , or it follows by one of the
cutting planes inference rules (2.5a) - (2.5f) from constraints previous in π. Often we will also
write out the constraints in our formula F , to indicate what the premises of the derivation are, for
example:

π : P1, P2, . . . , Pm ⊢ C (2.8)

instead of π : F ⊢ C, when F
.
= {Pi | ∀i ≤ m}. The constraint Pj is referred to as a premise

of the derivation π. We will mostly view derivations as proofs for adding new constraints to our
formula, and thus we would often write that if F ⊢ C then we can add C to F getting the formula
F ′ := F ∪ {C}, which has the same set of solutions as F . Once we start thinking of adding
constraints to our original formula F , we will generally use the term constraint database and the
symbol D , to emphasize that this is a set which changes over time, and preserve that F is the
original formula, we are trying to refute.

Lets take a look at the following example which highlights an important derivation which we
will reuse later on.
Example 2.5. A quite common constraint to observe is constraints in disjunctive form, i.e. con-
straints in which just one literal out of a set of literals must be true. So for example

C
.
= (x1 + x2 + x3 ≥ 1) (2.9)

Often we will also look at the negation of such a literal which in this case corresponds to the
constraint

¬C .
= (x1 + x2 + x3 ≥ 3) (2.10)

By adding the literal axioms x2 ≥ 0 and x3 ≥ 0 to this, we thus see we get x1 ≥ 1. Formally we
have derivation π : {¬C} ⊢ (x1 ≥ 1), where

π = (¬C, x2 ≥ 0, x1 + x3 ≥ 2, x3 ≥ 0, x1 ≥ 1) (2.11)
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And we thus could add x1 ≥ 1 to our constraint database D if it contained ¬C. We could have
done similarly for x2 and x3 and gotten x2 ≥ 1 and x3 ≥ 1.

This example we can generalize to the following:

Proposition 2.6. Let C .
= (

∑
aix

σi
i ≥ 1) be a constraint in disjunctive form, that is all ai ∈ {0, 1}

then for any literal xσi
i occurring in C, we have that

¬C ⊢
(
x1−σi
i ≥ 1

)
From a constraint database D which contains ¬C, this will let us transition to

D′ := D∪
{
x1−σi
i ≥ 1

∣∣ ∀xσi
i ∈ C

}
This derivation also highlights a more common type of derivation

which is known as a literal implication derivation. We say that a derivation is a literal implication
derivation whenever the derivation consists only of adding literal axioms to a constraint. Another
common example of using literal implication derivations, is when we wish to derive a trivial con-
straint, that is when the degree of the constraint is 0.

Proposition 2.7. Let C .
= (

∑
aix

σi
i ≥ 0) be a trivial constraint, then F ⊢ C, for any formula F .

Proof. For each literal xσi
i in C, we simply take the literal axiom xσi

i ≥ 0 and multiply with ai and
add all of these together achieving

C
.
=

∑
aix

σi
i ≥ 0 (2.12)

and we have derived the constraint by literal implication.

2.4 Redundance-Based Strengthening & Reification Variables
Lastly we will introduce a rule of inference which looks quite different from the others, and is mostly
used for introducing new variables which represent some constraint. Say we have a formula F over
the variable set x⃗, and let C := (

∑
aix

σi
i ≥ A) be an arbitrary constraint, which could occur in

F but need not to. Say we wish to represent this constraint using only a fresh variable y, i.e. a
variable which does not occur in F , logically speaking we would want to introduce the constraints

y =⇒ C
.
=

(
Ay +

∑
aix

σi
i ≥ A

)
(2.13)

y ⇐= C
.
=

(
(W (C)−A+ 1)y +

∑
aix

1−σi
i ≥ W (C)−A+ 1

)
(2.14)

Where the notation y =⇒ C and y ⇐= C is just notational sugar to ease readability. But
at the same time the notational sugar is really indicating how these constraints are to be thought
of. Take for example (2.13), if y = 1 under any assignment, then to satisfy (2.13) we must satisfy
C, and if y = 0 we don’t care whether C is satisfied or not, which corresponds to the truth table
for implication propositional logic. It works likewise for (2.14), if an assignment satisfy C, then to
satisfy (2.14) then y must be 1.

Generally when y does not occur in F , then regardless if F is a satisfiable formula or not, we
can always set y such that both (2.13) and (2.14) are satisfied. That means when equation (2.13)
and (2.14) are added to F it will not change the solution set, as we for each solution can set y
accordingly. When we wish to refer to both of these constraints, we do so quite naturally by writing
y ⇐⇒ C and call y a reification variable of C. Reification variables are not allowed by the

12



standard cutting planes rules. Simply put; there is no way to introduce a new variable. To allow
reification, another rule must be added to the proof system. Such a rule is commonly called the
extension rule, and some proof systems have been studied along with such a rule. In VeriPB there
is instead a slightly more general rule of inference called the Redundance-Based Strengthening rule,
to allow reification variables, which we will introduce shortly. To understand how this rule works,
we first need to understand the concept of a constraint being redundant.

Definition 2.8 (Redundance). We say that a constraint C is redundant with respect to a formula
F if F and F ∪ {C} are equisatisfiable.

Whenever we are trying to solve a decision problem, and specifically when we are trying to refute
a formula F , it should be clear that adding redundant constraints, should not cause any problems.
For the case of proof logging, we need a verifiable way to deem a constraint to be redundant, which
the next proposition will help us provide. This was proved in [GN21, Proposition 3.1] and is restated
here:

Proposition 2.9 (Substitution Redundancy). Let F be a formula over variable set x⃗, and C(y⃗) a
constraint over variable set y⃗ which is possibly disjoint from x⃗. Then C(y⃗) is redundant with respect
to F if and only if there exists a substitution ω : x⃗ ∪ y⃗ → Lit(x⃗ ∪ y⃗) ∪ {0, 1} called a witness, such
that

F ∪ {¬C} |= (F ∪ {C}) ↾ω (2.15)

Proof. “ =⇒ ”
Suppose that C is redundant with respect to F . Notice that if F is unsatisfiable, then F ⊨ B

would trivially hold for any constraint B. Thus, if F is unsatisfiable so is F ∪ {¬C} and any
substitution ω satisfies equation (2.15). If instead F and F ∪ {C} are satisfiable, we can choose
ω to be a satisfying assignment to F ∪ {C}. Notice now that (F ∪ {C}) ↾ω is satisfied and by
proposition 2.7 all these constraints can therefore be derived by the cutting planes rules from any
formula, specifically also F ∪{¬C}. As we have also argued earlier, when we have that F ∪{¬C} ⊢
(F ∪ {C}) ↾ω, we therefore also know that solutions are preserved, thus F ∪ {¬C} ⊨ (F ∪ {C}) ↾ω.
“ ⇐= ”

Now suppose that we have a witness ω satisfying (2.15), and we thus needs to prove equisat-
isfiability. If F is unsatisfiable, then clearly so must F ∪ {C} be, as it at least need to satisfy F .
In the other case, if F is satisfiable, let α be a complete satisfying assignment to F . Now define a
complete assignment to F ∪ {C} as follows:

α∗(y) :=

{
1 if y /∈ x⃗

α(y) otherwise
(2.16)

If α∗ is a satisfying assignment to F ∪ {C}, then clearly F and F ∪ {C} are equisatisfiable. If
instead α∗ does not satisfy F ∪{C} we must have that α∗ does not satisfy C, as F is satisfied by α.
Therefore, we know that α∗ satisfies F ∪ {¬C} and by the assumption that (2.15) holds, α∗ must
be a complete satisfying assignment to (F ∪ {C}) ↾ω. Lastly define β := α∗ ◦ ω, and notice that
(F ∪ {C}) ↾β = (F ∪ {C}) ↾ω↾α∗ , and thus β is a satisfying assignment to F ∪ {C}, since α∗ is to
(F ∪ {C}) ↾ω, and we conclude that F ∪ {C} is also satisfiable. In conclusion F and F ∪ {C} are
equisatisfiable.

13



The proof really highlights that the important part is to handle solutions to F , which do not
satisfy C, and ensure that they can still be mapped to another solution, thus ensuring equisatisfi-
ability. When it comes to the problem of proof logging, simply stating the witness ω is not good
enough, as the implication could be difficult to verify. Instead, we will allow a rule of inference,
where the witness ω have to be specified, along with a cutting planes derivation of (F ∪ {C}) ↾ω
from F ∪ {¬C}. Furthermore, the length of this derivation has to be polynomial in the size of F
and C, otherwise it is not an efficient proof anymore. We’ll state the rule cleanly here:

Rule 2.10 (Redundance-Based Strengthening). A constraint C can be added to a constraint
database D if there exists a witness ω from variables in D and C to literals over these variables or
{0, 1}, along with a cutting planes derivation

D ∪ {¬C} ⊢ (D ∪ {C}) ↾ω

where the length of the derivation is at most polynomial in the size of D and C.

Generally, when using rule 2.10 we need only to show that constraints in D which are affected by
the witness ω can be derived, as well as the constraint C which we are attempting to add. For the
remainder of the thesis, we will refer to the cutting planes proof systems along with redundance-
based strengthening as the VeriPB proof system. In reality VeriPB does have a few additional rules,
but these will be of no importance to this project, therefore they are omitted here. Let us return
to the example of introducing reification variables by equation (2.13) and (2.14), and let us do so
by the redundance-based strengthening rule.

Proposition 2.11. Let D be a constraint database over variable set x⃗ and C
.
=

∑
aiy

σi
i ≥ A an

arbitrary constraint over y⃗, which is not necessarily disjoint from x⃗. Let also z be a fresh variable,
that is z /∈ x⃗, and z /∈ y⃗. Then we can add the constraints z ⇐⇒ C to D using the redundance-based
strengthening rule.

Proof. Let us start by adding the constraint z ⇐= C to D. We need to find a witness, such
that the derivation in (2.15) holds. To do so we use the witness ω1 = {z → 1}. Because z is
fresh, this witness has no effect on D and the implication D ⊨ D↾ω1 holds trivially. The constraint
(z ⇐= C) ↾ω1 is satisfied, thus by proposition 2.7 we can derive it from any formula, specifically
from D ∪ {¬ (z ⇐= C)}.

To introduce the constraint z =⇒ C to the formula D′ := D ∪ {(z ⇐= C}) we need to do a
bit more work as z is not fresh anymore. In this case we will use the witness ω0 = {z → 0}. By
the same argument as before (z =⇒ C) ↾ω0

is satisfied and can thus be derived easily. Thus, we
need to derive D′↾ω0 from D′ ∪ {¬ (z =⇒ C)}, in which deriving D↾ω0 from D is yet again trivial
as they are equal. Lastly we must derive (z ⇐= C) ↾ω0 , and we will do so from the constraint
¬(z =⇒ C), as we observe that

¬(z =⇒ C)
.
= A · z +

∑
aix

1−σi
i ≥ W (C) + 1 (2.17)

in normalized form, by using the rewrite that xσi
i = 1 − x1−σi . From this we multiply A to the

literal axiom z ≥ 0 achieving Az ≥ 0, this is then added to the constraint (2.17) to get the desired
constraint

(z ⇐= C) ↾ω0

.
=

∑
aix

1−σi
i ≥ −A+W (C) + 1 (2.18)
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Which means we have that

D′ ∪ {¬ (z =⇒ C)} ⊢ (D ∪ {z ⇐⇒ C}) ↾ω0
(2.19)

and thus z ⇐⇒ C can be added to D.

Usually when we introduce reification variables, we will use the notation r(C) instead of z to
denote the variable which is the reification of C.

r (C) ⇐⇒ C =

{
Ar (C) +

∑
aix

σi
i ≥ A

(W (C)−A+ 1)r (C) +
∑

aix
1−σi
i ≥ W (C)−A+ 1

(2.20)

In the following section we will showcase through different propositions, the abstraction that reifi-
cation variables allow us to make, and specifically how our syntax can be used to abstract away
some details. Moreover, it also serves the goal of introducing statements which will be of use to us
later in the thesis, and lets the reader get accommodated with both the syntax and the types of
arguments we will be making.

2.5 Syntax Abstraction
Firstly we will introduce a generalization of some syntax which we already have, namely we will for
a variable set z⃗ and a constraint C(x⃗)

.
=

∑
aix

σi
i ≥ A use the notation: ∧

zi∈z⃗

zδii =⇒ C(x⃗)

 .
=

A
∑
zi∈z⃗

z1−δi
i +

∑
aix

σi
i ≥ A

 (2.21)

and sometimes we will instead write ∧
zi∈z⃗

zδii =⇒
(∑

aix
σi
i ≥ A

) (2.22)

when we want to showcase what the constraint C(x⃗) is.
This syntax captures the same intuition as a logical implication, exactly that if just one literal

zδii is false under an assignment then the whole of (2.21) is satisfied, but if all literals are true under
an assignment, then to satisfy (2.21) we must satisfy C(x⃗). Really digesting and understanding
this syntax will be very important later in the thesis, as it is a powerful abstraction, and will
allow us to reason much easier about many constraints. Moreover, it lends itself to very natural
conclusions requiring only a few steps, as we will see in the following propositions. This first
proposition, confirms that reification variables really are interchangeable with the constraints which
they represent, specifically in our syntactic implications as introduced above. This will allow us to
interchange between r (C) ≥ 1 and C as desired.

Proposition 2.12 (Reification Interchangeability). Let x⃗ and z⃗ be two disjoint variable sets. Let
C

.
=

∑
aix

σi
i ≥ A be an arbitrary constraint that we have reified, and let r (C) be the reification

variable of C. Then we have the derivation ∧
zi∈z⃗

zδii =⇒ C

 ∪ {r (C) ⇐= C} ⊢

 ∧
zi∈z⃗

zδii =⇒ (r (C) ≥ 1)
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and oppositely we also have the derivation ∧
zi∈z⃗

zδii =⇒ (r (C) ≥ 1)

 ∪ {r (C) =⇒ C} ⊢

 ∧
zi∈z⃗

zδii =⇒ C


both requiring 2 steps.

Proof. The derivations here are quite simple, as they are mostly a matter of adding the constraints.
First recall that W (C)

.
=

∑
i ai and the constraints are:

 ∧
zi∈z⃗

zδii =⇒ C

 .
=

(
A
∑

z1−δi
i +

∑
aix

σi
i ≥ A

)
(2.23)

 ∧
zi∈z⃗

zδii =⇒ (r (C) ≥ 1)

 .
=

(∑
z1−δi
i + r (C) ≥ 1

)
(2.24)

(r (C) ⇐= C)
.
=

(
(W (C)−A+ 1) · r (C) +

∑
aix

1−σi
i ≥ W (C)−A+ 1

)
(2.25)

(r (C) =⇒ C)
.
=

(
A · r (C) +

∑
aix

σi
i ≥ A

)
(2.26)

From addition of equation (2.23) and (2.25) we get

A
∑

z1−δi
i +

∑
aix

σi
i + (W (C)−A+ 1) · r (C) +

∑
aix

1−σi
i ≥ A+W (C)−A+ 1 (2.27)

.
=A

∑
z1−δi
i + (W (C)−A+ 1) · r (C) +W (C) ≥ W (C) + 1 (2.28)

.
=A

∑
z1−δi
i + (W (C)−A+ 1) · r (C) ≥ 1 (2.29)

Performing saturation here leaves us with the desired constraint

∑
z1−δi
i + r (C) ≥ 1

.
=

 ∧
zi∈z⃗

zδii =⇒ (r (C) ≥ 1)

 (2.30)

Similarly, if we multiply equation (2.24) with A and add it to (2.26) we get

A
∑

z1−δi
i +A · r (C) +A · r (C) +

∑
aix

σi
i ≥ A+A (2.31)

.
=A

∑
z1−δi
i +

∑
aix

σi
i ≥ A (2.32)

which is the desired constraint
∧

zi∈z⃗ z
δi
i =⇒ C.

Notice that we can thus also interchange between r (C) ≥ 1 and C in any formula if one of them
has been derived, which is the case if we in the proposition have z⃗

.
= ∅. The next proposition is also

quite natural. It allows us to remove literals from an implication, if we already know the literals
must be 1.
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Proposition 2.13 (Implication Removal). Let z⃗ and x⃗ be disjoint variable set, and
C

.
=

∑
aix

σi
i ≥ A an arbitrary constraint. For a fixed zj ∈ z⃗ we have the following cutting planes

derivation

 ∧
zi∈z⃗

zδii =⇒ C

 ∪
{
z
δj
j ≥ 1

}
⊢

∧
zi∈z⃗ \zj

zδii =⇒ C

requiring only 2 steps.

Proof. It is merely a calculation. Recall that we have ∧
zi∈z⃗

zδii =⇒ C

 .
=

A
∑
zi∈z⃗

z1−δi
i +

∑
aix

σi
i ≥ A

 (2.33)

and we can multiply z
δj
j ≥ 1 with A, thus getting Az

δj
j ≥ A and adding this to (2.33) we will get

that Az
1−δj
j will be cancelled out from the sum, and we will get

Az
δj
j +Az

1−δj
j +A

∑
zi∈z⃗\zj

z1−δi
i +

∑
aiq

σi
i ≥ A+A (2.34)

.
=

A
∑

zi∈z⃗\zj

zδii +
∑

aiq
σi
i ≥ A

 .
=

 ∧
zi∈z⃗ \zj

zδii =⇒ C

 (2.35)

as desired.

The next proposition shows how our syntax allows us to make derivations, which mimic transi-
tivity in propositional logic1, such as p =⇒ q and q =⇒ w lets us conclude p =⇒ w.

Proposition 2.14 (Implication transitivity). Let x⃗ and z⃗ be two disjoint variable sets, and let w
be a variable not occurring in either. There exists a cutting planes derivation ∧

zi∈z⃗

zi =⇒ (xj ≥ 1)

∣∣∣∣∣∣ ∀xj ∈ x⃗

 ∪

 ∧
xj∈x⃗

xj =⇒ (w ≥ 1)

 ⊢
∧
zi∈z⃗

zi =⇒ (w ≥ 1)

of length |x⃗|+ 1.

Proof. Recalling the constraints

∧
zi∈z⃗

zi =⇒ (xj ≥ 1)
.
=

∑
zi∈z⃗

zi + xj ≥ 1

 (2.36)

∧
xj∈x⃗

xj =⇒ (w ≥ 1)
.
=

∑
xj∈x⃗

xj + w ≥ 1

 (2.37)

1In propositional logic it is called hypothetical syllogism
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From adding (2.36) for all xj ∈ x⃗ together and denoting |x⃗| = n, we get the following

n ·
∑
zi∈z⃗

zi +
∑
xj∈x⃗

xj ≥ n (2.38)

if we add this to the constraint (2.37) we get the following

n ·
∑
zi∈z⃗

zi +
∑
xj∈x⃗

xj +
∑
xj∈x⃗

xj + w ≥ n+ 1 (2.39)

.
= n ·

∑
zi∈z⃗

zi + w ≥ 1 (2.40)

because xj and xj cancel out. When (2.40) is saturated we get the desired constraint∧
zi∈z⃗ zi =⇒ (w ≥ 1).

It could be generalized more, allowing all zi and xj to instead be literals, but as we will only
need this proposition in cases where we know the variable isn’t negated, we will keep it to this more
simple form.

The following lemma that we will prove, is both the most cumbersome one to prove, but also
quite essential for this thesis. It will allow us to take any standard cutting planes derivation,
π : P1, P2, . . . , Pm ⊢ C and instead run it on reified premises r

(
Pj

)
=⇒ Pj , in which the conclusion

is instead a single constraint capturing the whole derivation, and looks like
∧m

j=1 r
(
Pj

)
=⇒ C.

This will be a very important tool later on, as it will allow us to "perform" any cutting planes
derivation inside another derivation, as long as we are able to introducing reification variables for
the premises first.

Lemma 2.15 (Axiom reification). Let π : P1, P2, . . . , Pm ⊢ C be a cutting planes derivation over
variables x⃗. Using instead the axioms r

(
Pj

)
=⇒ Pj for all j ≤ m, we can derive the constraint∧m

j=1 r
(
Pj

)
=⇒ C, that is there exists a cutting planes derivation

π′ : r (P1) =⇒ P1, . . . , r (Pm) =⇒ Pm ⊢
m∧
j=1

r
(
Pj

)
=⇒ C

over variables x⃗ ∪
{
r(Pj)

∣∣ j ≤ m
}
, and with length L′ = O(m · L), where L is the length of the

original derivation π.

Proof. Here we will view derivations as a sequence of constraints, and specifically we will write the
derived constraints in π as π = (E1, E2, . . . , EL), and to accommodate the difference in derivation
length between π and π′, we will use subindexing in π′, to denote steps which does not correspond
to any step in π. Thus, we will denote the steps in π′ as

π′ = (E′
0.1, E

′
0.2, . . . , E

′
1, E

′
1.1, E

′
1.2, . . . , E

′
2, E

′
2.1, . . . , E

′
L) (2.41)

We will then proof by induction that for each s ∈ N and s ≤ L, the constraint E′
s in the derivation

π′ is on the form
∧m

j=1 r
(
Pj

)
=⇒ Es. From this it then follows that since EL

.
= C we have that

E′
L

.
=

(∧m
j=1 r

(
Pj

)
=⇒ C

)
.
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The base case s = 1
This is quite trivial as there are only two options for what E1 can be:

• If E1 is a premise Pj for some j ≤ m, we take the corresponding premise r
(
Pj

)
=⇒ Pj

in π′, and add the literal axiom r
(
Pj′

)
≥ 0 for all j′ ≤ m, but j′ ̸= j. This will give

use the desired constraint, and we let (E′
0.1, E

′
0.2, . . . , E

′
1) be this derivation to get E′

1
.
=(∧m

j=1 r
(
Pj

)
=⇒ Pj

)
.

• If E1 is a literal axiom Pj , we do the exact same thing and take the literal axiom xσi
i ≥

0 and add the literal axiom r
(
Pj′

)
≥ 0 for all j′ ≤ m. This gives us the derivation

(E′
0.1, E

′
0.2, . . . , E

′
1) where E′

1
.
=

(∧m
j=1 r

(
Pj

)
=⇒ (xσi

i ≥ 0)
)
.

Induction step s ≥ 2.
By our induction hypothesis we know that (E′

1, E
′
1.1, . . . , E

′
2, . . . , E

′
s−1) is a valid derivation in which

∀k < s and k ∈ N, we have that

E′
k

.
=

 m∧
j=1

r
(
Pj

)
=⇒ Ek

 (2.42)

We have to show that E′
s is also on this form, regardless of what the derivation step is in π. We

have 6 options for the derivation step:

• Case 1 (Axiom) Es
.
= Pj for some j ≤ m:

This works equivalent to the argument in the base case, and we are able to derive E′
s

.
=(∧m

j=1 r
(
Pj

)
=⇒ Pj

)
• Case 2 (Literal Axiom) Es

.
= (xσi

i ≥ 0):
Again this is equivalent to the argument in the base case, and we can derive
E′

s
.
=

(∧m
j=1 r

(
Pj

)
=⇒ (xσi

i ≥ 0)
)

• Case 3 (Division) Es
.
= Ek/c for k < s and c ∈ N:

By the induction hypothesis we know E′
k

.
=

(∧m
j=1 r

(
Pj

)
=⇒ Ek

)
. Let us denote

Ek
.
= (

∑
aix

σi
i ≥ A). Through inspection of E′

k and E′
k/c we see that

E′
k

.
= A

m∑
j=1

r
(
Pj

)
+

∑
aix

σi
i ≥ A (2.43)

E′
k/c

.
= ⌈A/c⌉

m∑
j=1

r
(
Pj

)
+

∑
⌈ai/c⌉xσi

i ≥ ⌈A/c⌉ (2.44)

(2.45)

Which by definition is the same as
∧m

j=1 r
(
Pj

)
=⇒ (Ek/c), therefore we let

E′
s
.
= E′

k/c
.
=

 m∧
j=1

r
(
Pj

)
=⇒ Ek/c

 (2.46)
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and thus E′
s is on the correct form, and required only 1 step.

• Case 4 (Addition) Es
.
= Ek1 + Ek2 for k1, k2 < s.

By our induction hypothesis we know that

E′
k1

.
=

 m∧
j=1

r
(
Pj

)
=⇒ Ek1

 (2.47)

E′
k2

.
=

 m∧
j=1

r
(
Pj

)
=⇒ Ek2

 (2.48)

and let us denote Ek1

.
= (

∑
aix

σi
i ≥ A) and Ek2

.
=

(∑
bix

δi
i ≥ B

)
. From addition of E′

k1
and

E′
k2

we get

E′
k1

+ E′
k2

.
= A

m∑
j=1

r
(
Pj

)
+B

m∑
j=1

r
(
Pj

)
+

∑
aix

σi
i +

∑
bix

δi
i ≥ A+B (2.49)

.
= (A+B)

m∑
j=1

r
(
Pj

)
+

∑
aix

σi
i +

∑
bix

δi
i ≥ A+B (2.50)

This is essentially the desired form, but we have to account for cancellations happening across
the two sums

∑
aix

σi
i +

∑
bix

δi
i . If some cancellations happens, the degree of the constraint

decrease, and then the coefficient (A+B) of r
(
Pj

)
are larger than the degree. If we perform

saturation we ensure that the coefficient of r
(
Pj

)
is exactly the degree of the constraint, and

thus after saturating equation (2.50) we get the desired constraint

E′
s
.
=

 m∧
j=1

r
(
Pj

)
=⇒ (Ek1

+ Ek2
)

 (2.51)

• Case 5 (Multiplication) Es
.
= c · Ek for k < s and c ∈ N:

Again by the induction hypothesis we know that E′
k

.
=

∧m
j=1 r

(
Pj

)
=⇒ Ek, and we again

denote Ek
.
= (

∑
aix

σi
i ≥ A). We quickly see that we can let E′

s
.
= c · E′

k since

c · E′
k

.
= c ·

 m∧
j=1

r
(
Pj

)
=⇒ Ek

 (2.52)

.
= (c ·A)

m∑
j=1

r
(
Pj

)
+ ·

∑
caix

σi
i ≥ c ·A (2.53)

.
=

 m∧
j=1

r
(
Pj

)
=⇒ c · Ek

 (2.54)

and then E′
s is as desired.
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• Case 6 (Saturation) Es is the saturation of Ek for a k < s:

Let Ek
.
= (

∑
aix

σi
i ≥ A). By the induction hypothesis

E′
k

.
=

 m∧
j=1

r
(
Pj

)
=⇒ Ek

 .
=

A

m∑
j=1

r
(
Pj

)
+
∑

aix
σi
i ≥ A

 (2.55)

which when saturated gives us exactly
∧m

j=1 r
(
Pj

)
=⇒ Es, thus we just saturate E′

k to get

E′
s
.
=

(∧m
j=1 r

(
Pj

)
=⇒ Es

)
.

Thus, we finally conclude, that despite which cutting planes rule of inference that is performed
in π to get step Es, we can achieve a subderivation in π′ such that E′

s
.
=

(∧m
j=1 r

(
Pj

)
=⇒ Es

)
.

This lets us conclude that

E′
L

.
=

 m∧
j=1

r
(
Pj

)
=⇒ EL

 .
=

 m∧
j=1

r
(
Pj

)
=⇒ C

 (2.56)

As we have seen in the different arguments, despite which rule of inference is used, the equivalent
subderivation in π′ is most often just one or two steps, despite when we have to deal with literal
axioms and premises from F , in which case we require O(m) steps. This means that in the worst
case the derivation π′ will have length O(m · L), but for most realistic derivations, the length will
actually be within a constant factor of L.

We will also need a more general form of the lemma just shown, in which we allow any "con-
dition" on our premises. That is instead of replacing the premise Pj with r

(
Pj

)
=⇒ Pj , we will

instead associate a set of literals Vj with each premise Pj , and then use
∧

lj,i∈Vj
lj,i =⇒ Pj instead.

Notice as we can choose Vj
.
= ∅, we can choose to alter only some of the premises. This generalized

form would directly prove lemma 2.15 by choosing Vj
.
=

{
r
(
Pj

)}
, but since the proofs are basically

equivalent, we have chosen only to include the proof of lemma 2.15, which for the uninitiated is
much easier to comprehend. We will still state the generalized form without proof, as we will need
it later in the thesis.

Proposition 2.16 (Conditional derivation). Let π : P1, P2, . . . , Pm ⊢ C be a cutting planes deriva-
tion over variables x⃗. Let U be a set of literals disjoint from Lit(x⃗), and for each j ≤ m let Vj ⊆ U
be a subset associated with Pj. Using instead the premises∧

lj,i∈Vj

lj,i =⇒ Pj

we can derive the constraint
∧

l∈U l =⇒ C, that is there exists a cutting planes derivation

π′ :
∧

l1,i∈V1

l1,i =⇒ P1,
∧

l2,i∈V2

l2,i =⇒ P2, . . . ,
∧

lm,i∈Vm

lm,i =⇒ Pm,⊢
∧
l∈U

l =⇒ C

with length L′ = O(|U| · L), where L is the length of the original derivation π.
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3 Proofs with lemmas
In this chapter we will discuss what it will mean to have "lemmas" in a proof, or rather what
it will mean to reuse derivations without having to carry them out. Allowing derivations to be
reused, won’t introduce fundamentally new ways of reasoning. If the derivation was valid before,
it would also be so even if we were to do it on different variables. This actually holds generally for
any substitution of variables that if π : P1, . . . , Pm ⊢ D is a valid cutting planes derivation, then
we could also perform a derivation under a substitution λ resulting in a cutting planes derivation
π↾λ : P1↾λ , . . . , Pm↾λ ⊢ D↾λ . The formal arguments for why it generally holds that we can perform
a derivation under a substitution, are very similar to those used to prove lemma 2.15, and will not
be given here. But it also makes sense, that if we have already carried out the derivation for π, we
shouldn’t have to perform it again, and instead just be able to reuse the conclusion of π to conclude
π↾λ in a single step.

In this chapter we will try to formalize this type of reasoning, and what a potential rule allowing
this could look like. One practical issue when defining the structure of a proof with lemma, is that
during execution of an algorithm it might be difficult to tell which subderivation that should be
viewed as a lemma. It is not until the algorithm wishes to achieve a similar conclusion that it is
known which parts actually makes up the lemma. Just as in mathematics you rarely know your
lemmas before the main theorem. Formally speaking, say π is the main derivation in question,
and we wish to apply a lemma in step i in π. Let π∗ : P ∗

1 , . . . , P
∗
m∗ ⊢ D∗ be a subderivation of

π, which has occurred before step i. Then to apply π∗ in step i in π we must need a substitution
λ : x⃗ → Lit(x⃗)∪{0, 1} is specified such that P ∗

j ↾λ is derived before step i in π, for all j ≤ m∗. Then
we can conclude D∗↾λ in step i.

Inherently we see two things here which are needed. The specification of the subderivation,
which is to be applied, and the substitution which is to be used. For our purposes we will look at it
in a very structured way to generalize better. We will not be using subderivations of a derivation,
but for our purposes, a proof using lemmas would consist of a sequence of derivations performed in
order, in which each derivation can use the conclusions of the previously derived derivations. Let
q⃗1, q⃗2, . . . , q⃗k be disjoint variable sets, and let

π1 : P1,1, P1,2, . . . , P1,m1
⊢ D1 (3.1)

π2 : P2,1, P2,2, . . . , P2,m2
⊢ D2 (3.2)

...
πk : Pk,1, Pk,2, . . . , Pk,mk

⊢ Dk (3.3)

be a sequence of derivations performed on variable sets q⃗1, q⃗2, . . . , q⃗k respectively. The final con-
clusion πk is the one that should state ⊥ .

= 0 ≥ 1 if it is refutation of
{
Pk,1, . . . , Pk,mk

}
. In these

derivations we allow each step to be either a cutting planes rule as described in equations (2.5a) -
(2.5f), or applying a previously derived lemma by the Lemma Application Rule, as described below:

Rule 3.1 (Lemma Application Rule). Let πs = (E1, E2, . . . , ELs
) for a 2 ≤ s ≤ k. In πs we can

derive the constraint Ej for a j ≤ Ls, by application of a previous derivation πt for a t < s, through
specification of a substitution λ : q⃗t → Lit(q⃗s) ∪ {0, 1} such that the following holds:
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(i) Dt↾λ
.
= Ej

(ii) ∀i ≤ mt ∃ji < j : Pt,i↾λ
.
= Eji

Let us break down the rule. To apply it using a previous derivation πt we need the premises of
πt to have been derived already, however under a substitution. It also requires that a lemma πt can
only be applied if it derived before πs where it is applied. That is to avoid the option that πs could
apply πt and in πt we could apply πs. This kind of interdependency, would allow derivations to
derive anything from anything, as πt and πs could just state the same thing and apply each other
making it a "valid" derivation, but a circular argument.

We will note that in this formalization of proofs with lemmas, we need to know the all lemmas
π1, π2, . . . , πk−1 before starting the main derivation πk, which is not natural in an algorithmic
context. But determining how an algorithm should in practice use derivations with lemmas is
beyond the scope of this thesis.

From this rule we can see that for the first derivation π1 we can only use the standard cutting
planes rules. Moreover, we see that derivations can use each other recursively, as long as the
derivation being applied is prior. This will let us define the substitution depth of a derivation to be
1 more than the maximum substitution depth of any of the lemmas that it applies. As π1 cannot
apply any lemmas we say that it has substitution depth 0. So in our setup above, πk can at most
have substitution depth k − 1.
In our example above, say that πj has length Lj for all j ≤ k, then the total length of the proof
would be L =

∑k
j=1 Lj . As hinted at earlier, instead of applying a lemma, using the lemma

application rule, we could instead just have performed the derivation of the lemma. This means
that we could just have inlined the previous derivation instead of applying it. If we were to inline
the lemma derivations instead of applying them using rule 3.1, we would see that π2 would at most
have length L1 ·L2. This length can only be achieved if every single step in π2 is a lemma application
of π1, which is quite unrealistic. By extending this argument we can easily upper bound the length
of any derivation in which lemmas are inlined instead of applied. See that if π3 was inlined in a
similiar fashion as well, we would get that this derivation could not exceed a length of L3 · (L2 ·L1).
Generalizing this we see that for πk inlined its length would be less than Lk · Lk−1 · · ·L1 ≤ Lk.
This means that for a proof with lemmas with substitution depth k− 1, the length of the proof can
decrease with a k′th root of the same proof with lemmas inlined. This also highlights the aim of
allowing lemma applications, it will not introduce new ways of reasoning, but it can significantly
shorten proofs.

Naively adding the rule 3.1 into VeriPB, is a bad idea for multiple reasons. First of all we have
to ensure that the proof system is sound, and if we were to naively allow both rule 3.1 and the
redundance-based strengthening rule, we would get an unsound proof system. This is shown in the
example here:

Example 3.2. Say we are allowed to use the redundance-based strengthening rule inside lemma
derivations, then we can derive the following two lemmas:

π1 : (q1 + q2 ≥ 1) ⊢ (q1 + q2 ≥ 2) (3.4)
π2 : (q1 + q2 ≥ 1) ⊢ (q̄1 + q̄2 ≥ 1) (3.5)
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Both can be accomplished using the redundance-based strengthening rule, as we for π1 can derive
the final constraint in a single step using ω1 = {q1 → 1, q2 → 1} which would mean the right hand
side of (2.15) is always true, thus the derivation needed for redundance-based strengthening is
trivial. The same can be said for π2 using ω2 = {q1 → 1, q2 → 0}. But say we are allow to use these
lemmas in our final derivation

π∗ : (x+ y ≥ 1) ⊢ ⊥ (3.6)

As we could use π1 first to achieve (x + y ≥ 2) by the substitution λ = {q1 → x1, q2 → x2} and
then use π2 to achieve (x + y ≥ 1) by the same substitution. Then adding these two constraints
would achieve 2 ≥ 3 which is equivalent to ⊥ .

= (0 ≥ 1). Clearly this is an unsound derivation as
the initial constraint can be satisfied, and thus combining these two rules naively can easily lead to
some unsound derivations.

One could perhaps alter the definitions of either or both of these rules, such that soundness is
preserved. But the second reason why adding the rule is undesirable is that we want to keep the
proof system as simple as possible, as argued in the introduction. Instead, the approach of the
thesis will be to achieve a similar kind of reasoning as applying lemmas, but without introducing a
new rule of inference. This means that we wish to take a proof using lemmas, and translate it to a
VeriPB proof. In the following chapters we will try to explain how this can be achieved, and what
the caveats are.

The end goal, with respect to practical usage and implementation would then entail that a
combinatorial solver would be allowed to produce a proof using lemmas with a rule such as 3.1,
by specifying the lemma and the substitution. Then when the solver has finished, the proof log
of the solver could then be converted to a VeriPB proof which could be verified. However, this
would mean, that if VeriPB were to deem a proof incorrect, there is a chance that such a proof
was indeed correct initially, but there is a bug in the conversion process. This is obviously not a
desirable property, but since the other option is that the solvers which need this type of reasoning,
would need all their lemmas inlined, and thus produce very long proofs, that might be impossible
to verify in reasonable time, we still view it as the lesser of two evils.
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4 Simulating a single lemma in VeriPB
The aim of this chapter is to explain and work through an example in which we will translate a
derivation using a lemma twice, into a VeriPB proof. This example will give a good foundation for
understanding the arguments and the method which we will use when translating derivations with
lemmas into VeriPB proofs. The generalization of these arguments along with formal proofs for
how we will simulate derivation using lemmas nested, will be given in chapter 5. However, due to
the complicated nature of this translation in full generality, there will be some differences between
these two chapters. The ideas given in this chapter will cover 90% of the ideas in the following
chapter, but the most natural way to generalize this chapter will not work. We will explain why
this is, and how it is fixed in the next chapter.

Let us introduce the example: the derivation with lemmas we wish to translate into a VeriPB
proof is

π1 : P1, P2, . . . , Pm1
⊢ D1 (4.1)

π2 : B1, B2, . . . , Bm2
⊢ D2 (4.2)

where π1 is performed on variable set q⃗ and π2 is performed on variable set x⃗. Most importantly
are the usages of rule 3.1, where π1 is applied in π2. In our example π1 is applied twice in π2,
through the substitutions λ1 and λ2.

To simulate this in VeriPB, we are in essence just simulating π2, this means that we create
a VeriPB derivation π∗ : B1, B2, . . . , Bm2

⊢ D2 thus we start with the premises in π2. Any step
which is not an application of π1 will not be an issue, thus we will mainly focus on the application
steps. In order to perform this translation, we will need the ability to "substitute" variables inside
constraints, i.e. translating between constraint C(q⃗) and C(q⃗)↾λ1

. Notice that there are no rules in
VeriPB which allow us to apply a substitution, thus we will need to have some other constraints
which can help us achieve this. Let us say we had the following two constraints available

q1 ↔ λ1(q1)
.
=

{
q1 + λ1(q1) ≥ 1 (4.3)
q1 + λ1(q1) ≥ 1 (4.4)

where q1 ↔ λ1(q1) is also syntactic sugar that we will use. Then if we for example had the constraint

2q1 + q2 + q3 ≥ 2 (4.5)

we could with the equation q1+λ1(q1) ≥ 1 multiply it by 2 and add it to equation (4.5) to achieve:

2q1 + q2 + q3 + 2q1 + 2λ1(q1) ≥ 2 + 2 (4.6)
.
= 2λ1(q1) + q2 + q3 ≥ 2 (4.7)

in which we observe that q1 has been substituted. This argument is generalized in the following
proposition.
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Proposition 4.1 (Implication substitution). Let x⃗ and q⃗ be disjoint variable sets. Let λ : q⃗ →
Lit(x⃗)∪{0, 1} be a substitution, and let C(q⃗)

.
=

∑
aiq

σi
i ≥ A. There exists cutting planes derivations

{C(q⃗)} ∪ {qi ↔ λ(qi) | ∀qi ∈ q⃗} ⊢ C(q⃗)↾λ (4.8)

and

{C(q⃗)↾λ} ∪ {qi ↔ λ(qi) | ∀qi ∈ q⃗} ⊢ C(q⃗) (4.9)

both with length at most 2|q⃗|+ 1.

Proof. The two derivations are actually exactly the same, and when one has been explained the
other should be straightforward to see. Therefore, we will only show the derivation for equation
(4.8).
Fix qi∗ ∈ q⃗, and for the literal qσi∗

i∗ occurring in C(q⃗), note that we have

q1−σi∗
i∗ + λ(qi∗)

σi∗ ≥ 1 (4.10)

as it corresponds to one of the constraints in qi∗ ↔ λ(qi∗), regardless of the value of σi∗ . Then by
multiplying the constraint (4.10) with ai∗ and adding this to C(q⃗) we get

ai∗q
1−σi∗
i∗ + ai∗λ(qi∗)

σi∗ + ai∗q
σi∗
i∗ +

∑
qi ̸=qi∗

aiq
σi
i ≥ A+ ai∗ (4.11)

.
= ai∗λ(qi∗)

σi∗ +
∑

qi ̸=qi∗

aiq
σi
i ≥ A (4.12)

Since ai∗q
σi∗
i∗ and ai∗q

1−σi∗
i∗ cancel out, and leave ai∗ which is subtracted from both sides. Note

that here qσi∗
i∗ does not appear anymore and instead λ(qi∗)

σi∗ appears with the same coefficient.
If we were to perform this for each qi ∈ q⃗, we would end up with the constraint∑

qi∈q⃗

aiλ(qi)
σi ≥ A

 .
= C(q⃗)↾λ (4.13)

as desired.

Now let us entertain the thought that in our example we could add qi ↔ λ1(qi) for all qi ∈ q⃗,
to our formula F = {Bj | ∀j ≤ m2}. Then in our VeriPB derivation, when we want to simulate
the first lemma application, we know that we should already have derived Pj↾λ1

for all j ≤ m1,
as that is required by the lemma application rule 3.1. Furthermore, we could without issue also
introduce reification variables for Pj and then perform or "run" the derivation π1 on r

(
Pj

)
=⇒ Pj

instead as explained in lemma 2.15, and we could derive
∧m1

j=1 r
(
Pj

)
=⇒ (r (D1) ≥ 1). As the

next proposition will show, we can use all of these constraints to achieve the desired constraint
D1↾λ1

.
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Proposition 4.2. Let π : P1, . . . , Pm ⊢ D be a cutting planes derivation over variable set q⃗ which
is disjoint from x⃗. Let λ : q⃗ → Lit(x⃗) ∪ {0, 1} be a substitution. Then if we have a constraint
database D which contains

∀qi ∈ q⃗ : qi ↔ λ(qi) (4.14)
∀j ≤ m : Pj↾λ (4.15)∧

j≤m

r
(
Pj

)
=⇒ (r (D) ≥ 1) (4.16)

along with reification constraints for all the reification variables, then we can derive D↾λ and
r (D↾λ) ≥ 1 using O(|q⃗| ·m) cutting planes steps.

Proof. By using proposition 4.1 we can substitute the variables in Pj↾λ to derive Pj for all j ≤ m.
This is where the real cost lies, as it requires O(|q⃗|) steps to substitute each variable in Pj and doing
it for each j ≤ m, means that this will in total require O(|q⃗| ·m) steps. From Pj , as explained in
proposition 2.12, we can thus derive r

(
Pj

)
≥ 1 for all j ≤ m. For each of these we can remove them

from the constraint in equation (4.16) as explained in proposition 2.13, thus achieving r (D) ≥ 1.
Again using proposition 2.12 we can thus derive D, which by again substituting variables using
proposition 4.1 we get D↾λ . Finally, we can derive the desired constraint r (D↾λ) ≥ 1 by proposition
2.12.

This is the core idea behind how we will simulate a lemma application in VeriPB. Unfortunately,
it is not as simple as this because to use substitution constraints qi ↔ λ(qi), they first have to be
added. Adding these constraints for the first substitution λ1 can quite easily be done in our VeriPB
derivation from the premises B1, . . . , Bm2

using the redundance-based strengthening rule, as the
variables qi are fresh. However, once we want to introduce them for the second substitution λ2 we
are going to encounter a problem, because the qi variables are not fresh anymore. Furthermore, if
we were able to introduce these constraints for the second substitution we could introduce undesired
dependencies between variables. Because from the constraints qi ↔ λ1(qi) and qi ↔ λ2(qi) we could
derive the following

λ1(qi) ↔ λ2(qi)
.
=

{
λ1(qi) + λ2(qi) ≥ 1

λ1(qi) + λ2(qi) ≥ 1
(4.17)

which is not a constraint that should hold generally. For example if λ1(qi) = x1 and λ2(qi) = x2,
then these constraints, would require that x1 and x2 have to take the same value under any satisfying
assignment, which is purely an artifact of us introducing the substitution constraints and not a
requirement of the original formula.

Instead of being able to substitute qi and λj(qi) at any point, we instead we want to ensure
that we only simulate the variable substitution when we are about simulate the lemma application.
That is, we wish to have a setup essentially simulating: “If π1 has not been applied with λ1 yet,
then qi ↔ λ1(qi) should hold, and if the lemma has been applied with λ1 but not yet with λ2 then
qi ↔ λ2(qi) should hold”.
This we achieve by reifying the conclusions we wish to achieve, namely D1↾λ1

and D1↾λ2
, and then

having the following constraints

27



r (D1↾λ1
) =⇒ qi ↔ λ1(qi)

.
=

 r (D1↾λ1
) =⇒

(
qi + λ1(qi) ≥ 1

)
(4.18)

r (D1↾λ1) =⇒ (qi + λ1(qi) ≥ 1) (4.19)

r (D↾λ1
) ∧ r (D↾λ2

) =⇒ qi ↔ λ2(qi)
.
=

 r (D↾λ1
) ∧ r (D↾λ2

) =⇒
(
qi + λ1(qi) ≥ 1

)
(4.20)

r (D↾λ1) ∧ r (D↾λ2) =⇒ (qi + λ1(qi) ≥ 1) (4.21)

Combining our syntax in the most convenient way. When performing the derivation in proposition
4.1 with equation (4.18) and (4.19) instead of qi ↔ λ1(qi), we will derive

r (D1↾λ1
) =⇒ (r (D1↾λ1

) ≥ 1) (4.22)

as we in proposition 2.16 explained how "conditions" can be added to some premises in a derivation
and then be carried all the way through the derivation. If we inspect equation (4.22) we see that it
is exactly 2r (D1↾λ1

) ≥ 1, which can be saturated to get r (D1↾λ1
) ≥ 1. Thus, we are still able to

use these constraints, to substitute variables and "apply" the lemma. Now we know the variable
r (D1↾λ1

) must be true, and by proposition 2.13 we can remove it from the implications in (4.20)
and (4.21) to get

r (D1↾λ2) =⇒ qi ↔ λ2(qi) (4.23)

Then we quite recursively have the same setup when we need to simulate the next lemma application.
Thus, the complete translation of the derivation π1 and π2 into a VeriPB proof, would look like
this:

• First add reifications for D↾λ1 and D↾λ2 , by the redundance-based strengthening rule, as
explained in proposition 2.11.

• Then add (4.18) and (4.19) for each qi by the redundance-based strengthening rule. We
are not going to cover this in details here, but mainly sketch the idea on how this can be
done. First equation (4.18) is added by witnessing on ω = {qi → λ1(qi)}, which satisfies the
constraint itself, and as qi is fresh no other constraints are affected. Secondly the constraint
(4.19) is added by the same witness ω = {qi → λ1(qi)}, in which both (4.18) and (4.19) are
satisfied, and no other constraints are affected. Then we add equation (4.20) by the witness
ω = {qi → λ2(qi)}, where the constraint itself is satisfied, and only the constraints qi ↔ λ1(qi)
for the same qi, are affected. To derive these, we use the fact that in the redundance-based
strengthening rule to add a constraint C we have to show

F ∪ {¬C} ⊢ (F ∪ {C}) ↾ω (4.24)

which means that in our example we have

¬
(
r (D↾λ1

) ∧ r (D↾λ2) =⇒
(
qi + λ2(qi) ≥ 1

))
(4.25)

.
= ¬

(
r (D↾λ1) + r (D↾λ2) + qi + λ2(qi) ≥ 1

)
(4.26)

.
= r (D↾λ1

) + r (D↾λ2
) + qi + λ2(qi) ≥ 4 (4.27)
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exactly as showcased in example 2.5. Specifically because (4.20) is in disjunctive form, and
we have the negation of it, we can by proposition 2.6 derive r (D↾λ1) ≥ 1, from which both
constraints in r (D↾λ1

) =⇒ qi ↔ λ1(qi) are literal axiom implied. This means that (4.20)
can be added by the redundance-based strengthening rule, and the argument for why (4.21)
can be added is exactly the same.

• Add reifications for Pj for all j ≤ m1 by the redundance-based strengthening rule, again as
given in proposition 2.11. Then using the constraints r

(
Pj

)
=⇒ Pj we can "run" π1 as

explained in lemma 2.15 to derive
∧

j≤m1
r
(
Pj

)
=⇒ r (D1).

• Now perform π2 as usual until the first lemma application happens, and then use proposition
5.2 along with proposition 2.16 to derive r (D1↾λ1

) ≥ 1, and then also D1↾λ1
by proposition

2.12.

• Use r (D1↾λ1) ≥ 1 to "clean up" in the substitution constraints in (4.20) and (4.21) to get
(4.23).

• Keep performing π2 until the second lemma application happens, and then again use propo-
sition 5.2 along with proposition 2.16 to derive r (D1↾λ2

) ≥ 1, and then also D1↾λ2
.

• Now the rest of π2 can be performed as usual, and we end up concluding D2.

This exact method is not going to work in full generality as we will show in the following chapter,
but the core idea and derivations will stay the same.

5 Simulating nested lemmas
In this chapter we will generalize the method explained in the previous chapter to handle derivations
with lemmas such as

π1 : P1,1, P1,2, . . . , P1,m1
⊢ D1 (5.1)

π2 : P2,1, P2,2, . . . , P2,m2
⊢ D2 (5.2)

... (5.3)
πk : Pk,1, Pk,2, . . . , Pk,mk

⊢ Dk (5.4)

where πt is derived on variable set q⃗t, and π1, π2, . . . , πk are disjoint. At first we will prove that we
can simulate πk based on a few assumptions. One assumption is that we have already "performed"
π1, π2, . . . , πk−1 on reified premises, that is we have already derived

ms∧
j=1

r
(
Ps,j

)
=⇒ (r (Ds) ≥ 1) (5.5)

for all 1 ≤ s ≤ k − 1. To help ourselves, as this some notation that we will use often, we will for
any constraint C instead write

Imps(C)
.
=

ms∧
j=1

r
(
Ps,j

)
=⇒ C

 (5.6)
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to capture that the constraint C is implied by the premises of πs. The secondary assumption is that
when we "ran" π1, π2, . . . , πk−1 we also made sure that they cleaned up in the constraints needed
for variable substitution. This means that when we want to simulate all applications of π1 in πk

we have

r
(
D1↾λ1,1

)
=⇒ qi ↔ λ1,1(qi) (5.7)

r
(
D1↾λ1,1

)
∧ r

(
D1↾λ1,2

)
=⇒ qi ↔ λ1,2(qi) (5.8)

...

where λ1,j is the substitution for the j’th application of π1 in πk. Let J(πs) be the total number of
applications of πs in πk. Then we assume that we for all s < k and all j ≤ J(πs) have∧

j′<j

r
(
Ds↾λs,j′

)
∧ r

(
Ds↾λs,j

)
=⇒ qi ↔ λs,j(qi) (5.9)

where λs,j is the substitution for the j’th application of πs in πk. Using the two assumptions that
we have (5.5) and (5.9), we will prove that we can simulate πk in cutting planes.

Proposition 5.1. Let k ≥ 2 and let

π1 : P1,1, P1,2, . . . , P1,m1
⊢ D1

π2 : P2,1, P2,2, . . . , P2,m2
⊢ D2

...
πk : Pk,1, Pk,2, . . . , Pk,mk

⊢ Dk

be a derivation using lemmas performed on variable sets q⃗1, q⃗2, . . . , q⃗k respectively, which are disjoint.
Let λs,j be the variable substitution for the j’th application of πs in πk for s < k, for a total of
J(πs) applications. If we have a constraint database D which contains the premises of πk as well
as

∀s < k : Imps(Ds)
.
=

ms∧
j=1

r
(
Ps,j

)
=⇒ Ds

 (5.10)

∀s < k ∀j ≤ J(πs) : r
(
Ds↾λs,j

)
⇐⇒ Ds↾λs,j

(5.11)

∀s < k ∀j ≤ J(πs) ∀qi ∈ q⃗s :
∧
j′<j

r
(
Ds↾λs,j′

)
∧ r

(
Ds↾λs,j

)
=⇒ qi ↔ λs,j(qi) (5.12)

along with reification variables for all premises across π1, π2, . . . , πk. Then we can derive Dk in
cutting planes.

Proof. All steps in πk which are standard cutting planes rule can be performed as usual, since we
have the premises Pk,1, . . . , Pk,mk

. What we need to show is that we can translate each lemma
application in πk to a cutting planes derivation. I.e. that we can derive Ds↾λs,j

for all substitutions
λs,j . We will do so by induction on the number of lemma applications J(π1)+J(π2)+ · · ·+J(πk−1)
in πk.
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The base case
For the first lemma application there exists an s < k, such that λs,1 is the substitution for the
lemma application. By assumption of the lemma application rule, we must then have derived

Ps,1↾λs,1 , Ps,2↾λs,1 , . . . , Ps,ms
↾λs,1 (5.13)

previously in πk. By using these as well as Imps(Ds) and

∀qi ∈ q⃗k : r
(
Ds↾λs,1

)
=⇒ qi ↔ λs,1(qi) (5.14)

we can by proposition 5.2 and 2.16 derive r
(
Ds↾λs,1

)
=⇒

(
r
(
Ds↾λs,1

)
≥ 1

)
which when saturated

gives r
(
Ds↾λs,1

)
≥ 1, and can then be used to derive Ds↾λs,1

.

The induction step
Say we have reached the application using the substitution λs,j for a s < k and j ≤ J(πs). By our
induction hypothesis we have already derived Ds↾λs,j′ for all j′ < j regardless of the value of s. In

fact, we already have derived r
(
Ds↾λs,j′

)
≥ 1 as well, but this could also quickly be derived from

Ds↾λs,j′ . By repeated use of proposition 2.13 we can from∧
j′<j

r
(
Ds↾λs,j′

)
∧ r

(
Ds↾λs,j

)
=⇒ qi ↔ λs,j(qi) (5.15)

remove r
(
Ds↾λs,j′

)
for all j′ < j since we know that r

(
Ds↾λs,j′

)
≥ 1 and derive

r
(
Ds↾λs,j

)
=⇒ qi ↔ λs,j(qi) (5.16)

This corresponds to the same situation as in the base case, as we by proposition 5.2 and 2.16 can use
Imps(Ds) and (5.16) along with Ps,1↾λs,j , Ps,2↾λs,j , . . . , Ps,ms

↾λs,j which have already been derived
by assumption of the lemma application rule, to derive Ds↾λs,j

and r
(
Ds↾λs,j

)
≥ 1.

This derivation is thus a completely standard cutting planes derivation, and by proposition 2.16,
we could perform this on reified premises r

(
Pk,j

)
=⇒ Pk,j for all j ≤ mk, to at the en derive

Impk(Dk). Now the start of an inductive proof should start to emerge, as we see that we can "run"
πk on reified premises, and partly achieve the assumption we would need if we were to have a πk+1.
The other part missing, is the assumption that πk also "cleans up" in the constraints for variable
substitution in πk+1 and further derivations, if there are any. The following example will highlight
what exactly we mean: Say we have π1, π2, π3 which is a derivation with lemmas with conclusions
D1, D2, D3 respectively. If π1 is applied once in π2 with λ1,1 and once in π3 with λ1,2, then we will
need our substitution constraints for these applications to be

r
(
D1↾λ1,1

)
=⇒ qi ↔ λ1,1(qi) (5.17)

r
(
D1↾λ1,1

)
∧ r

(
D1↾λ1,2

)
=⇒ qi ↔ λ1,2(qi) (5.18)

When we say "clean up", what we mean is that when running π2 on reified premises, we want
it to remove all the variable r

(
D1↾λ1,1

)
from all substitution constraints needed in subsequent
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derivations, such that when we want to run π3 (possibly on reified premises) there are no references
to previous lemma applications. The problem is that when we run π2 on reified premises we never
actually derive D1↾λ1,1

, instead we would derive Imp2(D1↾λ1,1
), as explained in lemma 2.15, from

which we cannot conclude that r
(
D1↾λ1,1

)
≥ 1.

This is the last hurdle that we need to solve before we can prove the translation in full gen-
erality. The solution is in fact, quite intuitive. If we are not deriving D1↾λ1,1 in π2, but instead
Imp2(D1↾λ1,1), then replace the condition in the substitution constraints from (5.17) and (5.18)
with

r
(
Imp1(D1↾λ1,1)

)
=⇒ qi ↔ λ1,1(qi) (5.19)

r
(
Imp1(D1↾λ1,1

)
)
∧ Imp2(r

(
D1↾λ1,2

)
) =⇒ qi ↔ λ1,2(qi) (5.20)

The fact that these can still be used to perform the lemma applications is just an argument com-
bining proposition 5.2 and proposition 2.16, and the formal statement along with proof is given in
the following proposition.

Proposition 5.2. π : P1, . . . , Pm ⊢ D be a cutting planes derivation over variable set q⃗ which is
disjoint from x⃗. Let λ : q⃗ → Lit(x⃗) ∪ {0, 1} be a substitution, and let

Imp(C)
.
=

m2∧
j=1

r (Bj) =⇒ C


denote that C is conditionally implied by some premises B1, . . . , Bm2

. If we have a constraint
database D which contains

∀qi ∈ q⃗ : r (Imp(D↾λ)) =⇒ qi ↔ λ(qi) (5.21)
∀j ≤ m : Imp(Pj↾λ) (5.22)∧

j≤m

r
(
Pj

)
=⇒ (r (D) ≥ 1) (5.23)

along with reification constraints for all the reification variables, then we can derive
r (Imp(r (D↾λ))) ≥ 1 using O(|q⃗| ·m) cutting planes steps.

Proof. We notice that the only difference between this setup and the one in proposition 4.1, is
that the constraints in (5.21) and (5.22) are implied conditionally. Thus, as the derivation given
in proposition 4.1 is a cutting planes derivation, we can by proposition 2.16 perform the same
derivation on these conditionally implied constraints instead, and thus derive∧

j≤m2

r (Bj) ∧ r (Imp(D↾λ)) =⇒ (r (D↾λ) ≥ 1) (5.24)

this we can by proposition 2.12 use to get∧
j≤m2

r (Bj) ∧ r (Imp(D↾λ)) =⇒ D↾λ (5.25)

32



but in our syntax this corresponds exactly to

r (Imp(D↾λ)) =⇒

 ∧
j≤m2

r (Bj)∧ =⇒ D↾λ

 (5.26)

.
= r (Imp(D↾λ)) =⇒ Imp(D↾λ) (5.27)

here we again can use proposition 2.12 to get

r (Imp(D↾λ)) =⇒ (r (Imp(D↾λ)) ≥ 1) (5.28)
.
= r (Imp(D↾λ)) + r (Imp(D↾λ)) ≥ 1 (5.29)

which when saturated gives us the desired conclusion r (Imp(D↾λ)) ≥ 1

Now we only have one thing remaining to prove. The fact that we can actually add the sub-
stitution constraints at the very start of the translation. Then finally we will in theorem 1 show
that we can combine all these propositions, and thereby translate any derivation with lemmas to a
VeriPB derivation.

5.1 Substition of variables
The first proposition will allow us to add the necessary substitution constraints for all applications
of a single lemma, which is across all other derivations.

Proposition 5.3. Let

π1 : P1,1, . . . , P1,m1
⊢ D1

...
πk : Pk,1, . . . , Pk,mk

⊢ Dk

be a derivation with lemmas on respectively the variable sets q⃗1, q⃗2, . . . , q⃗k which are all disjoint. Let
J(πs) ∈ N0 denote the total number of times πs is being applied across πs+1, . . . , πk. Furthermore,
let λj : q⃗s → Lit(q⃗tj )∪{0, 1} be the variable substitution for the j′th lemma application of πs which
is done in πtj , for 1 ≤ s < tj ≤ k. Recall the notation

Impt(C)
.
=

mt∧
j=1

r
(
Pt,j

)
=⇒ C

 (5.30)

for the constraint capturing that the premises of πt implies C. If the constraint database D of cur-
rently derived constraints does not contain any constraint with variables from q⃗s, and if D contains
the reification variables for all premises across πs+1, πs+2, . . . , πk. Then for all applications of πs,
i.e. for all j ≤ J(πs) we can add

r
(
Imptj (Ds↾λj )

)
⇐⇒ Imptj (Ds↾λj ) (5.31)
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as well as ∧
j∗<j

r
(
Imptj∗

(Ds↾λj∗ )
)
∧ r

(
Imptj (Ds↾λj )

)
=⇒ (qi ↔ λj(qi)) (5.32)

for all qi ∈ q⃗s.

Proof. We can add the constraints in (5.31) for all j ≤ J(πs) by proposition 2.11, notice also that
these constraints are over variables in q⃗tj for tj > s and reification variables of the premises in πtj .
This means that q⃗s is still fresh
Now recall that equation (5.32) is syntactic sugar 2 for the following two constraints:

Cj,i
.
=

∑
j∗<j

r
(
Imptj∗

(Ds↾λj∗ )
)
+ r

(
Imptj (Ds↾λj )

)
+ qi + λj(qi) ≥ 1

 (5.33)

Bj,i
.
=

∑
j∗<j

r
(
Imptj∗

(Ds↾λj∗ )
)
+ r

(
Imptj (Ds↾λj )

)
+ qi + λj(qi) ≥ 1

 (5.34)

So we need to prove that the constraints Cj,i and Bj,i can be added to D for all j ≤ J(πs), and all
qi ∈ q⃗s. We will prove that we can add them for each qi ∈ q⃗s based on induction on j.

Base case j = 1:
Fixing qi ∈ q⃗s, we will first add the constraint

C1,i
.
=

(
r
(
Impt1(Ds↾λ1

)
)
+ qi + λ1(qi) ≥ 1

)
(5.35)

to D. We do so by the redundance-based strengthening rule, using the witness ω = {qi → λj(qi)}.
Recalling the rule we need to show that

D ∪ {¬C1,i} ⊨ (D ∪ {C1,i}) ↾ω (5.36)

Notice that C1,i↾ω is satisfied, thus as we have shown in proposition 2.7, it is trivial to derive. As we
assumed that D does not contain any constraints with qi, none of the constraints in D are affected
by ω, thus the implication D ⊨ D↾ω is trivial, as they are equal.

This means that the derivation neccesary for satisfying the condition in equation (5.36) is quite
trivial, and we can add C1,i to D. Doing this for each qi ∈ q⃗t can be done, as they all witness on
differenct qi, which means each witness will not affect any other constraint.
Now we have the constraint database

D∗ := D ∪ {C1,i | ∀qi ∈ q⃗s} (5.37)

to which we will again fix qi ∈ q⃗s and add the constraint

B1,i
.
=

(
r
(
Impt1(Ds↾λ1)

)
+ qi + λ1(qi) ≥ 1

)
(5.38)

2At this point it perhaps doesn’t feel like sugar anymore, but resembles more the feeling of chewing a lemon,
however it is still easier to digest this syntax than if we were to write out everything
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again by the same witness ω = {qi → λ1(qi)}, which means that ω(qi) = ω(qi) = λ1(qi). Again we
notice that both C1,i↾ω and B1,i↾ω are satisfied under this witness. This means that both of these
are trivial to derive, and as argued before none of the constraints in D are affected by ω, as well
as the other constraints C1,i′ and B1,i′ for different qi′ ̸= qi in q⃗s. Finally we conclude that both
C1,i and B1,i can be added to D for each qi ∈ q⃗t, therefore we have as desired that we can achieve
D1 := D∪{C1,i | ∀qi ∈ q⃗s}∪ {B1,i | ∀qi ∈ q⃗s}. Now concluding that we can add equation (5.32) for
j = 1.

Inductive step j ≥ 2:
Using the definition as above we recursively define:

Dj := Dj−1 ∪ {Cj,i | ∀qi ∈ q⃗s} ∪ {Bj,i | ∀qi ∈ q⃗s} (5.39)

for j ≤ J(πs). By the induction hypothesis we currently have the constraint database Dj−1, and
wish to achieve Dj .

Again let qi ∈ q⃗s be fixed. To introduce the constraint Cj.i, we will by the very same manner as
previously use the redundance-based strengthening rule with the witness ω = {qi → λj(qi)}. Again
we notice that the constraint itself is satisfied under this witness, and can be derived trivially. The
only other constraints in Dj−1 which contain qi are Cj∗,i and Bj∗,i for all j∗ < j, thus the necessary
condition to add Cj , i to Dj−1 is to show that

Dj−1 ∪ {¬Cj,i} ⊨ {Cj∗,i↾ω | ∀j∗ < j} ∪ {Bj∗,i↾ω | ∀j∗ < j} (5.40)

Lets fix j∗ < j and derive Cj∗,i↾ω and Bj∗,i↾ω which we will do by using ¬Cj,i. Notice that Cj,i is
a constraint in disjunctive form, thus we have that

¬Cj,i
.
=

∑
j′<j

r
(
Imptj′

(Ds↾λj′ )
)
+ r

(
Imptj (Ds↾λj

)
)
+ qi + λj(qi) ≥ j + 2

 (5.41)

and from this we can derive r
(
Imptj′

(Ds↾λj′ )
)
≥ 1 for any j′ < j, as explained in proposition 2.6.

Specifically we can derive r
(
Imptj∗

(Ds↾λj∗ )
)

≥ 1 from which we can simply add literal axioms
until we get

Cj∗,i↾ω
.
=

 ∑
j′<j∗

r
(
Imptj′

(Ds↾λj′ )
)
+ r

(
Imptj∗

(Ds↾λj∗ )
)
+ λj(qi) + λj∗(qi) ≥ 1

 (5.42)

Likewise we could add literal axioms to r
(
Imptj∗

(Ds↾λj∗ )
)
≥ 1 until we get

Bj∗,i↾ω
.
=

 ∑
j′<j∗

r
(
Imptj′

(Ds↾λj′ )
)
+ r

(
Imptj∗

(Ds↾λj∗ )
)
+ λj(qi) + λj∗(qi) ≥ 1

 (5.43)

As j∗ was arbitrary, this derivation can be done for all j∗ < j. Thus we have

{¬Cj,i} ⊢ {Cj∗,i↾ω | ∀j∗ < j} ∪ {Bj∗,i↾ω | ∀j∗ < j}
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which means the criteria for the redundance-based strengthening rule is satisfied, and Cj,i can be
added to Dj−1.

We add Bj,i by exactly the same argument. We let ω = {qi → λj(qi)} where both Cj,i↾ω and
Bj,i↾ω are satisfied and by exactly the same argument as above we have that

{¬Bj,i} ⊢ {Cj∗,i↾ω | ∀j∗ < j} ∪ {Bj∗,i↾ω | ∀j∗ < j}

by literal axiom implication. Again we can do this for each qi ∈ q⃗t as the witness will not interfere
with Cj,i′ and Bj,i′ for qi′ ̸= qi. Finally we conclude that we can get the formula Dj .

The main assumption that made proposition 5.3 possible was that there were no constraints
in D which contained variables from q⃗s. To clarify how this is going to be achieved, first we will
clarify which variables are needed to add the reification variables we need for proposition 5.3. Let
us unpack the reification variable r

(
Imptj (Ds↾λj )

)
To introduce it we need

r
(
Imptj (Ds↾λj )

)
=⇒ Imptj (Ds↾λj ) (5.44)

r
(
Imptj (Ds↾λj )

)
⇐= Imptj (Ds↾λj ) (5.45)

So for these to be added we need the variables occuring in Imptj (Ds↾λj
). Now we unpack the next

layer of syntax and see

Imptj (Ds↾λj )
.
=

 ∧
l≤mtj

r
(
Ptj ,l

)
=⇒ Ds↾λj

 (5.46)

This means we need variables in Ds↾λj which are q⃗tj , and recall that tj > s. We also need the

reification variables for the premises r
(
Ptj ,l

)
of πtj . This means that when we want to add the

reification constraints in (5.44) and (5.45) we have to have already setup the substitution constraints
for πtj . If we were to do it for πs first, which is applied in πtj , the variables in q⃗tj would not be
fresh anymore, and we could not apply proposition 5.3. If we do it in "reverse" order, i.e. setup
all substitution constraints for πk first (which are none, as πk can never being applied anywhere),
then the variables in πk−1 are still fresh, and we can still apply proposition 5.3 for πk−1. This is the
main idea, that lets us add the substitution constraints for all applications across all derivations.

Lemma 5.4. Let

π1 : P1,1, . . . , P1,m1
⊢ D1

...
πk : Pk,1, . . . , Pk,mk

⊢ Dk

be a sequence of derivations with lemmas on respectively the variable sets q⃗1, q⃗2, . . . , q⃗k which are
all disjoint. Let λs,j : q⃗s → q⃗ts,j be the variable substitution for the j’th lemma application of
πs which is done in πts,j , for 1 ≤ s < ts,j ≤ k, for a total of J(πs) ∈ N0 applications of πs.
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Let F
.
=

{
Pk,1, Pk,2, . . . , Pk,mk

}
. To F we can then add reification variables for all premises and

conclusions in π1, π2, . . . , πk, namely the constraints

∀s ≤ k; ∀l ≤ ms : r
(
Ps,l

)
⇐⇒ Ps,l

∀s ≤ k : r (Ds) ⇐⇒ Ds

Furthermore we can also add reifications for the conclusions of all lemma applications, which are
the constraints

∀s ≤ k; ∀j ≤ J(πs) : r
(
Ds↾λs,j

)
⇐⇒ Ds↾λs,j (5.47)

and the substitution constraints for all applications, which are∧
j∗<j

r
(
Impts,j∗

(Ds↾λs,j∗ )
)
∧ r

(
Impts,j (Ds↾λs,j

)
)
(qs,i ↔ λs,j(qs,i)) (5.48)

for all s ≤ k, j ≤ J(πs) and qs,i ∈ q⃗s.

Proof. To show all of these can be added we will do so by induction on s = k, k− 1, k− 2, . . . , 1. In
each step we let Ds be the current constraint database and the induction hypothesis will be that

• All variables across q⃗s, q⃗s−1, . . . , q⃗1 are still fresh with respect to Ds, or we are in the case of
s = k.

• The reification variables for premises and conclusions of πs+1, πs+2, . . . , πk are in Ds.

• The reification variables for all applications of πs+1, πs+2, . . . , πk are in Ds, these are the
constraints in equation (5.47).

• The substitution constraints in equation (5.48), for all applications of πs+1, πs+2, . . . , πk are
in Ds

Thus, when the step for s = 1 is done, we have added all constraints listed in the lemma.
The base case s = k:

At first we add reifications of all premises of πk, and the conclusion Dk by proposition 2.11. We
let this constraint database be denotes as Dk. As πk is not being applied by any other derivation,
there are no constraints on the form in 5.47 and 5.48 to add. Notice that all constraints in Dk are
over variables in q⃗k, therefore all variables across q⃗k−1, q⃗k−2, . . . , q⃗1 are fresh.

Induction step s < k:
By our induction assumption all variables across q⃗s+1, q⃗s+2, . . . , q⃗k are fresh. Specifically because
q⃗s is fresh, we can apply proposition 5.3 to add the reification constraints

r
(
Ds↾λs,j

)
⇐⇒ Ds↾λs,j (5.49)

for all j ≤ J(πs) as well as the substitution constraint∧
j∗<j

r
(
Impts,j∗

(Ds↾λs,j∗ )
)
∧ r

(
Impts,j (Ds↾λs,j

)
)
(qs,i ↔ λs,j(qs,i)) (5.50)

also for all j ≤ J(πs). Lastly we add the reification variables for the premises and conclusion of
πs by proposition 2.11. Know we have added all the constraints for the induction hypothesis, and
none of the constraints added include variables from q⃗s−1, q⃗s−2, . . . , q⃗1.
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5.2 Simulating in full generality
Now on to the concluding theorem of the thesis. In here we combine the previous lemmas, to show
that in full generality, we can translate a proof with lemmas into a VeriPB proof more efficiently
than simply inlining all lemma applications. The ideas in this proof are completely similar to the
ones already presented, and it purely a matter of arguing that these different ideas can be combined.

Theorem 1. Let

π1 : P1,1, . . . , P1,m1
⊢ D1 (5.51)

π2 : P2,2, . . . , P2,m2
⊢ D2 (5.52)

...
πk : Pk,1, . . . , Pk,mk

⊢ Dk (5.53)

be a sequence of derivations with lemmas, on respectively the variable sets q⃗1, q⃗2, . . . , q⃗k which are
all disjoint. Then we can translate this into a VeriPB proof. That is there exists a derivation
π∗ : Pk,1, . . . , Pk,mk

⊢ Dk which uses only the cutting planes rules of inference along with the
redundance-based strengthening rule. Let M := maxs≤k mk be the maximum number of premises
for any of the derivations, and let N := maxs≤k |q⃗s| be the maximum number of variables in any
of the derivations. If L is accumulated length of π1, π2, . . . , πk then the length of π∗ is at most
O(L ·MN).

Proof. We start by letting λs,j : q⃗s → q⃗ts,j denote the variable substitution for the j’th lemma

application of πs, which is in πts,j for 1 ≤ s < ts,j ≤ k. Let F
.
=

{
Pk,1, Pk,2, . . . , Pk,mk

}
be

our starting formula. As explained in lemma 5.4, we can reify all premises and conclusions of
π1, π2, . . . , πk, as well as the conclusions of all lemma applications in π1, π2, . . . , πk:

∀s ≤ k; ∀j ≤ J(πs) : r
(
Ds↾λs,j

)
⇐⇒ Ds↾λs,j

(5.54)

and add all the substitution constraints∧
j∗<j

r
(
Impts,j∗

(Ds↾λs,j∗ )
)
∧ r

(
Impts,j (Ds↾λs,j

)
)

=⇒ (qs,i ↔ λs,j(qs,i)) (5.55)

for all s ≤ k, j ≤ J(πs), and qs,i ∈ q⃗s. Now we will prove by induction on t = 1, 2, . . . , k that we
can derive Impt(Dt) assuming that

• We have already derived Imps(Ds) for all s < t.

• For s < t, we will define

PA(s, t) :=
{

Impts,j (Ds↾λs,j
)
∣∣∣ ∀λs,j where ts,j < t

}
(5.56)

be the set of conclusions of all lemma applications of πs which happen before πt, i.e. in
πs+1, πs+2, . . . πt−1. We assume also that all constraints in PA(s, t) have been derived, for all
s < t.
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Base case t = 1:
Deriving Imp1(D1) is done simply by "running" π1 using
r
(
P1,1

)
=⇒ P1,1, r

(
P1,2

)
=⇒ P1,2, . . . , r

(
P1,m1

)
=⇒ P1,m1

as shown in lemma 2.15, because
there are no lemma applications in π1. For the same reason we know that PA(1, 2) = ∅, and the
induction hypothesis is satisfied.

Induction step t > 1:
As we have argued many times, any step E in πt which is not a lemma application we can perform
correspondingly to get Impt(E). The main thing to worry about are the lemma applications in πt.
I will only argue for one lemma application that we can simulate it, since it is an argument we have
already seen before in the proof of proposition 5.1. So assume want to achieve the conclusion of
the lemma application which uses λs,j for some fixed szt and j ≤ J(πs), this means that ts,j = t.
Thereby we also assume that we have already achieved the conclusions of previous applications of
πs in πt. The substitution constraints for this application are∧

j∗<j

r
(
Impts,j∗

(Ds↾λs,j∗ )
)
∧ r

(
Impt(Ds↾λs,j

)
)

=⇒ (qs,i ↔ λs,j(qs,i)) (5.57)

Since for all j∗ < j we know that the lemma application for λs,j∗ is either in ts,j∗ < t, where we by
induction hypothesis have that Impts,j∗

(Ds↾λs,j∗ ) has been derived, or it is the case that ts,j∗ = t

and have been performed already in πt, and yet again we know that Impts,j∗
(Ds↾λs,j∗ ) has been

derived. By proposition 2.12 we can therefore also derive r
(
Impts,j∗

(Ds↾λs,j∗ )
)
≥ 1 for all j∗ < j.

Using these we can use proposition 2.13 to remove these reification variables from (5.57) and get

r
(
Impts,j (Ds↾λs,j )

)
=⇒ (qs,i ↔ λs,j(qs,i)) (5.58)

From the assumption of the lemma application rule, we also derived{
Impt(Ps,1↾λs,j ), Impt(Ps,2↾λs,j ), . . . , Impt(Ps,ms

↾λs,j )
}

(5.59)

and from these along with Imps(Ds) which we have by our induction assumption, and (5.58) we
can use proposition 5.2 to derive Impt(Ds↾λs,j ), as desired. By this argument we can perform all
lemma applications in πt and at the end conclude Impt(Dt). Thereby we thus have also derived all
constraints in PA(s, t+ 1) for all s ≤ t.

By the induction above we are able to derive Impk(Dk), and since we have the premises Pk,l

for l ≤ mk, we can use these to get r
(
Pk,l

)
≥ 1 as explained in proposition 2.12. By knowing that

r
(
Pk,l

)
≥ 1 we can remove them from Impk(Dk) by proposition 2.13 and at the end be able to

derive the desired conclusion Dk.
Any cutting planes step in π1, π2, . . . , πk corresponds to at most O(M) steps in this VeriPB

proof, as explained in when performing a derivation on reified premises in lemma 2.15. The steps
which are lemma applications do require O(MN) steps in our VeriPB proof, so even if all steps in
π1, π2, . . . , πk were lemma applications the length of the VeriPB proof would be at most O(L ·MN).
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6 Conclusion
In this thesis we introduce some of the Pseudo-Boolean reasoning allowed in VeriPB. When doing
so, we introduced notation to ease comprehension of later proofs, but thereby also showed that this
notation lends itself to a very natural interpretation, through basic cutting planes derivations. We
also introduce and discussed what it would mean to extend cutting planes with a rule of inference
which allowed reuse of derivations, or as we called it to apply lemmas. The introduction of such
a rule does not allow for completely new ways of reasoning, however it does enable proofs to be
a polynomial factor shorter, and would thereby be more efficient in practice. How such a rule
would be implemented in practice is a project in itself, as there should be some considerations
as to how combinatorial solvers work. We also showed that our (perhaps naive) definition for a
lemma application rule is incompatible with the redundance-based strengthening rule, and thus
incompatible with VeriPB. We therefore showed how derivations using lemmas, could be simulated,
or translated into proofs with cutting planes and redundance-based strengthening. We showed this
in steps, in which chapter 4 introduced the fundamental idea, that we can add constraints using
redundance-based strengthening, which would allow us to not only substitute variables, but also
to translate steps which applied lemmas into standard cutting plane proofs. Then it was slowly
generalized to handle "lemmas using lemmas" recursively, and finally in theorem 1 we combine all
the ideas and show that we in general can translate any sequence of derivations with lemmas into
a cutting planes with redundance-based strengthening proof.

6.1 Limitations
As shown in proposition 5.2, to translate a single lemma application step does require the cutting
planes derivation to be O(m · n) steps, where m is the number of premises in the lemma and n is
the number of variables in the lemma. This means that any translation of a derivation with lemmas
can cause an increased of size O(mn) in length. In any case were the length of the lemma being
applied is smaller than O(mn) it would be more efficient to instead just inline the lemma, but our
belief is that more often than not, the lemma will be significantly longer than O(mn). In practice
a factor of O(mn) is significant, and it is not clear how efficiently such a translation could be in
practice.

Another limitation of our approach is that it requires that we know the full layout of the
derivation using lemmas, before we start the translation. This means we would be unable to
translate such a derivation in an online fashion. This also means that even combinatorial solvers
could not use this approach to reuse derivations while solving a problem, and we would have to
allow them another rule set, and then afterwards translate into a certificate that could be verified
by VeriPB.
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