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Abstract
We exhibit supercritical trade-off for monotone circuits, showing

that there are functions computable by small circuits for which any

small circuit must have depth superlinear or even super-polynomial

in the number of variables, far exceeding the linear worst-case

upper bound. We obtain similar trade-offs in proof complexity,

where we establish the first size-depth trade-offs for cutting planes

and resolution that are truly supercritical, i.e., in terms of formula

size rather than number of variables, and also show supercritical

trade-offs between width and size for treelike resolution.

Our results build on a new supercritical width-depth trade-off

for resolution, obtained by refining and strengthening the compres-

sion scheme for the cop-robber game in [Grohe, Lichter, Neuen

& Schweitzer 2023]. This yields robust supercritical trade-offs for

dimension versus iteration number in the Weisfeiler–Leman al-

gorithm, which also translate into trade-offs between number of

variables and quantifier depth in first-order logic. Our other results

follow from improved lifting theorems that might be of independent

interest.
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1 Introduction
Computational complexity aims to understand the amount of dif-

ferent resources—such as running time or memory—required in

order to solve computational problems. An important question is to

understand how resources interact: can they be optimized simulta-

neously or are there problems where there is necessarily a trade-off,

when optimizing one resource leads to a substantial increase in the

others? Traditionally, the strongest trade-offs between two com-

plexity measures, say 𝜇 and 𝜈 , have been of the following form: it

is possible to solve the problem with a small value for 𝜇 and with a

small value for 𝜈 , but optimizing 𝜇 causes 𝜈 to increase to nearly

the value obtained from the brute-force worst-case algorithm (see

Figure 1a). In this setting, robust trade-offs have been established,

where we cannot even approximately optimize 𝜇 without a blow-up

for 𝜈 (corresponding to a tall infeasible region in Figure 1).

Razborov [52] showed that trade-offs exist which go far beyond

this regime, where optimizing one measure causes the other to

increase beyond its worst-case value (see Figure 1b). These supercrit-
ical trade-offs have mostly appeared in proof complexity [4, 8, 9,

11, 15, 18, 26, 52–54] (including the works [4, 8, 9] predating [52])

and finite model theory [12, 33]. Recent papers [23, 26, 30] have

raised the question of whether there are supercritical trade-offs in

circuit complexity. In this work, we give an affirmative answer to

this question.

1.1 Trade-offs in Circuit Complexity
In circuit complexity, different measures of the cost associated with

computing a Boolean functions with families of Boolean circuits,

such as size or depth, are of interest. The size of a circuit is the

number of gates in it, and depth refers to the longest path from

input to output. An intriguing challenge in complexity theory is

presented by the perfect matching problem. Although it has been

known to be solvable in polynomial time for nearly 70 years [22],

many questions about this problem remain unresolved, in particular,
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Figure 1: An illustration of trade-offs. Blue dots represent provable upper bounds on measures 𝜇 and 𝜈 . Proofs with measures in
the shaded region are ruled out by the trade-off, where 𝜇worst and 𝜈worst are the worst-case upper bound on 𝜇 and 𝜈 , respectively.
Figure 1a illustrates a non-supercritical trade-off and Figure 1b illustrates a supercritical one.

regarding its monotone complexity. In a breakthrough result in 1985,

Razborov [49] proved the first superpolynomial size lower bound for

monotone circuits—Boolean circuits with only AND and OR gates,

and no negations—for two functions: 𝑘-clique and bipartite perfect

matching. (Independently, Andreev [2] showed an exponential size

lower bound for a different function.)

A few years later, Alon and Boppana [1] improved the lower

bound for 𝑘-clique to exponential for large 𝑘 . For bipartite perfect

matching, however, Razborov’s lower bound remains the state of

the art. Raz and Wigderson [48] proved a depth-Ω(𝑛) lower bound,
where 𝑛 is the number of vertices of the graph and the function

has Θ(𝑛2) inputs. This lower bound is tight, as there are monotone

circuits that compute bipartite perfect matching in depth O(𝑛) and
size 2

O(𝑛)
. In fact, this rather straightforward upper bound remains

the best known to this day. Are there monotone circuits computing

bipartite perfect matching in size 𝑛O(log𝑛)
? If so, why have we not

yet been able to find them? And if not, why have we not been able

to prove a stronger lower bound?

One possible answer to these questions could be that we have

not been able to prove exponential lower bounds because they are

simply not true, and that we have not been able to find smaller

monotone circuits computing perfect matching because they look
different. We already know that if there is a monotone circuit of

size 𝑛O(log𝑛)
that computes bipartite perfect matching then it must

have depth at least Ω(𝑛). But what if any monotone circuit of

size 𝑛O(log𝑛)
requires even larger depth, say depth 𝑛Ω (log𝑛)

? This

could sound like an absurd hypothesis—how can a small circuit

require superlinear depth? It is natural to ask, as was done in [23,

26, 30], if there are any monotone functions that exhibit this kind

of supercritical trade-off behavior, where small circuits exist but

any small circuit requires superlinear depth. We prove this is the

case, even for the stronger model of monotone real circuits, where
gates can compute any monotone function from two real numbers

to a real number.

Theorem 1.1 (Monotone circuit trade-offs (informal)).

There are 𝑁 -variate Boolean functions 𝑓𝑁 such that:

(1) 𝑓𝑁 is computable by monotone Boolean circuits with size 𝑠
polynomial in 𝑁 , but any monotone real circuit with size at
most 𝑠1.4 computing 𝑓𝑁 must have depth at least 𝑁 2.4.

(2) 𝑓𝑁 is computable by monotone Boolean circuits with size 𝑠
quasi-polynomial in 𝑁 , but any monotone real circuit with
size at most 𝑠 ·exp

(
(log𝑁 )1.9

)
computing 𝑓𝑁 must have depth

superpolynomial in 𝑁 .

The functions we present that exhibit this behavior are obtained

from new supercritical trade-offs in the neighboring field of proof

complexity, which we discuss next.

1.2 Trade-offs in Proof Complexity
Proof complexity studies how efficient certificates of unsatisfiabil-

ity of formulas in conjunctive normal form (CNF) can be. In this

study, the Tseitin formulas—unsatisfiable systems of mod 2 linear

equations—have played a pivotal role. In particular, they were used

to prove the first proof complexity lower bounds in [58] (for a re-

stricted version of the well-studied resolution proof system). Since

then, the Tseitin formulas have been central in understanding the

reasoning power of proof systems, and, in particular, in establish-

ing lower bounds for them; see [25] for a survey. A particularly

intriguing case in this regard is the cutting planes proof system,

which captures reasoning in terms of {0, 1}-linear inequalities. The
first paper studying the complexity of cutting planes proofs [19]

conjectured that the Tseitin formulas were hard to prove in cutting

planes, and this was reiterated in [7, 37]. While lower bounds on

the size of cutting planes proofs have been established for a variety

of formulas [13, 24, 30, 35, 46, 57], determining the complexity of

cutting planes refutations of Tseitin formulas remained open.

In a surprising turn of events, Dadush and Tiwari [20] exhibited

small (quasi-polynomial size) cutting planes proofs of the Tseitin

formulas. Notably, these proofs also have quasi-polynomial depth,

far exceeding the linear worst-case upper bound. This raised the

question of whether the depth of any small cutting planes proof of

the Tseitin formulas must be supercritical [5, 23, 26], which would

give a partial explanation as to why these proofs took so long to

find.

Progress on this question was made in [14, 23], by showing that

any cutting planes proof of the Tseitin formulas on 𝑛 variables re-

quires depth Ω(𝑛); and in [15, 26], by constructing families of CNF

formulas which exhibit supercritical size-depth trade-offs for cut-

ting planes. The latter result is somewhat unsatisfactory, however,
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as the trade-off is supercritical only in the number of variables and

not in the size of the formula. This differs from the upper bound

in [20], which is supercritical in terms of the formula size as well.

In this work, we will refer to trade-offs that are supercritical in the

input size—rather than in the number of variables—as truly super-

critical. We give the first truly supercritical size-depth trade-offs

for cutting planes.

Theorem 1.2 (Cutting planes trade-offs (informal)). There
are 3-CNF formulas 𝐹𝑁 of size 𝑆 (𝐹𝑁 ) over 𝑁 variables such that:

(1) Resolution refutes 𝐹𝑁 in size 𝑆 (𝐹𝑁 ⊢⊥) polynomial in 𝑁 , but
any cutting planes refutation with size at most 𝑆 (𝐹𝑁 ⊢⊥)1.4
must have depth at least 𝑆 (𝐹𝑁 )2.4.

(2) Resolution refutes 𝐹𝑁 in size 𝑆 (𝐹𝑁 ⊢⊥) quasi-polynomial
in 𝑁 , but any cutting planes refutation with size at most
𝑆 (𝐹𝑁 ⊢⊥)· exp

(
(log𝑁 )1.9

)
must have depth at least super-

polynomial in 𝑁 .

As cutting planes is stronger than resolution, the theorem also

implies the first truly supercritical size-depth trade-offs for resolu-

tion. Except for [4, 8, 9], no such results were known. In this work,

we also obtain truly supercritical trade-offs for other combinations

of complexity measures, which we state next.

First, we restrict our attention to resolution proofs that look

like trees. The seminal work [52] provides formulas for which any

low-width treelike resolution proof must have size that is doubly-
exponential in the number of variables. Again, the lower bound is

not supercritical in terms of the formula size. We establish a truly

supercritical width-size trade-off for treelike resolution.

Theorem 1.3 (Width-size trade-offs (informal)). There are
CNF formulas 𝐹𝑁 of size 𝑆 (𝐹𝑁 ) = poly(𝑁 ) over 𝑁 variables such
that:

(1) Resolution refutes 𝐹𝑁 in width𝑊 (𝐹𝑁 ⊢⊥) = 𝑜 (log𝑁 ), but
any treelike refutation with width at most 1.4 ·𝑊 (𝐹𝑁 ⊢⊥)
must have size at least exp

(
𝑆 (𝐹𝑁 )2.4

)
.

(2) Resolution refutes 𝐹𝑁 in width𝑊 (𝐹𝑁 ⊢⊥) = 𝑜
(
(log𝑁 )3/2

)
,

but any treelike resolution refutation with width at most
𝑊 (𝐹𝑛 ⊢⊥)+40 log𝑁

log log𝑁
must have size at least exp

(
𝑆 (𝐹𝑁 )𝜔 (1) ) .

Underlying each of these results is the first truly supercritical

width-depth trade-off that is non-trivially robust—we use this to

obtain our other trade-offs by applying several (new or improved)

lifting theorems.

Theorem 1.4 (Width-depth trade-offs (informal)). For any
constants 𝐶 and 𝛿 ∈ (0, 1), there are 4-CNF formulas 𝐹𝑁 of size
𝑆 (𝐹𝑁 ) = Θ(𝑁 ) over 𝑁 variables which have resolution refutations
with width𝑤 = ⌊ 𝑛

2 ln𝑛
⌋ + 3, such that:

(1) 𝑁 = poly(𝑛) and any refutation of width at most𝑤 +𝐶 has
depth exponential in poly(𝑆 (𝐹𝑁 )).

(2) 𝑁 = 𝑜 (2𝑛/2) and any refutation of width at most (1+𝛿)𝑤 has
depth superlinear in 𝑆 (𝐹𝑁 ).

Prior to our work, the only truly supercritical trade-off for width

versus depth was due to Berkholz [9]. However, the trade-off there

has no robustness (i.e., it holds only for the minimum width) and

so cannot be used to obtain other trade-offs.

1.3 Trade-offs for Weisfeiler–Leman
Perhaps somewhat surprisingly, all of the results above are ob-

tained by studying the well-known Weisfeiler–Leman algorithm
for classifying graphs and, more generally, relational structures.

This algorithm appears as a subroutine in Babai’s celebrated graph

isomorphism result [3], is related to machine learning [32, 44, 45],

and has also turned out to be relevant for other areas [34, 39]. The

1-dimensional version of the algorithm applied to graphs, known

as color refinement, starts by coloring all vertices according to their

degree. This coloring is then iteratively refined by distinguishing

vertices if their multisets of neighborhood colors differ. The process

stops when a stable coloring is reached, i.e., no further pair of ver-

tices of the same color gets different colors. The 𝑘-dimensional ver-
sion of the algorithm (𝑘-WL) instead performs colorings of 𝑘-tuples

of vertices, or of elements in more general relational structures.

Another parameter of interest is the iteration number, which is the

number of refinement steps until the coloring stabilizes.

It is easy to see that the iteration number of 𝑘-WL is at most

𝑛𝑘 − 1, and this can be slightly improved [33, 40, 42]. For a long

time, the best lower bound was linear [27] until the works [12, 33]

showed that 𝑛Ω (𝑘 )
iterations can be necessary. These results are

actually slightly stronger in that they provide robust trade-offs

between dimension and iteration number, but they only hold for

relational structures of much higher arity than graphs. A stronger

Ω(𝑛𝑘/2) lower bound was finally proven in [34] for pairs of graphs

distinguishable in dimension 𝑘 , but the authors left it as an open

problem to turn this into a robust trade-off. We resolve this problem,

and our robust trade-off for Weisfeiler–Leman is the foundation for

the other results in this paper.

Theorem 1.5 (Weisfeiler–Leman trade-offs (informal)). For
all 𝑐, 𝑘 with 1 ≤ 𝑐 ≤ 𝑘−1 and large enough𝑛, there are pairs of graphs
over 𝑛 vertices that can be distinguished by 𝑘-dimensional Weisfeiler–
Leman, but for which even (𝑘 +𝑐 − 1)-dimensional Weisfeiler–Leman
requires Ω

(
𝑛𝑘/(𝑐+1)

)
iterations.

By the well-known equivalence between Weisfeiler–Leman and

fragments of first order logic with counting [17], our result also

implies trade-offs between variable number and quantifier depth

for such logics.

1.4 Techniques
Most of the previously known supercritical trade-offs are based on

hardness condensation [52], that works by substituting the variables

of a medium-hard problem instance with exclusive or (XOR) gadgets
over amuch smaller set of variables (cf. Figure 2a), and then showing

that the substituted instance remains essentially as hard, although

the number of variables has decreased substantially. This technique

transferred from proof complexity to finite model theory in [12] to

prove the Weisfeiler–Leman trade-offs discussed above.

The result of the recent paper [34] instead relies on a new tech-

nique of graph compression, where vertices are identified via an

equivalence relation, together with the standard approach of analyz-

ingWeisfeiler–Leman via the cop-robber game [55]. Here, dimension

corresponds to number of cops in play, and iteration number to

(game-)rounds. Lower bounds for Weisfeiler–Leman follow from

strong robber strategies, and the bounds become supercritical when



STOC ’25, June 23–27, 2025, Prague, Czechia Susanna F. de Rezende, Noah Fleming, Duri Andrea Janett, Jakob Nordström, and Shuo Pang

𝑦1 𝑦2 𝑦𝑚–1 𝑦𝑚· · ·

· · ·

· · ·

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

𝑥1 𝑥2 𝑥3 𝑥𝑛–2 𝑥𝑛–1 𝑥𝑛

(a) Hardness condensation

𝑦1 𝑦2 𝑦𝑚–1 𝑦𝑚· · ·

· · ·
𝑥1 𝑥2 𝑥3 𝑥𝑛–2 𝑥𝑛–1 𝑥𝑛

(b) Variable compression

Figure 2: Hardness condensation in Figure 2a substitutes the 𝑥-variables with exclusive ors (XORs) over distinct subsets of
𝑦-variables, while variable compression in Figure 2b substitutes with 𝑦-variables directly. Note that𝑚 ≪ 𝑛.

these strategies continue to work even when the game is played on

the compressed graph. In proof complexity, the number of cops and

rounds approximately correspond to resolution width and depth for

Tseitin formulas [29]. Because the correspondence is not exact, the

trade-offs in [34] do not immediately transfer to proof complexity.

Using a refined graph compression and analysis, we obtain the

robust Weisfeiler–Leman trade-offs stated in Theorem 1.5. Thanks

to this robustness, we are able to translate these results into truly

supercritical width-depth trade-offs for resolution, exporting the

technique of [34] to proof complexity, as advocated in that paper. In

contrast to hardness condensation, the resulting compressed Tseitin

formula is obtained by substituting each variable with one of the

new variables in a structured way (see Figure 2b). We believe that

the tool of variable compression is interesting in its own right and

may find more applications in proof complexity.

The remaining trade-offs in this paper are obtained by applying

different new lifting theorems to our width-depth trade-off. Lifting

is a framework for transferring lower bounds from weaker compu-

tational models to comparable lower bounds for stronger models.

In particular, the lifting theorems of [30, 43] convert lower bounds

on resolution width to lower bounds on the size of monotone (real)

circuits, which in turn imply lower bounds for cutting planes. How-

ever, the parameters of these theorems are insufficient to obtain

supercritical trade-offs from Theorem 1.4. We therefore establish

an improved, tight lifting theorem for both monotone circuits and

cutting planes. The key to the proof is a new way of approximating

a combinatorial triangle by structured rectangles, from which we

can extract clauses. We also provide an even tighter lifting for reso-

lution size, which has a simple proof based on random restriction.

Lastly, we prove a lifting theorem for treelike resolution that turns

a depth lower bound into a size lower bound and simultaneously

increases the width. We believe that these lifting results should be

of independent interest.

1.5 Related Work
In concurrent work, Göös, Maystre, Risse and Sokolov [31] report

supercritical size-depth trade-offs for monotone circuits, resolution

and cutting planes. Their approach is similar in that they also start

with a truly supercritical width-depth trade-off and apply lifting

to obtain size-depth trade-offs, but their width-depth trade-off is

very different from ours, and relies on a novel, interesting formula

construction.

In terms of parameters, their formulas have resolution proofs

in width O(log𝑛), but any proof in width up to 𝑛𝜖 has supercrit-

ical depth, making their width-depth trade-off extremely robust.

This robustness allows them to apply existing lifting theorems in

a black-box fashion to obtain functions that are computable by

monotone circuits of size 𝑛O(log𝑛)
but where any monotone circuit

of polynomial depth has exponential size. While our results are not

nearly as robust, we obtain a blow-up in size even for circuits with

depth polynomial in the size upper bound, and our proof complexity

trade-offs apply for constant-width proofs. In this sense, our results

are incomparable to those in [31]. In addition, we give results for

the Weisfeiler–Leman algorithm and prove tight lifting theorems.

Our Weisfeiler–Leman and resolution width-depth trade-offs

were announced at the Oberwolfach workshop Proof Complexity
and Beyond in March 2024. Building on that work, Berkholz, Lichter

and Vinall-Smeeth [10] obtained a truly supercritical width-size

trade-off for treelike resolution. We showed our treelike resolu-

tion trade-off only after the results in [10], but we use different

techniques that yield much better parameters.

1.6 Organisation of This Paper
The rest of this paper is structured as follows. A proof overview is

presented in Section 2, with the necessary preliminaries given along

the way. We formally give our main construction in Section 3, and

refer the reader to the full version of this paper [21] for complete

proofs of our results. We conclude in Section 4 with some open

problems.

2 Proof Overview and Preliminaries
In this section, we present an overview of the components needed

to obtain our trade-off results stated in Section 1 and explain how

they fit together. Let us start by setting up some notation and giving

general definitions.

For 𝑎, 𝑏 ∈ N+
, if 𝑎 ≤ 𝑏, we let [𝑎, 𝑏] = {𝑎, 𝑎 + 1, . . . , 𝑏}, and we

write [1, 𝑎] as [𝑎]. Given 𝑘 ∈ N+
and 𝑎, 𝑏 ∈ [𝑘], where 𝑎 > 𝑏, we

write [𝑎, 𝑏]𝑘 = {𝑎, 𝑎 + 1, . . . , 𝑘} ∪ {1, 2, . . . , 𝑏}. We call sets [𝑎, 𝑏]𝑘
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cyclic intervals modulo 𝑘 , and sometimes omit the subscript if 𝑘 is

clear from the context. In this paper, log(·) denotes the logarithm
in base 2 and ln(·) denotes the natural logarithm.

All graphs in this paper are simple, i.e., they contain no multiple

edges or loops. For a graph 𝐺 = (𝑉 , 𝐸) and a vertex subset𝑊 ⊆ 𝑉 ,

we write 𝐺 |𝑊 for the subgraph induced by𝑊 , i.e., 𝐺 |𝑊 = (𝑉 ∩
𝑊, 𝐸 ∩𝑊 ×𝑊 ). Given 𝐹 ⊆ 𝐸, we write 𝑉 (𝐹 ) for the set of all

vertices incident to an edge in 𝐹 . By a path in a graph, we always

mean a simple path, i.e., a path is a sequence of distinct vertices

with consecutive vertices connected by an edge. The cylinder graph
with 𝑖 rows and 𝑗 columns is the grid graph on [𝑖] × [ 𝑗] with the

edges going from the bottom to the top in every column, i.e., the

edges {(1, ℓ), (𝑖, ℓ)} for all ℓ ∈ [ 𝑗], added.

2.1 The Cop-Robber Game
Let us begin with the 𝑘-cop-robber game [55]. Given a graph 𝐺 , the

cops and the robber stay on vertices of 𝐺 and can see each other.

Initially, the robber is at a vertex, and all 𝑘 cops are lifted from the

graph (in a helicopter). A game round unfolds as follows:

(1) If there is no lifted cop, the cops choose and lift one. Then

they signal a vertex 𝑣 to the robber.

(2) The robber moves along a path in 𝐺 from his position𝑤1 to

another vertex𝑤2 without visiting any vertex occupied by a

cop.

(3) A lifted cop lands at the signaled vertex 𝑣 .

The game ends when a cop lands at the robber’s position.

We will analyze a variant of the game called the compressed cop-
robber game [34]. It is played on a graph endowed with equivalence

relations on both vertices and edges as follows.

Definition 2.1 (Graph compression [34]). Given a graph𝐺 and an

equivalence relation ≡𝑉 on 𝑉 (𝐺), we say that ≡𝑉 is compatible if
𝑢≡𝑉 𝑣 implies that 𝑢, 𝑣 are non-adjacent and have the same degree.

Assume that for every vertex 𝑣 ∈ 𝑉 (𝐺), we have an order of the

neighbors of 𝑣 . Then, a compatible ≡𝑉 induces an equivalence

relation ≡𝐸 on 𝐸 (𝐺) as follows. First, we let two edges 𝑒1 and 𝑒2
be equivalent if there are 𝑣1, 𝑣2 ∈ 𝑉 (𝐺) such that 𝑒1 = {𝑣1,𝑤1},
𝑒2 = {𝑣2,𝑤2}, 𝑣1≡𝑉 𝑣2, and the position of 𝑤1 in the order of the

neighbors of 𝑣1 is the same as the position of 𝑤2 in the order of

the neighbors of 𝑣2. Then we take the transitive closure of this

relation on 𝐸 (𝐺) to be ≡𝐸 . We call the triple (𝐺,≡𝑉 ,≡𝐸) a graph
compression.

Playing the cop-robber game on a graph endowed with a com-

pressions leads to the compressed cop-robber game. In this game,

intuitively, the cops have clones at all vertices equivalent to the

vertices they occupy, and the robber must ensure that his moves

are closed under ≡𝐸 and do not visit any vertex occupied by a cop

clone. The formal definition is given in Section 3.

In the specific instance we analyze, the graph is a cylinder with

𝑘 rows and roughly 𝑛𝑘 columns. We compress it by identifying

vertices on the same row periodically, using a different period for

every row; for details, see Section 3. Note that on the uncompressed

cylinder, 𝑘 + 1 cops have an obvious strategy: block off the middle

of the graph—forming a police cordon of sorts—and then march

towards the robber in lockstep. With more cops, and with the

compression providing cop copies on the equivalent vertices, they

can potentially do better. Despite that, we prove the following

theorem, where the graphs {𝐺𝑛} will be cylinders with 𝑘 rows.

Theorem 2.2 (cop-robber). For any parameters 𝑘 = 𝑘 (𝑛) and
𝑐 = 𝑐 (𝑛) where 1 ≤ 𝑐 ≤ 𝑘 − 1 and 3 ≤ 𝑘 < 𝑛/(2 ln𝑛), there are
degree-4 graphs {𝐺𝑛}𝑛∈N+ and a compressed cop-robber game on 𝐺𝑛

where 𝑘 + 1 cops can win, but the robber can survive Ω(𝑛𝑘 ) rounds
against 𝑘 + 𝑐 cops.

The proof of Theorem 2.2 is deferred to the full-length version

of the paper. The novelty of our analysis compared to [34] lies in

having the robber play against a virtual stronger opponent, whose

transition over game rounds is easier to analyze.

2.2 The Weisfeiler–Leman Algorithm
We describe the Weisfeiler–Leman algorithm on graphs; see the

survey [39] for further explanations. A graph𝐺 = (𝑉 , 𝐸, 𝑐) where
𝑐 : 𝑉 → N is vertex colored. Given 𝑘 ≥ 2 and a vertex colored

graph 𝐺 = (𝑉 , 𝐸, 𝑐), the 𝑘-dimensional Weisfeiler–Leman algorithm
[36, 59] iteratively refines a coloring of the 𝑘-tuples of vertices. We

denote the coloring after the 𝑖th round by 𝜒 (𝑖 )
: 𝑉 𝑘 → 𝐶 , where 𝐶

is a finite set. In the initial round, the color 𝜒 (0) (®𝑢) of a tuple ®𝑢 =

(𝑢1, . . . , 𝑢𝑘 ) is its own isomorphism class, where we say (𝑢1, . . . , 𝑢𝑘 )
is isomorphic to (𝑣1, . . . , 𝑣𝑘 ) if the map 𝑢𝑖 ↦→ 𝑣𝑖 preserves vertex

colors and is an isomorphism between the induced subgraphs of

the two tuples. We use ®𝑢 [𝑣/𝑢 𝑗 ] to denote the 𝑘-tuple obtained

by substituting 𝑢 𝑗 with 𝑣 in ®𝑢, i.e., (𝑢1, . . . , 𝑢 𝑗−1, 𝑣,𝑢 𝑗+1, . . . , 𝑢𝑘 ). In
round 𝑖 , the coloring 𝜒 (𝑖 ) (®𝑢) of a tuple ®𝑢 is obtained by appending

a multiset of tuples to 𝜒 (𝑖−1) (®𝑢):

𝜒 (𝑖 ) (®𝑢) =
(
𝜒 (𝑖−1) (®𝑢),{{(

𝜒 (𝑖−1) (®𝑢 [𝑣/𝑢1]), . . . , 𝜒 (𝑖−1) (®𝑢 [𝑣/𝑢𝑘 ])
)
| 𝑣 ∈ 𝑉 (𝐺)

}})
.

The algorithm stabilizes after round 𝑡 if any two tuples that have

the same color in round 𝑡 , i.e., 𝜒 (𝑡 ) (®𝑢) = 𝜒 (𝑡 ) (®𝑣), get the same color

in round 𝑡 + 1, i.e., 𝜒 (𝑡+1) (®𝑢) = 𝜒 (𝑡+1) (®𝑣). The minimum such 𝑡 is

called the iteration number on 𝐺 .
The algorithm can be used to distinguish a pair of colored graphs

𝐺,𝐻 by comparing the colorings 𝜒 (𝑖 ) (𝐺) and 𝜒 (𝑖 ) (𝐻 ).We say that

𝑘-dimensional Weisfeiler–Leman distinguishes 𝐺 and 𝐻 in 𝑡 rounds
if for some color 𝑐 , the number of tuples that have color 𝑐 in 𝜒 (𝑡 ) (𝐺)
is different from the number of such tuples in 𝜒 (𝑡 ) (𝐻 ).

By applying standard translations, which we present in Appen-

dix A of the full-length version of the paper [21], Theorem 2.2 gives

the following trade-off for Weisfeiler–Leman algorithms. This is a

detailed version of Theorem 1.5.

Theorem 2.3 (Weisfeiler–Leman trade-offs). For all 𝑐 and 𝑘
with 1 ≤ 𝑐 ≤ 𝑘 − 1, and all 𝑛 large enough, there are graph pairs over
𝑛 vertices that are distinguished by 𝑘-dimensional Weisfeiler–Leman,
but for which (𝑘 + 𝑐 − 1)-dimensional Weisfeiler–Leman requires at
least

(
2
−(𝑐+10)𝑘−3𝑛

)𝑘/(𝑐+1) iterations.
Using the equivalence between the 𝑘-dimensional Weisfeiler–

Leman algorithm and the (𝑘 + 1)-variable fragment of first order

logic with counting [17, Theorem 5.2], we obtain the following

trade-off between the number of variables and quantifier depth as

a corollary.



STOC ’25, June 23–27, 2025, Prague, Czechia Susanna F. de Rezende, Noah Fleming, Duri Andrea Janett, Jakob Nordström, and Shuo Pang

Corollary 2.4. For all 𝑐 and 𝑘 with 1 ≤ 𝑐 ≤ 𝑘 − 1, if 𝑛 is large
enough, there are graph pairs over 𝑛 vertices that are distinguishable
in the (𝑘 + 1)-variable fragment of first order logic with counting,
but a lower bound of

(
2
−(𝑐+10)𝑘−3𝑛

)𝑘/(𝑐+1) on the quantifier depth
applies up to the (𝑘 + 𝑐)-variable fragment.

2.3 Proof Complexity Basics and Resolution
Let us review some standard definitions from proof complexity.

For a more comprehensive presentation of this material, see, e.g.,

[16, 41]. A literal is a Boolean variable 𝑥 or its negation 𝑥 . It will

sometimes be convenient to use the notations 𝑥1 = 𝑥 and 𝑥0 = 𝑥 .

A clause is a set of literals 𝐷 = 𝑥1 ∨ · · · ∨ 𝑥𝑘 , which we require to

be over pairwise disjoint variables. We call the number of literals

appearing in a clause 𝐷 the width W (𝐷) of 𝐷 . We call a clause of

width at most 𝑘 a 𝑘-clause. A CNF formula 𝐹 = 𝐷1 ∧ · · · ∧ 𝐷𝑚 is

a conjunction of clauses. The formula width𝑊 (𝐹 ) is the maximal

width among clauses in 𝐹 , the clause size |𝐹 | is the number of clauses

in 𝐹 (viewed as a set of clauses), and formula size 𝑆 (𝐹 ) is the sum
of width over the clauses in 𝐹 . We say that 𝐹 is a 𝑘-CNF formula if
all clauses are 𝑘-clauses. We denote by Vars(𝐹 ) the set of variables
appearing in a formula 𝐹 .

The Tseitin formula [58] is defined for a graph 𝐺 where each

vertex 𝑣 ∈ 𝑉 (𝐺) has a label 𝜒 (𝑣) ∈ {0, 1}, labeled 0 or 1 so that the

labels sum to an odd number. The formula, denoted by Ts(𝐺), has
a variable 𝑥𝑒 for every edge 𝑒 ∈ 𝐸 (𝐺) and is defined to be the CNF

formula containing, for all 𝑣 ∈ 𝑉 (𝐺), the clauses expressing that

the sum of the edge variables incident to 𝑣 has parity equal to the

label of 𝑣 , i.e., ∑︁
𝑒∋𝑣

𝑥𝑒 = 𝜒 (𝑣). (1)

The formula Ts(𝐺) is unsatisfiable due to the handshaking lemma.

A resolution refutation 𝜋 : 𝐹 ⊢⊥ of an unsatisfiable CNF formula

𝐹 is an ordered sequence of clauses 𝜋 = (𝐷1, . . . , 𝐷𝑠 ), where 𝐷𝑠 is

the empty clause containing no literals, denoted by ⊥, and each 𝐷𝑖

is a clause in 𝐹 , or derived from some specified 𝐷 𝑗 and 𝐷𝑘 , where

𝑗, 𝑘 < 𝑖 , using the resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥

𝐶 ∨ 𝐷
. (2)

We associate a DAG 𝐺𝜋 with every resolution refutation 𝜋 as fol-

lows. There is a vertex 𝑣𝑖 ∈ 𝑉 (𝐺𝜋 ) for every 𝑖 ∈ [𝑠], and directed

edges (𝑣 𝑗 , 𝑣𝑖 ), (𝑣𝑘 , 𝑣𝑖 ) ∈ 𝐸 (𝐺𝜋 ) if and only if 𝐷𝑖 was derived from

𝐷 𝑗 and 𝐷𝑘 by resolution. A refutation 𝜋 is treelike if 𝐺𝜋 is a tree.

The size (or length) S(𝜋) of a refutation 𝜋 is the number of clauses

𝑠 in it. By width W (𝜋) of a refutation 𝜋 , we mean the width of a

largest clause in 𝜋 . The depthD(𝜋) of a refutation 𝜋 is the number of

edges in the longest path in its associated DAG𝐺𝜋 . We also consider

the above measures for refuting a CNF formula 𝐹 , by taking the min-

imum over all refutations of 𝐹 . That is, 𝑆 (𝐹 ⊢⊥) =min𝜋 :𝐹 ⊢⊥{S(𝜋)},
𝑊 (𝐹 ⊢⊥) = min𝜋 :𝐹 ⊢⊥{W (𝜋)}, and 𝐷 (𝐹 ⊢⊥) = min𝜋 :𝐹 ⊢⊥{D(𝜋)}
are the size, width, and depth of refuting 𝐹 , respectively.

2.4 Supercritical Width-Depth Trade-off
Our first proof complexity result is the following truly supercritical

width-depth trade-off for resolution.

Theorem 2.5 (Width-depth trade-offs). For all 𝑛 and integer
parameters 𝑘 = 𝑘 (𝑛), 𝑐 = 𝑐 (𝑛) where 3 ≤ 𝑐 ≤ 𝑘 − 1 < 𝑛

2 ln𝑛
, there is a

4-CNF formula 𝐹 over 𝑁 ∈ [2𝑘2𝑛𝑐+1, 40𝑘2 (2𝑛)𝑐+1] variables, having
formula size𝑂 (𝑁 ), which resolution can refute in width 𝑘+3 and size
𝑂 (𝑘2 (4𝑛)𝑘 ) simultaneously, but for which any refutation of width at
most 𝑘 + 𝑐 must have depth at least Ω(𝑛𝑘 ).

The formula 𝐹 above is a Tseitin formula after a variable iden-

tification obtained from a graph compression, which we formally

demonstrate in Definition 3.4. The theorem follows from Theo-

rem 2.2 by applying somewhat standard translations between the

(compressed) cop-robber games and resolution. The proof details

can be found in the full-length version of the paper.

The two examples in Theorem 1.4 follow from Theorem 2.5 by

taking 𝑘 (𝑛) = ⌊𝑛/(2 log𝑛)⌋ and, for item (1), setting 𝑐 (𝑛) to be a

large constant, or, for item (2), setting 𝑐 (𝑛) to be ⌊ 1+𝛿
2
𝑘⌋.

2.5 Supercritical Trade-offs for Resolution
The framework for obtaining our other proof and circuit complex-

ity trade-offs from the width-depth trade-off is lifting which is

based on composition with functions, which we refer to as gadgets.
For CNF formulas, there can be multiple ways of representing its

composition with a gadget as a CNF formula. Therefore, for the

gadgets 𝑔 we are interested in, we will denote by 𝑔(𝐹 ) a specific
CNF encoding of the composition of the CNF formula 𝐹 with the

gadget 𝑔.

In this paper, we consider two gadgets: XOR𝑚 : {0, 1}𝑚 → {0, 1},
defined as XOR𝑚 (𝑥1, . . . , 𝑥𝑚) =

⊕
𝑖∈[𝑚] 𝑥𝑖 , and IND𝑚 : [𝑚] ×

{0, 1}𝑚 → {0, 1}, defined as IND𝑚 (𝑥,𝑦) = 𝑦𝑥 . Given a CNF for-

mula 𝐹 over variables 𝑥1, . . . , 𝑥𝑛 , we denote by XOR𝑚 (𝐹 ) the CNF
formula obtained by substituting each 𝑥𝑖 by 𝑦𝑖,1 ⊕ · · · ⊕ 𝑦𝑖,𝑚 where

𝑦𝑖, 𝑗 is a new propositional variable, and then expanding it out in

CNF. For instance, if𝑚 = 2 then the clause 𝑥4 ∨ 𝑥5 yields 4 clauses:

𝑦4,1 ∨ 𝑦4,2 ∨ 𝑦5,1 ∨ 𝑦
5,2 , 𝑦4,1 ∨ 𝑦4,2 ∨ 𝑦

5,1 ∨ 𝑦5,2 , (3)

𝑦
4,1 ∨ 𝑦

4,2 ∨ 𝑦5,1 ∨ 𝑦
5,2 , 𝑦

4,1 ∨ 𝑦
4,2 ∨ 𝑦

5,1 ∨ 𝑦5,2 . (4)

Note that the width of XOR𝑚 (𝐹 ) is𝑚 ·𝑊 (𝐹 ) and the number of

clauses is |XOR𝑚 (𝐹 ) | ≤ 2
(𝑚−1) ·W (𝐹 ) |𝐹 |.

Our lifting theorem for treelike resolution uses composition

with the XOR𝑚 gadget. Observe that the resolution refutation in its

conclusion has small depth and simultaneously smaller width. This

decrease in width is essential for obtaining our width-size trade-off.

Theorem 2.6 (Lifting for treelike resolution). Let 𝐹 be a
CNF formula and let𝑚 ≥ 2. If there is a width-𝑤 , size-𝑠 treelike resolu-
tion refutation for XOR𝑚 (𝐹 ), then there is a width-

(
𝑤

𝑚−1
)
, depth-log 𝑠

resolution refutation of 𝐹 .

We leave the proof of this theorem the full-length version of the

paper. We can now apply this theorem to our width-depth trade-off

to obtain the supercritical trade-offs for treelike resolution.

Theorem 2.7 (Width-size trade-offs). For all 𝑛 and integer
parameters𝑚(𝑛) ≥ 3, 𝑘 (𝑛) ∈ [4, 𝑛

2 ln𝑛
], and 𝜀 (𝑛) ∈ ( 4

𝑘
, 1 − 1

𝑘
), there

are 4𝑚-CNF formulas 𝐹𝑁 over𝑁 ∈ [2𝑘2𝑛⌊𝜀𝑘 ⌋𝑚, 40𝑘2 (2𝑛) ⌊𝜀𝑘 ⌋𝑚] vari-
ables, having formula size O(16𝑚 · 𝑁 ), which resolution can refute
in width𝑚(𝑘 + 3), but for which any treelike refutation of width at
most (𝑚 − 1) (1 + 𝜀)𝑘 must have size at least 2Ω (𝑛𝑘 ) .
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Proof. Let 𝐹 be the 4-CNF formulas from Theorem 2.5 with

parameter 𝑐 = ⌊𝜀𝑘⌋−1 ∈ [3, 𝑘−1], and define 𝐹𝑁 = XOR𝑚 (𝐹 ). Then
S(𝐹𝑁 ) = O(24(𝑚−1) ·4𝑚 ·S(𝐹 )) = O(24𝑚 ·𝑚 · |Vars(𝐹 ) |) = O(16𝑚 ·𝑁 ),
and since 𝐹 is refutable in width 𝑘 + 3, a line-by-line simulation via

𝑥𝑖 = 𝑦𝑖,1 ⊕ . . .⊕𝑦𝑖,𝑚 gives a refutation of 𝐹𝑁 in width𝑚(𝑘 +3). Now
suppose 𝜋 is a treelike refutation of 𝐹𝑁 in width (𝑚 − 1) (1 + 𝜀)𝑘
and size 𝑠 , then by Theorem 2.6, there is a refutation of 𝐹 in width

(1 + 𝜀)𝑘 and depth log 𝑠 . The theorem follows since Theorem 2.5

implies that log 𝑠 = Ω(𝑛𝑘 ). □

We obtain Theorem 1.3 follows from Theorem 2.7 by setting

𝑘 (𝑛) = ⌊𝑛/(2 log𝑛)⌋, and choosing the remaining parameters to be

𝑚 = 256 and 𝜀 = 0.41 for item (1), and𝑚 = ⌊
√
𝑛⌋ and 𝜀 = 100√

𝑛
for

item (2), respectively.

Now, as a warm up for the lifting theorems for monotone circuits

and cutting planes in Section 2.6, we prove an even tighter result

for resolution. For this theorem, we consider the following compo-

sition of a CNF formula with the indexing gadget [6].
1
Let 𝐹 be a

CNF formula over variables 𝑧1, . . . , 𝑧𝑛 . To obtain the CNF formula

IND𝑚 (𝐹 ), we start with substituting in 𝐹 every occurrence of 𝑧𝑖 by

(𝑥𝑖,1 → 𝑦𝑖,1) ∧ . . . ∧ (𝑥𝑖,𝑚 → 𝑦𝑖,𝑚) , (5)

where 𝑥𝑖, 𝑗 and 𝑦𝑖, 𝑗 are new propositional variables, and we expand

it out to CNF. Moreover, we would like to include 𝑥𝑖,1∨ . . .∨𝑥𝑖,𝑚 for

each 𝑖 to ensure that 𝑥𝑖, 𝑗 = 1 for at least one 𝑗 ∈ [𝑚]; but to keep the
width of the formula small, we instead use extension variables to

encode each of these clauses as a 3-CNF formula with ≤𝑚 clauses.

Note that the width of IND𝑚 (𝐹 ) is 2𝑊 (𝐹 ) and the number of clauses

is |IND𝑚 (𝐹 ) | ≤ 𝑚W (𝐹 ) |𝐹 | + 𝑛𝑚. Using this gadget, we obtain our

lifting theorem for resolution.

Theorem 2.8 (Lifting for resolution). For any𝑚,𝑛 ≥ 1 and a
CNF formula 𝐹 over 𝑛 variables, if IND𝑚 (𝐹 ) has a resolution refuta-
tion of size 𝑆 and depth 𝑑 , then 𝐹 has a resolution refutation of width
⌊log(𝑚+1)/2 𝑆⌋ and depth 𝑑 .

The theorem holds for any gadget size, and the size-width rela-

tion it provides is nearly tight (see Lemma 2.9 below). The proof,

included in the full-length version of the paper [21], is simple and

based on a random restriction argument.

By a standard step-by-step simulation we obtain the following

upper bound for refuting IND𝑚 (𝐹 ). We include the proof for the

sake of completeness.

Lemma 2.9. For any𝑚,𝑛 ≥ 1 and 𝑛-variate CNF formula 𝐹 , if 𝐹
has a resolution refutation of width𝑤 and size 𝑠 ≥ 𝑛, then IND𝑚 (𝐹 )
has a resolution refutation of size O(𝑠 ·𝑚𝑤+1).

Proof. The proof is a standard step-by-step simulation. Let

𝐹 be a CNF formula over variables 𝑧1, . . . , 𝑧𝑛 and let Π be a res-

olution refutation of 𝐹 in width 𝑤 and size 𝑠 . We start by de-

riving

∨
𝑗∈[𝑚] 𝑥𝑖, 𝑗 for all 𝑖 ∈ [𝑛] from the axioms in IND𝑚 (𝐹 ),

which can be done in O(𝑛𝑚) steps. We then simulate Π step by

step, keeping the invariant that for every clause 𝐶 =
∨

ℓ∈[𝑤′ ] 𝑧
𝛽ℓ
𝑖ℓ

in Π, we derive, for each 𝐽 = ( 𝑗1, . . . , 𝑗𝑤′ ) ∈ [𝑚]𝑤′
, the clause

𝐶 𝐽 =
∨

ℓ∈[𝑤′ ] (𝑥𝑖ℓ , 𝑗ℓ ∨𝑦
𝛽ℓ
𝑖ℓ , 𝑗ℓ

). This holds for the axioms by definition

1
Other standard encodings work as well, but this one ensures the formula width

increase by at most a factor 2.

of IND𝑚 (𝐹 ). Suppose it holds for clause𝐶∨𝑧𝑖 and𝐷∨𝑧𝑖 , and let𝑤 ′

be the width of 𝐷 ∨𝐶 . Then for any 𝐽 = ( 𝑗1, . . . , 𝑗𝑤′ ) ∈ [𝑚]𝑤′
and

any 𝑗 ∈ [𝑚] we can derive (𝐷 ∨𝐶)𝐽 ∨ 𝑥𝑖, 𝑗 in one step by resolving

over variable 𝑦𝑖, 𝑗 . Finally, we can derive (𝐷 ∨ 𝐶)𝐽 in 𝑚 steps by

resolving (𝐷 ∨𝐶)𝐽 ∨ 𝑥𝑖, 𝑗 for all 𝑗 ∈ [𝑚] with∨
𝑗∈[𝑚] 𝑥𝑖, 𝑗 . This give

a total of𝑚𝑤′+1 +𝑚 = O(𝑚𝑤+1) steps per new clause in Π. □

We can now apply Theorem 2.8 to our width-depth trade-off to

obtain supercritical size-depth trade-offs for resolution.

Theorem 2.10 (Resolution size-depth trade-offs). For all 𝑛
and integer parameters𝑚(𝑛), 𝑘 (𝑛), and 𝑐 (𝑛) where 3 ≤ 𝑐 ≤ 𝑘 − 1 <
𝑛

2 ln𝑛
, there are 8-CNF formulas 𝐹𝑁 over 𝑁 = 𝑂 (𝑚𝑘2 (2𝑛)𝑐+1) vari-

ables, having formula size 𝑆 (𝐹𝑁 ) = O(𝑚4𝑘2 (2𝑛)𝑐+1), which resolu-
tion can refute in size O(𝑚𝑘+4𝑘2 (4𝑛)𝑘 ), but for which any refutation
of size at most

(
𝑚+1
2

)𝑘+𝑐 must have depth at least Ω(𝑛𝑘 ).

Proof. Let 𝐹𝑁 = IND𝑚 (𝐹 ), where 𝐹 is the formula obtained

from the width-depth trade-off in Theorem 2.5 for parameters 𝑐, 𝑘

and 𝑛. Note that 𝐹𝑁 is a 8-CNF formula of size O(𝑚4𝑘2 (2𝑛)𝑐+1).
Since by Theorem 2.5 𝐹 has a resolution refutation of width 𝑘 + 3

and size 𝑂 (𝑘2 (4𝑛)𝑘 ), we have by Lemma 2.9 that IND𝑚 (𝐹 ) has a
resolution refutation of size O(𝑚𝑘+4𝑘2 (4𝑛)𝑘 ). The lower bounds
follows from combining the lifting result in Theorem 2.8 with the

width-depth trade-off in Theorem 2.5. □

2.6 Trade-offs for Circuits and Cutting Planes
A monotone real circuit is a Boolean circuit whose gate-set includes

all monotone functions of the form 𝑓 : R × R → R. It has 𝑛 input

gates 𝑥1, . . . , 𝑥𝑛 and must output a bit in {0, 1}. Note that monotone

real circuits are an extension of traditional monotone circuits.

We define the more general (semantic) version of cutting planes,

to which our lower bounds also apply. A semantic cutting planes
refutation of a system of linear inequalities 𝐴𝑥 ≥ 𝑏 is a sequence of

inequalities {𝑐𝑖𝑥 ≥ 𝑑𝑖 }𝑖∈[𝑠 ] , with 𝑐𝑖 ∈ Z𝑛, 𝑑𝑖 ∈ Z, such that the final

inequality is the contradiction 0 ≥ 1, and for every 𝑖 ∈ [𝑠], 𝑐𝑖𝑥 ≥ 𝑑𝑖
either belongs to 𝐴𝑥 ≥ 𝑏 or follows from two previous inequalities

by a semantic deduction step, that is, from 𝑎𝑥 ≥ 𝑏 and 𝑎′𝑥 ≥ 𝑏′ we
can derive any 𝑐𝑥 ≥ 𝑑 which satisfies (𝑎𝑥 ≥ 𝑏) ∧ (𝑎′𝑥 ≥ 𝑏′) =⇒
𝑐𝑥 ≥ 𝑑 for every 𝑥 ∈ {0, 1}𝑛 . The size of a semantic cutting planes

refutation is 𝑠 , the number of inequalities in the sequence. One may

view a semantic cutting planes proof as a DAG with one vertex

per inequality such that the leaves are the inequalities belonging

to 𝐴𝑥 ≥ 𝑏, the root is 0 ≥ 1, and every non-leaf vertex has two

incoming edges the vertices from which it was derived. The depth
of a semantic cutting planes proof is the longest root-to-leaf path

in this DAG.

Like previous DAG lifting theorems, it will be convenient to work

with the following top-down definitions of these models—rectangle-
and triangle-DAGs solving (total) search problems. A search problem
is a relation S ⊆ D × O where for every input 𝑥 ∈ D, there is at

least one output 𝑜 ∈ O such that (𝑥, 𝑜) ∈ S. We start by defining

shape-DAGs [30], which are a generalisation of rectangle-DAGs

introduced in [51] and simplified in [47, 56].

Definition 2.11 (Shape-DAG). Let F ⊆ D be a family of sets,

which we call the “shapes” of the DAG, and S ⊆ D ×O be a search

problem. An F -DAG solving S is a fan-in ≤ 2 rooted directed
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acyclic graph where each vertex 𝑣 is labeled with a shape 𝑆𝑣 ∈ F
such that the following hold:

(1) Root. The distinguished root 𝑟 is labelled with the “full”

shape 𝑆𝑟 = D.

(2) Non-Leaves. If 𝑢 has children 𝑣,𝑤 then 𝑆𝑢 ⊆ 𝑆𝑣 ∪ 𝑆𝑤 .

(3) Leaf. If ℓ is a leaf of the DAG then there is some 𝑜 ∈ O such

that 𝑆ℓ ⊆ S−1 (𝑜).
The size of an F -DAG is the number of nodes it contains, and the

depth is the length of the longest root-to-leaf path in the DAG.

For a bipartite input domain 𝑋 × 𝑌 , a rectangle 𝑅 = 𝑅𝑋 × 𝑅𝑌

is a product set, where 𝑅𝑋 ⊆ 𝑋 and 𝑅𝑌 ⊆ 𝑌 . A triangle is a subset
𝑇 ⊆ 𝑋 × 𝑌 that can be written as 𝑇 = {(𝑥,𝑦) | 𝑎𝑇 (𝑥) < 𝑏𝑇 (𝑦)} for
some labeling of the rows 𝑎𝑇 : 𝑋 → R and columns 𝑏𝑇 : 𝑌 → R by

real numbers. A rectangle-DAG is a shape-DAG where the set of

shapes F is the set of all rectangles over the input domain. Similarly,

a triangle-DAG is a shape-DAG where F is the set of all triangles.

Note that because any rectangle is also a triangle, a rectangle-DAG

is a special case of a triangle-DAG.

We now introduce the two types of search problems that allow

us to relate triangle- and rectangle-DAGs to cutting planes and

monotone circuits. Let 𝐹 =𝐶1 ∧ · · · ∧𝐶𝑚 be an unsatisfiable CNF

formula on 𝑛 variables. The falsified clause search problem for 𝐹
is the following total search problem: given 𝑧 ∈ {0, 1}𝑛 , find an

𝑖 ∈ [𝑚] such that the clause𝐶𝑖 is falsified by 𝑧. Formally, we define

the relation Search(𝐹 ) ⊆ {0, 1}𝑛 × [𝑚] by
(𝑧, 𝑖) ∈ Search(𝐹 ) ⇐⇒ 𝐶𝑖 (𝑧) = 0, (6)

where we view the clause 𝐶𝑖 as a circuit evaluated on 𝑧 ∈ {0, 1}𝑛 .
We are sometimes interested in making the input domain bipartite.

For that purpoes, we partition the variables of 𝐹 into two parts,

view {0, 1}𝑛 as a product 𝑋 ×𝑌 accordingly, and define the relation

Search𝑋,𝑌 (𝐹 ) ⊆ (𝑋 × 𝑌 ) × [𝑚] by ((𝑥,𝑦), 𝑖) ∈ Search(𝐹 ) ⇐⇒
𝐶𝑖 ((𝑥,𝑦)) = 0. It is not difficult to see that for any CNF formula 𝐹

and any partition of its variables, a semantic cutting planes refuta-

tion of 𝐹 implies, for any partition of the variables of 𝐹 , a triangle-

DAG for Search𝑋,𝑌 (𝐹 ) of the same size and depth; indeed, any

halfspace 𝑎𝑧 ≥ 𝑏 defines a triangle 𝐻 = {𝑧 ∈ {0, 1}𝑛 | 𝑎𝑧 < 𝑏}.
Similarly, a resolution refutation of 𝐹 implies a rectangle-DAG for

Search𝑋,𝑌 (𝐹 ) of the same size and depth.

Given a total or partial monotone function 𝑓 : {0, 1}𝑛 → {0, 1},
themonotone Karchmer–Wigderson search problem [38]mKW(𝑓 ) ⊆
(𝑓 −1 (1) × 𝑓 −1 (0)) × [𝑛] is defined as

((𝑥,𝑦), 𝑖) ∈ mKW(𝑓 ) ⇐⇒ 𝑥𝑖 > 𝑦𝑖 . (7)

The DAG-like version of the monotone Karchmer–Wigderson re-

lation [47, 51, 56] implies that there is a monotone circuit (respec-

tively, monotone real circuit) computing 𝑓 if and only if there is

a rectangle-DAG (respectively, triangle-DAG) solving mKW(𝑓 ) of
the same size and depth.

For our lifting theorems we need to compose search problems

with gadgets. Given a search problem S ⊆ {0, 1}𝑛 ×O and a gadget

𝑔 : D → {0, 1}, we can define S ◦ 𝑔𝑛 ⊆ D𝑛 × O to be the relation

where (𝑥, 𝑜) ∈ S ◦ 𝑔𝑛 if and only if (𝑧, 𝑜) ∈ S, where 𝑧𝑖 = 𝑔(𝑥𝑖 ) for
𝑖 ∈ [𝑛]. We also consider the search problem Search𝑋,𝑌 (IND𝑚 (𝐹 )),
where 𝑋 corresponds to the 𝑥-variables, and 𝑌 to the 𝑦-variables

of IND𝑚 (𝐹 ). By a standard reduction [28, 50], there is a way of

translating between the composed search problems; see e.g. [30]

for a proof.

Fact 2.12. Let 𝐹 be an unsatisfiable 𝑘-CNF on ℓ clauses and 𝑛

variables, let𝑚 =𝑚(𝑛) be a parameter and 𝑁 = ℓ · (2𝑚)𝑘 . There is a
partial monotone function 𝑓 : {0, 1}𝑁 → {0, 1} such that

(1) Search(𝐹 ) ◦ IND𝑛
𝑚 reduces to mKW(𝑓 ). In particular, an F -

DAG solvingmKW(𝑓 ) implies an F -DAG solving Search(𝐹 )◦
IND

𝑛
𝑚 of the same size and depth.

(2) mKW(𝑓 ) reduces to Search𝑋,𝑌 (IND𝑚 (𝐹 )). In particular, an
F -DAG solving Search𝑋,𝑌 (IND𝑚 (𝐹 )) implies anF -DAG solv-
ing mKW(𝑓 ) of the same size and depth.

We now state our lifting theorem from resolution to triangle-

DAGs.

Theorem 2.13 (Lifting for triangle-DAGs). Let 𝐹 be an 𝑛-
variate unsatisfiable CNF formula, and let 𝑚,𝑤 ∈ N, 𝛿 > 0 be
arbitrary parameters satisfying 𝑤 ≤ 𝑛, 0 < 𝛿 < 1 − 1

log𝑚
and

𝑚 ≥ ( 50𝑛
𝛿
)2/𝛿 . If there is a triangle-DAG of size 1

2
𝑚 (1−𝛿 )𝑤 and depth

𝑑 solving Search(𝐹 ) ◦ IND
𝑛
𝑚 , then 𝐹 has a resolution refutation of

width𝑤 and depth 𝑑𝑤 .

The proof of this theorem can be found in the full version of the

paper [21].

Combining this lifting theorem with our width-depth trade-off

for resolution in Theorem 2.5, we obtain the supercritical size-depth

trade-offs for monotone (real) circuits.

Theorem 2.14 (Monotone circuit trade-offs). For any in-
tegers 𝑐 = 𝑐 (𝑛), 𝑘 = 𝑘 (𝑛),𝑚 = 𝑚(𝑛) and real number 𝛿 = 𝛿 (𝑛) ∈
(0, 0.9) such that 3 ≤ 𝑐 ≤ 𝑘 − 1 < 𝑛

2 log𝑛
and 𝑚 ≥ ( 50𝑛

𝛿
)2/𝛿 , the

following holds for sufficiently large 𝑛. There are 𝑁 -variate functions
𝑓𝑁 over 𝑁 = O(𝑚4𝑘2 (2𝑛)𝑐+1) variables computable by a monotone
circuit with size at most O(𝑚𝑘+4𝑘2 (4𝑛)𝑘 ), but for which any mono-
tone real circuit with size at most 1

2
𝑚 (1−𝛿 ) (𝑘+𝑐 ) must have depth at

least Ω(𝑛𝑘/𝑘).

Proof. Let 𝐹 be the 4-CNF formula obtained from Theorem 2.5,

our supercritical width-depth trade-off, for the parameters 𝑐, 𝑘

and 𝑛. Consider the partial monotone function 𝑔𝑁 : {0, 1}𝑁 →
{0, 1} obtained by applying Theorem 2.12 to 𝐹 . We have that 𝑁 =

O(𝑚4𝑘2 (2𝑛)𝑐+1). Since by Theorem 2.5, 𝐹 has a resolution refuta-

tion of width 𝑘 +3 and size𝑂 (𝑘2 (4𝑛)𝑘 ), we have by Lemma 2.9 that

mKW(𝑔𝑁 ) can be solved by a rectangle-DAGof sizeO(𝑚𝑘+4𝑘2 (4𝑛)𝑘 ),
where we use the fact that a resolution refutation of 𝐹 implies a

rectangle-DAG solving Search𝑋,𝑌 (IND𝑚 (𝐹 )) in the same size, and

that by Theorem 2.12 mKW(𝑔𝑁 ) reduces to Search𝑋,𝑌 (IND𝑚 (𝐹 )).
This implies that there is a monotone circuit of the same size com-

puting𝑔𝑁 . Let 𝑓𝑁 be the total function, which extends𝑔𝑁 , computed

by this circuit.

Now, if there is a monotone real circuit of size 𝑠 and depth 𝑑 com-

puting 𝑓𝑁 , then there is a triangle-DAG of size 𝑠 and depth 𝑑 solving

mKW(𝑓𝑁 ), and hence also mKW(𝑔𝑁 ). By Theorem 2.12 this im-

plies there is a triangle-DAG solving Search(𝐹 ) ◦ IND𝑛
𝑚 in the same

size and depth. Finally, combining the triangle-DAG lifting theo-

rem (Theorem 2.13) and the width-depth trade-off (Theorem 2.5)

we conclude that if 𝑠 ≤ 1

2
𝑚 (1−𝛿 ) (𝑘+𝑐 )

then 𝑑 = Ω(𝑛𝑘/(𝑘 + 𝑐)) =

Ω(𝑛𝑘/𝑘). □
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We can obtain a similar supercritical trade-off for cutting planes.

Theorem 2.15 (Cutting planes trade-offs). For any integers
𝑐 = 𝑐 (𝑛), 𝑘 = 𝑘 (𝑛),𝑚 =𝑚(𝑛) and real number 𝛿 = 𝛿 (𝑛) ∈ (0, 0.9)
such that 3 ≤ 𝑐 < 𝑘 < 𝑛

2 log𝑛
and 𝑚 ≥ ( 50𝑛

𝛿
)2/𝛿 , the follow-

ing holds for all 𝑛. There are unsatisfiable 3-CNF formulas 𝐹𝑁 of
size 𝑁 = O(𝑚4𝑘2 (2𝑛)𝑐+1) that can be refuted in resolution in size
𝑂 (𝑚𝑘+4𝑘2 (4𝑛)𝑘 ), but for which any semantic cutting planes refuta-
tion in size at most 1

2
𝑚 (1−𝛿 ) (𝑘+𝑐 ) must have depth at least Ω(𝑛𝑘/𝑘).

This theorem can be proven along the same lines as Theorem 2.14,

by applying the lifting theorem (Theorem 2.13) to the width-depth

trade-off (Theorem 2.5) together with Theorem 2.12, and using

Lemma 2.9 for the upper bound. The only caveat is that this would

give us a 8-CNF formula. In order to obtain a 3-CNF formula, we

need to define a 3-CNF version of IND𝑚 (𝐹 ), denoted by ĨND𝑚 (𝐹 ).
Let 𝐹 be a CNF formula over variables 𝑧 = 𝑧1, . . . , 𝑧𝑛 , then the for-

mula ĨND𝑚 (𝐹 ) is over variables 𝑥𝑖, 𝑗 and 𝑦𝑖, 𝑗 where 𝑖 ∈ [𝑛] and 𝑗 ∈
[𝑚], the extension variables to write each of the clauses

∨
𝑗∈[𝑚] 𝑥𝑖, 𝑗 ,

for 𝑖 ∈ [𝑛], as a 3-CNF formula, along with variables 𝑥𝐶,𝐽 and 𝑦𝐶,𝐽

for every 𝐶 ∈ 𝐹 and every 𝐽 ∈ [𝑚]W (𝐶 )
. The clauses in ĨND𝑚 (𝐹 )

consist of: a 3-CNF encoding of

∨
𝑗∈[𝑚] 𝑥𝑖, 𝑗 for every 𝑖 ∈ [𝑛]; for

every 𝐶 =
∨

ℓ∈[𝑤 ] 𝑧
𝛽ℓ
𝑖ℓ

in 𝐹 and every 𝐽 = ( 𝑗1, . . . , 𝑗𝑤) ∈ [𝑚]𝑤 , a
3-CNF encoding of (∧ℓ∈[𝑤 ] 𝑥𝑖ℓ , 𝑗ℓ ) → 𝑥𝐶,𝐽 , a 2-clause 𝑥𝐶,𝐽 → 𝑦𝐶,𝐽 ,

and a 3-CNF encoding of 𝑦𝐶,𝐽 → ∨
ℓ∈[𝑤 ] 𝑦

𝛽ℓ
𝑖ℓ , 𝑗ℓ

. Note that if 𝐹 is a

𝑤-CNF formula, then ĨND𝑚 (𝐹 ) has O(𝑤 · |𝐹 | ·𝑚𝑤 + 𝑛𝑚) variables
and clauses.

We observe two basic facts about ĨND𝑚 (𝐹 ). First, every size-𝑠

resolution refutation of IND𝑚 (𝐹 ) can be made into a size-O(𝑠 +
|ĨND𝑚 (𝐹 ) |) refutation of ĨND𝑚 (𝐹 ). This is because IND𝑚 (𝐹 ) can be
derived from ĨND𝑚 (𝐹 ) in linear size. Secondly, for both rectangle-

and triangle-DAGs (or any shape-DAG that is closed under taking in-

tersectionwith rectangles), the search problem Search𝑋,𝑌 (IND𝑚 (𝐹 ))
reduces to Search𝑋,𝑌 (ĨND𝑚 (𝐹 )), where 𝑋 corresponds to the 𝑥-

variables, and 𝑌 to the 𝑦-variables of ĨND𝑚 (𝐹 ). Indeed, we can

fix a pair of injective maps 𝜙𝑋 : {0, 1}𝑋 → {0, 1}𝑋 and 𝜙𝑌 :

{0, 1}𝑌 → {0, 1}𝑌 which extend every assignment on 𝑋 ∪ 𝑌 to

one on 𝑋 ∪ 𝑌 according to the semantic meaning of the new vari-

ables. Let O be the set of possible outputs of Search𝑋,𝑌 (IND𝑚 (𝐹 )),
which we view as the set of clauses of IND𝑚 (𝐹 ). Similarly, let Õ
be the set of clauses of ĨND𝑚 (𝐹 ). We can define an injective map

𝜙 Õ : Õ → O which given a clause in ĨND𝑚 (𝐹 ) outputs the clause
IND𝑚 (𝐹 ) it came from. Therefore, given an F -DAG, where F is

a shape-DAG closed under taking intersections with rectangles, Γ̃

solving Search𝑋,𝑌 (ĨND𝑚 (𝐹 )), we can create an F -DAG Γ solving

Search𝑋,𝑌 (IND𝑚 (𝐹 )) with the same topology, as follows. For each

node in Γ̃—which is a subset of {0, 1}𝑋 × {0, 1}𝑌—we take its inter-
section with 𝜙𝑋 ({0, 1}𝑋 ) × 𝜙𝑌 ({0, 1}𝑌 ) and view it as a subset of

{0, 1}𝑋 × {0, 1}𝑌 via 𝜙−1
𝑋

×𝜙−1
𝑌

, giving the corresponding node of Γ.

It is not hard to see that Γ is an F -DAG for Search𝑋,𝑌 (IND𝑚 (𝐹 )).

Proof of Theorem 2.15. Let 𝐹𝑁 = ĨND𝑚 (𝐹 ), where 𝐹 is the

formula obtained from Theorem 2.5, our supercritical width-depth

trade-off, for the parameters 𝑐, 𝑘 and 𝑛. Note that 𝐹𝑁 is a 3-CNF

formula that has O(𝑚4𝑘2 (2𝑛)𝑐+1) variables and clauses. Since by

Theorem 2.5, 𝐹 has a resolution refutation of width 𝑘 + 3 and size

𝑂 (𝑘2 (4𝑛)𝑘 ), we have by Lemma 2.9 that IND𝑚 (𝐹 ), and hence also

ĨND𝑚 (𝐹 ), has a resolution refutation of size O(𝑚𝑘+4𝑘2 (4𝑛)𝑘 ).
Now, if there is a semantic cutting planes refutation of 𝐹𝑁 of size

𝑠 and depth 𝑑 , there is a triangle-DAG solving Search𝑋,𝑌 (IND𝑚 (𝐹 ))
of size 𝑠 and depth𝑑 , using the fact above that Search𝑋,𝑌 (IND𝑚 (𝐹 ))
reduces to Search𝑋,𝑌 (ĨND𝑚 (𝐹 )). By Theorem 2.12 this gives a

triangle-DAG solving Search(𝐹 ) ◦ IND𝑛
𝑚 of the same size and depth.

Finally, combining the triangle-DAG lifting theorem (Theorem 2.13)

and the width-depth trade-off (Theorem 2.5), we conclude that if

𝑠 ≤ 1

2
𝑚 (1−𝛿 ) (𝑘+𝑐 )

then 𝑑 = Ω(𝑛𝑘/(𝑘 + 𝑐)) = Ω(𝑛𝑘/(𝑘 + 𝑐)). □

Let us verify that Theorem 1.1 follows from Theorem 2.14, and

Theorem 1.2 from Theorem 2.15. Indeed, to obtain item (1), we

can set 𝑘 to be a sufficiently large constant, and the remaining

parameters to be 𝑐 = ⌊0.41𝑘⌋, 𝑤 = 𝑘 + 𝑐 , 𝛿 = 1

200
, and 𝑚 = 𝑛500.

For item (2), we choose 𝑘 = ⌊ 𝑛
4 log𝑛

⌋, and let 𝑐 = ⌊
√
𝑘⌋, 𝑤 = 𝑘 + 𝑐 ,

𝛿 = 1

4

√
𝑘
, and𝑚 = ⌊𝑛3/𝛿 ⌋, i.e.,𝑚 = ⌊𝑛12

√
𝑘 ⌋.

3 Formal Construction of Compressed Cylinder,
Cop-Robber Game, and Tseitin Formula

In this section, we give the formal definitions of the compressed cop-

robber game, the specific family of graph compressions we use to

establish the lower bound on the number of rounds in Theorem 2.2,

as well as the family of formulas exhibiting the width-depth trade-

off in Theorem 2.5. We start by specifying how the cop-robber game

is played when the graph is endowed with a graph compression as

in Definition 2.1.

Definition 3.1 (Compressed cop-robber game [34]). Given a graph

compression (𝐺,≡𝑉 ,≡𝐸), the compressed 𝑘-cop-robber game on𝐺
proceeds as follows. The cops and the robber stay on vertices of

𝐺 and are always visible to each other. Initially, the robber is at a

vertex, and all 𝑘 cops are lifted from the graph. In a round of the

game, the following happens in turn:

(1) If there is no lifted cop, the cops choose and lift one. Then, a

lifted cop signals a vertex 𝑣 to the robber.

(2) The robber does a compressible move from his current vertex

𝑤1 to some vertex𝑤2, which means he provides an edge set

𝑀 ⊆ 𝐸 such that:

(a) (𝑀 is closed under ≡𝐸 .) For two equivalent edges 𝑒≡𝐸𝑒
′
, it

holds that 𝑒 ∈ 𝑀 if and only if 𝑒′ ∈ 𝑀 .

(b) (No vertex equivalence class touched by𝑀 is occupied.)

Denote the set of vertices occupied by the cops after (1)

by C ⊆ 𝑉 . No edge in 𝑀 is incident to a vertex in C, i.e.,
C ∩𝑉 (𝑀) = ∅.

(c) (Parity flip.) For all 𝑢 ∈ 𝑉 (𝑀), deg𝑀 (𝑢) is odd if and only

if 𝑢≡𝑉𝑤1 or 𝑢≡𝑉𝑤2. (Note that this implies𝑤1 ≠ 𝑤2.)

(3) A lifted cop lands at the signaled vertex 𝑣 .

The game ends when a cop is at a vertex equivalent to the vertex

occupied by the robber.

As mentioned earlier, we analyze a specific family of graph com-

pressions, which we call compressed cylinders.

Definition 3.2 (Compressed cylinder). Given integers 𝑘, 𝑐, 𝑛 such

that 𝑘 ≥ 3, 𝑐 ∈ [1, 𝑘 − 1], and 𝑛 is sufficiently large, we let
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(𝐺cyl,≡𝑉 ,≡𝐸) be the following graph compression. The graph 𝐺cyl

is a cylinder with 𝑘 rows and 𝐿 + 2𝑟 columns. (The parameters 𝐿

and 𝑟 are specified below in item 3.)

(1) Compatible vertex equivalence≡𝑉 . Wepick factors𝑚1, . . . ,𝑚𝑘

of 𝐿, which are all greater than 2, called the moduli of rows.
We define a vertex equivalence relation where, on each row

𝑖 , (𝑖, 𝑎)≡𝑉 (𝑖, 𝑏) if both vertices fall in the middle part (i.e.,

𝑎, 𝑏 ∈ [𝑟 + 1, 𝑟 + 𝐿]) and 𝑎 − 𝑏 = 0 mod 𝑚𝑖 .

(2) Edge equivalence ≡𝐸 . The above ≡𝑉 induces an edge equiva-

lence relation on 𝐸 (𝐺cyl) via Definition 2.1. Here, we assume

the edges incident to a vertex are ordered by the canonical

choice (left, right, up, down), adjusted to a subset of size 3

for vertices on boundary columns.

(3) Choice of parameters.We set𝑚𝑖 , 𝐿, and 𝑟 in 𝐺cyl as follows.

Take 𝑘 pairwise coprime numbers 𝑃1, . . . , 𝑃𝑘 in [𝑛, 2𝑛]. (This
is possible by the prime number theorem if 𝑛 > 2𝑘 ln𝑘 +𝐶

holds for some absolute constant 𝐶 , and we picked 𝑛 to be

large enough.) Then for each 𝑖 ∈ [𝑘], we let:
𝑚𝑖 = 2(𝑘 + 𝑐) · 𝑃𝑖 · · · 𝑃𝑖+𝑐 , (8)

𝐿 = 2(𝑘 + 𝑐) · 𝑃1 · · · 𝑃𝑘 , (9)

𝑟 = 𝑘 + 𝑐 + 1 . (10)

This definition extends the construction due to Grohe et al. [34]

by letting the row periods depend on the parameter 𝑐 . Their original

construction is recovered in the case when 𝑐 = 2.

We are now ready to state Theorem 2.2 with full details.

Theorem 3.3 (Cop-robber (detailed)). For any 𝑘 ≥ 3, 𝑐 ≤ 𝑘 − 1,
and large enough 𝑛, it holds that 𝑘 + 1 cops can win the compressed
cop-robber game on (𝐺cyl,≡𝑉 ,≡𝐸), but as long as there are at most
𝑘 + 𝑐 cops, the robber can survive for (𝐿 − 2𝑟 )/(8(𝑘 + 𝑐)) rounds.

Turning our attention to CNF formulas, we define the compressed
Tseitin formulas, for which we prove our width-depth trade-off.

Given a graph compression, we denote by /≡𝑉 the map from the

vertices to the vertex equivalence classes, that maps every vertex to

its equivalence class, and similarly by /≡𝐸 the map from the edges

to their equivalence classes.

Definition 3.4 (Compressed Tseitin Formula). Given a Tseitin for-

mula Ts(𝐺) on 𝐺 and a graph compression (𝐺,≡𝑉 ,≡𝐸), the edge
equivalence ≡𝐸 induces a variable substitution 𝑥𝑒 ↦→ 𝑥𝑒/≡𝐸 as fol-

lows: for each edge equivalence class, introduce a single, new vari-

able 𝑥𝑒/≡𝐸 . Replace every occurrence of a variable 𝑥𝑒 in Ts(𝐺) with
the variable 𝑥𝑒/≡𝐸 . We call the resulting CNF formula the compressed
Tseitin formula on (𝐺,≡𝑉 ,≡𝐸), and denote it by Ts(𝐺)≡.

Consider the Tseitin formula on 𝐺cyl with the labelling 𝜒 (𝑣)
giving label 1 only to the first vertex in the first row, i.e., 𝜒 (𝑣) = 1

if and only if 𝑣 = (1, 1). Together with the graph compression in

Definition 3.2, this yields a compressed Tseitin formula Ts(𝐺cyl)≡ as

in Definition 3.4. We show our width-depth trade-off in Theorem 2.5

for the formulas obtained from this construction.

The proof of the trade-off exploits a connection between the

compressed Tseitin formula and the compressed cop-robber game

played on the same graph compression. Indeed, the upper bound in

Theorem 2.5 is a resolution refutation corresponding to the simple

strategy for 𝑘 + 1 cops in the compressed game.

Lemma 3.5 (Small-width refutation). The formula Ts(𝐺cyl)≡
has a resolution refutation with width 𝑘 + 3 and size 𝑂 ((𝐿 + 𝑟 )2𝑘𝑘).

Furthermore, the cops can win the compressed game by playing

according to a strategy derived from a refutation of the compressed

formula Ts(𝐺cyl)≡, as stated below.

Lemma 3.6 (Cops simulate refutation). If there is a width-𝑤
and depth-𝑑 resolution refutation of Ts(𝐺cyl)≡, then in the compressed
(𝑤 + 1)-cop-robber game on𝐺cyl, where the robber starts the game
at the vertex (1,1), the cops can win in 𝑑 + 1 rounds.

Taken together, Theorem 3.3 and Lemma 3.6 imply the depth

lower bound for bounded width refutations in Theorem 2.5. The

proofs of Theorem 3.3 and Lemma 3.5, as well as that of a more

general version of Lemma 3.6 that applies to any graph compression,

can be found in the full-length version of the paper [21].

4 Concluding Remarks
This work opens up many exciting avenues for future research; we

end by discussing the ones that we find most intriguing.

Supercritical Trade-offs for Non-monotone Circuits. We

show that supercritical trade-offs exist for monotone circuits. What

about for non-monotone circuits? Given that unconditional lower

bounds for general circuits are beyond the reach of current tech-

niques, it is interesting to prove the existence of such trade-offs

under standard cryptographic assumptions, such as the existence

of one-way functions.

Supercritical Trade-offs for Perfect Matching and Tseitin.
Having established truly supercritical trade-offs for monotone cir-

cuits and cutting planes, we find it natural to ask for more examples

of this phenomenon. As mentioned in the introduction, it is possi-

ble that the perfect matching problem exhibits such a trade-off for

monotone circuits, and for cutting planes the Tseitin formulas are

a candidate. The latter would also resolve the following question.

Separating Stabbing andCutting Planes. The quasi-polynomial

size cutting planes proof of the Tseitin formulas was obtained by

showing that a known upper bound on the Tseitin formulas in a

proof system known as stabbing planes [5] could be efficiently trans-

lated into cutting planes. In fact, as was shown in [23], any stabbing

planes proof with sufficiently small coefficients can be translated

into cutting planes. However, this transformation causes a blow-up

in depth that is proportional to the size of the original proof. For

example, the depth 𝑂 (log2 𝑛) stabbing planes proofs of the Tseitin

formulas become quasi-polynomial-depth cutting planes proofs.

Can one show that this blow-up is inevitable by giving a formula

which has small stabbing planes proofs with low depth, however

exhibits a supercritical size-depth trade-off for cutting planes?

Further Applications of Variable Compression. We give an

application of variable compression in proof complexity. Is it pos-

sible to apply this technique to other problems? For example, can

pebbling formulas and their associated graphs be compressed? New

compressions for the cop-robber game would also be of interest.
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