
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Master thesis

Leveraging cutting planes reasoning for
faster Pseudo-Boolean solving and optimization
Ziyang Men

Supervisor: Jakob Nordström, Stephan Gocht

Submitted: May 30, 2022

This thesis has been submitted to the Department of Computer Science, University of Copenhagen

2

Abstract

Among the execution of modern Boolean Satisfiability (SAT) and Mixed Integer
Programming (MIP) solvers, presolving is a commonly employed procedure between the
encoding and solving phases with multiple preprocessing techniques to simplify the in-
stance size or improve its “strength”. However, this powerful tool has not yet been widely
used in Pseudo-Boolean Solving/Optimization closely related to SAT and MIP. In this
report, we study categories of SAT/MIP preprocessing techniques and try to adapt or
lift them into Pseudo-Boolean configuration. The experiments show that a considerable
number of instances could be solved faster after being processed by the presolving when
using a Pseudo-Boolean solver, while this still fails to help solve more instances within
a certain time limit.

Keywords: Presolve, Pseudo-Boolean Solving, Pseudo-Boolean Optimization, SAT
Preprocessing, MIP Preprocessing

Table of Contents

Table of Contents 3

1 Introduction 5

2 Preliminary 7

2.1 Notation system . 7

2.2 Concept explanation . 8

3 SAT preprocessing 13

3.1 Classical CNF level techniques . 13

3.1.1 Unit propagation . 13

3.1.2 Failed variable . 14

3.1.3 Pure variable . 14

3.1.4 Connected components . 14

3.2 Resolution-based preprocessing . 15

3.2.1 Bounded variable elimination . 16

3.2.2 Techniques based on implication graphs 17

3.2.3 Hyper binary resolution . 18

3.2.4 General implication graph and Extended hyper resolution 19

3.3 CNF preprocessing beyond resolution . 22

3.3.1 Subsumption . 22

3.3.2 Blocked clause elimination . 24

4 MIP preprocessing 27

4.1 Reduction for individual constraints . 27

4.1.1 Model cleanup and removal of redundant constraints 27

4.1.2 Bound strengthening . 28

4.1.3 Coefficient strengthening . 28

4.1.4 Chvatal-Gomory strengthening of inequalities 29

4.1.5 Euclidean reduction . 29

4.1.6 Simple probing on a single constraint 30

4.1.7 Doubleton equation substitution 30

4.1.8 Simplify inequalities . 31

3

4 TABLE OF CONTENTS

4.1.9 Singleton columns substitution . 32
4.2 Reduction for individual variables . 32

4.2.1 Dual fixing and bound strengthening 32
4.2.2 Substitute implied free variables 33

4.3 Reductions that consider multiple constraints at the same time 33
4.3.1 Parallel and nearly parallel rows 33
4.3.2 Non-zero cancellation . 36
4.3.3 Bound and coefficient strengthening 36
4.3.4 Clique merging . 37

4.4 Reduction that considers multiple variables at the same time 38
4.4.1 Fix redundant penalty variables . 38
4.4.2 Parallel columns . 39
4.4.3 Dominated columns . 39
4.4.4 Parity fixing . 40

4.5 Reductions that consider the whole problem 41
4.5.1 Aggregate pairs of symmetric variables 41
4.5.2 Probing . 42
4.5.3 Biconnected components . 43

5 Experimental evaluation 45
5.1 Implementation detail . 45
5.2 Performance evaluation . 47

6 Conclusions and future work 53

7 Acknowledgement 55

Bibliography 57

Chapter 1

Introduction

Boolean Satisfiability (SAT) is the canonical NP-complete problem in computational
complexity theory [Coo71; Lev73]. A large body of theoretical work provides circum-
stantial evidence for and builds on the hypothesis that this problem is impossible to
solve efficiently in the worst case, e.g., the Strong Exponential Time Hypothesis (SETH)
[IP01; CIP09] states that 3-SAT cannot be solved in sub-exponential time in the worst
case and if it is true, then P 6= NP.

The cutting-plane proof system introduced in [CCT87], incorporating the Gomory-
Chvátal algorithm [Gom63; Chv73a] for Integer Linear Programming (ILP), translates
the disjunctive clauses in a SAT formula to linear inequalities and manipulates them
to derive a contradiction, in which the question of Boolean satisfiability is reduced
to the geometry of polytopes over the integer numbers, which further formalizes the
Pseudo-Boolean (PB) solving/optimization [HR69; BH02; MM06]. The cutting-plane
proof system operates on arbitrary 0-1 linear integer constraints, which is referred to as
Pseudo-Boolean constraints, and a Pseudo-Boolean formula is a set of Pseudo-Boolean
constraints which is also known as the 0-1 ILP.

Although SAT is believed to be hard on the theoretical side, applied research over
the last two decades has meet a quick development. Combined with various heuris-
tic and dedicated data structures, the conflict-driven clause learning (CDCL) [GRA99;
Mos+01a] based SAT/PB solvers such as [BS97; MS99; Mos+01b; CK05; SE05; SS06;
LP10; EN18] have shown to be highly efficient tools for solving large-scale practical opti-
mization problems, especially in detecting the satisfiability for Conjunctive Normal Form
(CNF) encoded decision instances. However, existing SAT/PB solvers still struggle to
compete with Mixed Integer Programming (MIP) solvers, e.g., [Bix07; Ach09; BBL14]
when the inputs are general optimization instances, as observed in [EN18; Dev+21].

A significant reason for the extraordinary performance of modern linear programming
solvers is the application of the schemes and routines that are commonly referred to as
presolve. Presolve is a process where the problem input by the user is examined for
logical reduction opportunities based on presolving or preprocessing techniques. The
goal is to reduce the size of the problem passed to an optimizer. A reduction in problem
size typically translates to a reduction in total run time (even including the time spent

5

6 CHAPTER 1. INTRODUCTION

in the presolve itself) [Man87]. It might not always be possible to apply presolving
on problem instances, meaning that the problem size may remain unchanged or there
is no acceleration for the afterward problem-solving even if the instance size has been
reduced, as discussed in [Sav94; Mar99; FM05a; BJK21]. However, looking at a broader
and general picture, it was reported in [AW13; Ach+20] that the presolving is a powerful
tool for MIP and in some cases, it indeed effects whether the problem is solvable or not.

There is already some research conducted on SAT preprocessing techniques. One
of the earliest and most important contribution was the Bounded Variable Elimination
[Bie04b; BJK21] and is followed by the Hyper Binary Resolution, [Bac02; HJB13], Block
Clause Elimination [JBH10a; JBH10b], etc. A comprehensive overview of SAT-oriented
presolving techniques is reported in [BJK21]. Similarly, [BMW75] is one of the earliest
papers introducing presolving techniques, such as Identifying Exclusive Row Structure,
Variable Fixing, etc., into MIP solving systematically. Following research such as 0-1
inequalities [JS80; GS81; CJP83; HP91], Generalized Probing Techniques [Sav94], Linear
Programming [AA95], Dominate Column [Gam+15], etc., has substantially enriched
the contents of MIP presolving. A thorough summary of the current research on MIP
presolving techniques appears in [Ach+20].

In contrast, to the best of our knowledge, related publications on presolving tech-
niques specifically for Pseudo-Boolean solving/optimization are surprisingly small: [DG02]
firstly uses the Constraint Strengthening as a preprocessing technique in Pseudo-Boolean
solving, the adapted technique is also known as the Strengthening Rule in SAT commu-
nity later. Two dedicated variable handle techniques from the MIP view are introduced
in [BHP08] while the effect is reported to be marginal. The [MLM09] adapts the Extended
Hyper Resolution in SAT clause inference for some specific types of Pseudo-Boolean con-
straints and the work in [MML10] uses the Pseudo-Boolean solver itself, integrated with
Constraint Branching from ILP, as a preprocessor for following unsatisfiability-based
algorithm. Later MaxSAT and Pseudo-Boolean solver [Pio20] combined with MaxSAT
preprocessor [Kor+17] has shown good performance in MaxSAT Evaluation 2019.

This report aims to benefit from the advanced preprocessing techniques employed in
both SAT and MIP communities, try to lift/adapt some of them into Pseudo-Boolean
configuration and evaluate the corresponding effectiveness concerning the Pseudo-Boolean
instances and the solving phase on a Pseudo-Boolean solver. None of novel presolving
techniques are proposed in this report, but as far as we know, some of them are firstly
adapted into Pseudo-Boolean configuration.

The remaining contents are organized as follows: in the next chapter Preliminary,
the notation system we use and some basic concepts about SAT/MIP/PB are provided.
The following two chapters SAT preprocessing and MIP preprocessing tries to lift/adapt
SAT and MIP preprocessing techniques respectively. Chapter Experimental evaluation
measures to what extent some presolving techniques will affect the following solving
phase on practical side, the report then ends with the Conclusions and future work.

Chapter 2

Preliminary

2.1 Notation system

A Pseudo-Boolean variable is a binary variable xσ = {0, 1}, σ ∈ {0, 1} where x1 =
x, x0 = x̄ and xσ + x1−σ = 1. Denote the lower bound for a Pseudo-Boolean variable xσi
as lσi equals to 0 and the upper bound as uσi equals to 1.

A Pseudo-Boolean constraint is a 0-1 linear integer constraint:∑
i,σ

aσi x
σ
i ◦A, aσi ∈ Z, A ∈ Z (2.1)

where i ∈ {1, · · · , n}, σ ∈ {0, 1} and ◦ = {≤,≥,=, <,>}. For simplicity, we use a
shorthand notation [n] = {1, · · · , n} to represent a set of indices. The constant aσi is
called the constraint coefficient of xσi . Sometimes, it is convenient to use the constraints
written in normalized form:∑

i∈[n],σ∈{0,1}

aσi x
σ
i ≥ A, aσi ∈ N,min{a0i , a1i } = 0, A ∈ N+ (2.2)

where the constant term A = deg(
∑

i∈[n] a
σ
i x

σ
i ≥ A) is referred to as degree (of falsity).

The condition min{a0i , a1i } = 0 ensures x0i and x1i cannot appear in a same constraint.
Given a set of variable indices S, denote xσS := {xσi : i ∈ S} to be the variables

indexed by S. Similarly, for a set of constraint indices R, denote CR := {Cj : j ∈ R},
i.e., the constraints whose index is contained in R. Write xσi ∈ Cj if constraint Cj
contains variable xσi (with non-zero coefficient), and xσS ∈ Cj if xσi ∈ Cj holds for all
i ∈ S. Say a constraint Cj is k-ary if it contains exactly k distinguish variables, i.e.,
k = arg max|S| x

σ
S ∈ Cj , specifically, if k = 1, we call it a unit constraint.

The Pseudo-Boolean formula F is a conjunction of M = {1, · · · ,m} pseudo-Boolean
constraints Cj over N = {1, · · · , n} variables xσN , σ ∈ {0, 1} such that:

F
.
=
∧
j

Cj , j ∈M (2.3)

7

8 CHAPTER 2. PRELIMINARY

Given two subsets S ⊆ N,R ⊆M , denote F (xσS , CR) as the sub-formula induced from
F by picking out constraints CR which cover variables xσS , σ ∈ {0, 1}. For simplicity, we
denote all variables in F as V ars and for a constraint C, denote V ars(C) = {xσi |xσi ∈ C}.

For a subset S ⊆ N , a truth assignment ρ is a mapping {xσi → {0, 1}|∀i ∈ S}, i.e.,
ρ(xσi) implies xσi := 1 and x1−σi := 0, and is called a partial assignment (trial) if S ⊂ N
or a total assignment if S = N . Specifically, write ρ(∅) to indicate no value has been
assigned for any variable.

Similarly, define a substitution ω as a (partial) function V ars → V ars ∪ {0, 1},
e.g., ω = {xσi 7→ xσj } implies xσi is substituted by xσj . Applying a substitution ω to
a constraint C shown in 2.2 is shorthand as C�ω, which is equivalent to substitute all
variables in C according to the ω and normalize it again, likewise for a formula, we write
F �ω =

∧
j Cj�ω.

Given a formula F and a constraint C, denote F � C as F implies C, i.e., all
satisfying assignment for F must satisfy C as well, and denote F � F ′ if F � C ′ holds
for all constraints C ′ ∈ F ′. Specifically, if F contains only one constraint D, we write
D � C.

Pseudo-Boolean Solving (PBS) is to decide whether a given formula F is satisfi-
able/feasible, i.e., determine the existence of a truth assignment ρ such that F is evalu-
ated to true. The Pseudo-Boolean Optimization (PBO) is to find a satisfying assignment
to F that minimizes the objective function:∑

i∈[n],σ∈{0,1}

wσi x
σ
i , wσi ∈ N (2.4)

where the constant term wσi is called the objective coefficient of xσi .

2.2 Concept explanation

1. Constraint transformation. Given a Pseudo-Boolean constraint, it is always pos-
sible to substitute the variables whose coefficient is negative by its negation with
positive coefficient, e.g.,

−xσi ≥ 0 =⇒ x1−σi ≥ 1 (2.5)

Applying this scheme, we can change every Pseudo-Boolean constraint into nor-
malized form.

Given a Pseudo-Boolean constraint in normalized form 2.2 with∑
i∈[n],σ∈{0,1}

aσi = K

The negation of C is defined to be:

¬C .
=

∑
i∈[n],σ∈{0,1}

aσi x
1−σ
i ≥ K −A+ 1 (2.6)

2.2. CONCEPT EXPLANATION 9

2. Constraint classification. Using the same constraint classification in [MLM09], we
divide general Pseudo-Boolean constraints in normalized form into three different
categories:

a) Clauses, which is the same as a CNF SAT clause:∑
i∈[n],σ∈{0,1}

xσi ≥ 1 (2.7)

b) Cardinality constraints, where all coefficients equal to 1, i.e., :∑
i∈[n],σ∈{0,1}

xσi ≥ A (2.8)

c) General constraints: ∑
i∈[n],σ∈{0,1}

aσi x
σ
i ≥ A (2.9)

Sometimes it is convenient to represent a normalized constraint in equivalent
smaller-or-equal relation, hence we define the reverse general constraints to be
the constraints in form: ∑

i∈[n],σ∈{0,1}

aσi x
σ
i ≤ A (2.10)

and the equal general constraints to be:∑
i∈[n],σ∈{0,1}

aσi x
σ
i = A (2.11)

3. Slack. During the solving phase of SAT/PB solver, the slack of a constraint in
normalized form under a partial assignment (trial) ρ measures how far this con-
straint is from being falsified by ρ, which is defined as the sum of the coefficients of
all literals that are not falsified (i.e., those variables unassigned value or has been
assigned true) by ρ minus the degree of the falsity of this constraint:

slack

 ∑
i∈[n],σ∈{0,1}

aσi x
σ
i ≥ A; ρ

 =
∑

ρ(xσi)6=0

aσi −A (2.12)

The constraint is conflicting under ρ if

slack

 ∑
i∈[n],σ∈{0,1}

aσi x
σ
i ≥ A; ρ

 < 0 (2.13)

and for xi∗ not in the domain of ρ, it propagates xσ
∗
i∗ under ρ if:

0 ≤ slack

 ∑
i∈[n],σ∈{0,1}

aσi x
σ
i ≥ A; ρ

 < aσ
∗
i∗ (2.14)

10 CHAPTER 2. PRELIMINARY

4. Constraint strength. Intuitively, formulating the strengthen of a constraint is tricky,
partially because that constraints have interleaving effects during the solving: one
constraint which is trivially satisfied at present might play an essential role during
the next iteration, as documented in [BJK21] 1. However, it is still possible to
draw some indistinct picture towards the strength of a constraint which could be
helpful for further analysis:

a) From the view of the cutting-plane and feasible solution region, we say a
constraint is stronger than the other if it could cut off more assignments,
which is equivalent to fewer feasible assignments for this constraint. For
example:

x1 + x2 + x3 ≤ 1

x1 + x2 + x3 ≤ 2

the first constraint is stronger since it rules out assignment patterns {x1 =
x2 = 1;x1 = x3 = 1;x2 = x3 = 1} satisfying the second constraint.

Another example is:

k∑
i=1

xi +
l∑

j=1

yj ≥ β

l∑
j=1

yj ≥ β

The second constraint is stronger since the feasible region of assignment is
{0, 1}l, which is smaller compared with the {0, 1}k × {0, 1}l defined by the
first one, in other words, every satisfying assignment for the second constraint
will satisfy the first one but not vice versa.

b) In Pseudo-Boolean setting, one possible view for the strength of a normalized
constraint C is to evaluate its initial slack, i.e., slack(C, ρ(∅)), generally a
constraint with smaller initial slack could be stronger. This is because the
execution of a CDCL solver lies on the unit propagation on variables, and
after every variable decision it is not worse to make as much unit-propagation
as possible since this could reduce the size of the search tree afterward. In
Pseudo-Boolean solving, the unit propagation checks the constraints’ slack
regarding the current partial assignment. Note that unless the solver undoes
assignment, the slack for a constraint will not increase, which leads to that
those constraints with smaller initial slack are more “likely” to incur a unit
propagation.

1This is quite similar to the categories of presolving techniques, where one technique is unable to
make further progress, another method might be applicable, and might even modify the formula in ways
that trigger the first technique again.

2.2. CONCEPT EXPLANATION 11

For example, consider two general constraints C and D below:

C
.
= 3x1 + 2x2 + x3 ≥ 3

D
.
= 4y1 + 2y2 + 2y3 ≥ 3

We have slack(C; ρ(∅)) = 3 smaller than slack(D; ρ(∅)) = 5, and find that
falsify arbitrary variable in C will cause a unit propagation to others, while
this happens to D only if y1 := 0.

5. Some general conditions must be hold for presolving techniques. In the rest of our
work, the following criteria will be employed to test whether a presolving approach
is valid for Pseudo-Boolean Solving/Optimization. Without additional comments,
the aforementioned presolving techniques are supposed to satisfy all the following
conditions.

a) A presolving technique should preserve the satisfiability of the problem.
Whenever a presolving technique adds a non-trivial constraint or fix value for
some variables, it cuts off some vertexes over the solution region, leading to the
removal of some feasible solutions. This is where the power of the presolving
comes from, but another side of the sword is the possibility of a satisfiable
problem being unsatisfiable afterward. Symmetrically, discard constraints
or removal of variables may lose the boundary of the feasible region which
may lead to an unsatisfiable instance becoming satisfiable. In this case, it
is necessary to ensure one preprocessing technique will permanently preserve
the satisfiability of the problem.

Specifically, if the problem is PBO, the technique should preserve the opti-
mality as well, e.g., it is allowable for this technique to cut off some optimal
solutions on the feasible region but not all.

b) A presolving technique should not break the binary bound of variables.
The Pseudo-Boolean problem is intrinsic 0-1 ILP and the underlying reasoning
logic of a Pseudo-Boolean solver is established on variables being boolean.
Whenever a presolving technique adds a new variable or modifies the variable
bounds, it should ensure the variable is still binary.

c) The original solution should be reconstructable.
Since the structure of the problem after a non-trivial presolving has been mod-
ified, the following solving phase is actually conducted on a subspace w.r.t the
original one defined by the constraints in the non-presolved case; therefore, if
the solution is not reconstructable then we actually solve the reduced prob-
lem rather than the original one. Besides, since the best commercial solver
cannot fully guarantee the produced solution is correct, the original solution
becomes a significant element within the validation phase of the solver.

d) The expected execution time for a presolving technique should be negligible
w.r.t the solving phase.

12 CHAPTER 2. PRELIMINARY

When we start to presolve an instance, we actually begin to solve it. In
this case, if we talk about the solving time for a problem, it is reasonable to
take the execution time for presolving techniques into consideration as well;
otherwise it is always possible to presolve the problem to solve, e.g., simply
enumerate solutions, which is indeed trivial for the acceleration of the solving
phase for following SAT/PB/MIP solver.

Chapter 3

SAT preprocessing

In this section, we follow the routine presented in [BJK21] to lift some SAT preprocessing
techniques into Pseudo-Boolean setting.

3.1 Classical CNF level techniques

We start from four classical CNF level techniques: Unit Propagation, Failed Literal
Elimination, Pure Literal Elimination, and Connected Components. These category
techniques are inspired mainly by the underlying scheme of SAT solving, e.g., the conflict
analysis and the property of variables or clauses.

3.1.1 Unit propagation

In SAT community, the Unit Propagation [DP60] is to check whether a formula includes
a unit clause, e.g., a clause that contains exactly one literal. If so, clearly this literal
has to be true. All clauses containing such literal are trivially satisfied then and can be
discarded. After that, the negation of this literal is removed from the formula.

A simple but efficient algorithm that implements the unit propagation is called two-
watched literal scheme [Mos+01c]. The idea is that one clause contains more than two
unassigned literals will not trigger a unit propagation, the algorithm then watches two
arbitrary literals in a clause and once either of them is assigned to false, this literal will
be replaced with another unassigned literal in the clause; if it is not possible to make a
replacement, the other watched literal will be unit propagated to true.

In MIP community, unit propagation is also known as Boolean Constraint Propa-
gation (BCP) [CK05]. In Pseudo-Boolean setting, consider a unit constraint C such
as:

C
.
= aσi x

σ
i ≥ A, i ∈ [n], σ ∈ {0, 1} (3.1)

If A > aσi the constraint is infeasible; otherwise setting xσi := 1 would satisfy the

13

14 CHAPTER 3. SAT PREPROCESSING

constraint. For all other constraints D ∈ F \ {C} in form:

D
.
= aσi x

σ
i +

∑
j,σ

aσj x
σ
j ≥ B (3.2)

where j 6= i, σ ∈ {0, 1}. If slack(D; ρ(xσi)) < 0 then a conflict has been reached,
otherwise variable xσj will be unit propagated to true if its coefficient satisfies:

0 ≤ slack(D; ρ(xσi)) < aσj (3.3)

which may further trigger another unit propagation. We can repeatedly apply the unit
propagation until either it derives a conflict or no more unit-constraints are left. Finally,
all variables that are propagated to true can be weakened.

3.1.2 Failed variable

In SAT solving, a literal ` is called a failed literal [ZM88; Le 01] if adding unit clause
(`) to formula yields a conflict. Similarly, in Pseudo-Boolean setting, we say a variable
xσi , i ∈ N is a failed variable w.r.t a formula F if adding constraint xσi = 1 to F would
cause a conflict by unit propagation, which means F implies x1−σi = 1. Such technique
that adds the negation of the failed variable to the formula is called Failed-Variable
Probing, which is a variant of the classical MIP preprocessing technique Probing.

In practical SAT preprocessing, it needs quadratic time to simplify and test all lit-
erals whether they are failed literals [BJK21]. Combined with the linear time in unit
propagation, it needs cubic time to perform the total failed literal detection. One of the
optimization methods proposed by [ABS99; SNS02] is to skip those literals that are prop-
agated during the unit propagation since the last time a failed literal has been found
(because they will not trigger a propagation) and these literals will become available
until next new failed literal is detected.

3.1.3 Pure variable

In SAT solving, one literal ` is called a pure literal [DP60; Dun+67] if its negation ¯̀ is
not contained in the formula. Here we say a pure variable xσi , i ∈ N is a variable whose
negation x1−σi /∈ F . For Pseudo-Boolean Solving, assuming the formula is in normalized
form, we can set all pure variables to true since this will always decrease the constraint’s
degree. Besides, for Pseudo-Boolean Optimization with normalized constraints, a pure
literal can be set to true in advance if and only if its objective coefficient is non-positive
as well.

3.1.4 Connected components

The SAT community has observed that a formula can often be divided into separate
components that can be solved independently [BS06]. Such a strategy that seeks inde-
pendent sub-problems within a formula is also suitable for Pseudo-Boolean Solving and
Optimization.

3.2. RESOLUTION-BASED PREPROCESSING 15

Specifically, given a Pseudo-Boolean formula F with N variables and M constraints,
one can construct a bipartite graph G = (L ∪ R,E) where all variables xσi ∈ L,∀i ∈ N
and constraints Cj ∈ R,∀j ∈ M . There is an edge between xσi and Cj if and only if
Cj contains either xσi or x1−σi

1. By finding the disconnected components in G we can
separate F into smaller sub-formulas, which can be solved independently.

For example, consider following constraints:

3x1 + 2x2 + x3 ≥ 3

2x̄1 + x3 ≥ 1

x4 + x5 ≥ 2

the corresponding bipartite graph G is shown in Figure 3.1.

x1

x̄1

x2

x3

x4

x5

x4 + x5 ≥ 2

3x1 + 2x2 + x3 ≥ 3

2x̄1 + x3 ≥ 1

Figure 3.1: Bipartite graph for PB formula with two disconnected components

As mentioned, this method is feasible for both Pseudo-Boolean Solving and Pseudo-
Boolean Optimization. Because, for the former, a union of satisfiable assignments of
every component is satisfiable for the whole problem as well; for the latter, a minimal
global objective is valid if and only if all sub-objectives for disconnected components are
minimized.

3.2 Resolution-based preprocessing

Similarly to that cutting-plane underlies the basis of Pseudo-Boolean solver, the res-
olution proof system [Bla37; DR01; DLL62; Rob65] provides the theoretical support

1We can also add a edge between xσi and x1−σi and add edges if and only if xσi is contained in Cj ,
but this will destroy the bipartite.

16 CHAPTER 3. SAT PREPROCESSING

for most modern SAT solvers [BN21]. Given two clauses B, C and a variable x, the
resolution rule allows to derive a new clause as follows:

B ∨ x C ∨ x̄
B ∨ C

(3.4)

Correspondingly, in cutting-plane proof system, we can perform cancelling addition
between two constraints as:

ajx
σ
j +

∑
i 6=j,σ a

σ
i x

σ
i ≥ A bjx

1−σ
j +

∑
i 6=j,σ b

σ
i x

σ
i ≥ B∑

i 6=j,σ ((bjaσi /d) + (ajbσi /d))xσi ≥ bjA/d+ ajB/d− ajbj/d

where d is the greatest common divisor of aj and bj .
The resolution-based preprocessing technique aims to apply the resolution rule on

clauses in some specific manner beforehand to derive valuable inferences that may guide
the following Davis-Putnam-Logemann-Loveland (DPLL) search in SAT/PB solver, ac-
companying by the acceptable increase of the clause number. Since the cutting-plane
could efficiently simulate resolution [BN21], all these techniques are directly applied to
clauses PB constraints and the focus of this section is to lift them for other types of con-
straints. Four commonly used SAT preprocessing are included in this section, namely,
the Bounded Variable Elimination, Implication Graph-based Resolution, Hyper Binary
Resolution, and Extended Hyper Resolution.

3.2.1 Bounded variable elimination

In SAT community, the Bounded Variable Elimination (BVE) [Bie04b; SP04a; SP04b],
also known as Clause Distribution [DP60], performs all possible resolutions over a cer-
tain literal `, adds back the resolvent, and removes clauses containing `. Since simply
eliminating a single literal would incur a quadratic increment of clause number [BJK21],
the original bounded variable elimination is generally performed only when resolving
a literal will not increase the clause number too much, which explains the meaning of
“bounded” as well.

In Pseudo-Boolean setting, the idea here is to choose a variable xσi and perform all
possible canceling addition upon this variable and add back the resolvent constraints.
After that, we can remove xσi from the formula by using the Fourier-Motzklin Elimination
(FME)2 [Dan72].

Since performing canceling addition is implicationally sound, meaning that every
satisfying assignment for the formula and resolvent constraint satisfies the initial formula
as well, combining with that FME does not change the feasible solution over the system,
above procedure preserves the satisfiability.

2The idea of FME is to rewrite the inequality system based on x, the variable to be eliminated, and
formulate the new system by setting all upper bounds of x greater than the lower bounds of x.

3.2. RESOLUTION-BASED PREPROCESSING 17

The BVE combined with Subsumption and tautology elimination could be more
powerful as documented in [BJK21]. For example, consider following constraints:

3x1 + 2x2 + x3 + x4 ≥ 5

2x̄2 + x̄4 ≥ 1

3x1 + x3 ≥ 2

assume x2 is the bounded variable, we can perform cancelling addition over x2 between
first two constraints, which yields:

3x1 + x3 + x4 + x̄4 ≥ 4

eliminate tautology we have:

3x1 + x3 ≥ 3

which subsumes the third constraint and thence we can remove it.

On the implementation side, as initiated in [Bie04a; Bal+16] and pointed out in
[BJK21], it could be helpful to relax the number of bound clauses added incrementally,
i.e., the number to be added formed a geometric series 0, 8, 16, 32 · · · , 8192. Another trick
is to take the order of eliminated variable candidates into consideration. As discussed
in [BJK21], a common method is to use a min-binary-heap storing variables based on
their appearance frequency and always eliminate the one on the top of heap. The heap
is then updated dynamically when the elimination is performed.

3.2.2 Techniques based on implication graphs

Given a Pseudo-Boolean formula, the corresponding binary implication graph [APT79]
is a directed graph, where the nodes are variables in the formula and there is a directed
edge e = (xσi , x

σ
j) if and only if there is a 2-ary constraint such as:

aσi x
1−σ
i + aσj x

σ
j ≥ A, i 6= j, σ ∈ {0, 1}, aσj ≥ A (3.5)

meaning that xσi := 1 would cause unit propagation xσj := 1. The condition aσj ≥ A
ensures that the formula can still maintain feasible when xσi := 1, otherwise xσi ≡ 0.

Given a binary implication graph, the nodes in the same Strong-Connected-Component
(SCC) are logically equivalent [VT95; Li00] since setting one of the nodes to true will
unit propagate others to true via the translate direction indicated by the directed edges.
In this case, variables in same SCC can be replaced by a new variable. If both a variable
and its negation are contained in same SCC then the formula is unsatisfiable. Performing
canceling addition along the edges in one SCC would yield a trivially satisfied constraint.

18 CHAPTER 3. SAT PREPROCESSING

For example, consider following constraints:

2x̄1 + x2 ≥ 1

3x̄2 + 2x3 ≥ 2

2x̄3 + x5 ≥ 1

2x̄4 + x2 ≥ 1

3x̄5 + 2x4 ≥ 2

3x̄5 + 2x6 ≥ 2

the corresponding implication graph is shown in Figure 3.2: the SCC formed by x2, x3, x4, x5

x2 x3

x4 x5

x1 x6 x1 y x6

Figure 3.2: Binary implication graph for the formula and the equivalent form

can be replaced by a newly introduced binary variable y and above constraints are equiv-
alent to:

2x̄1 + y ≥ 1

3ȳ + 2x6 ≥ 2

This approach is applied for PBS since all possible satisfying assignments should
follow the topology shown in the corresponding binary implication graph. For PBO,
assume an index set S ⊆ N where xσS contained in same SCC and wσS are their objective
coefficients, simply replace xσS by a new introduced binary variable y and set the objective
coefficient wy :=

∑
i∈S,σ w

σ
i will preserve the optimality as well.

3.2.3 Hyper binary resolution

The binary resolution is to perform cancelling addition over a certain variable between
two 2-ary constraints:

aσi x
σ
i + aσj x

σ
j ≥ A bσi x

1−σ
i + bσj y

σ
j ≥ B

(aσj b
σ
i /d)xσj + (aσi b

σ
j /d)yσj ≥ bσi A/d+ aσi B/d

(3.6)

where d = gcd(aσi , b
σ
i). The outcome is either:

1. another 2-ary constraint if xσj 6= yσj and aσi , a
σ
j , b

σ
i , b

σ
j are non-zeros;

2. a constant inequality if xσj = y1−σj and aσj b
σ
i = aσi b

σ
j ;

3.2. RESOLUTION-BASED PREPROCESSING 19

3. a unit constraint otherwise.

for the third case, we can perform unit propagation then.

Furthermore, consider performing canceling addition between one long constraint
and a group of 2-ary constraints simultaneously, formally, given a constraint C and a
constant k such as:

C
.
=
∑
i,σ

aσi x
σ
i ≥ A, i ∈ {1, · · · , k} (3.7)

and set of 2-ary constraints Di in form:

Di
.
= bσi x

1−σ
i + bσj x

σ
j ≥ Ai, ∀i ∈ {1, · · · , k − 1} (3.8)

the Hyper Binary Resolution (HBR) [Bac02] allows the derivation of a new 2-ary con-
straint D:

D
.
= αxσk + βxσj ≥ γ (3.9)

where α, β, γ are the coefficients obtained by performing cancelling addition over xσi
among C and Di sequentially, where i = {1, · · · , k − 1}. Specifically, if k = j, D would
become a unit constraint and may trigger another unit propagation. The final constraint
D can be added back to the formula and perform another binary resolution then. Since
cancelling addition is implicationally sound, this will perserve both satisfiability and
optimality.

On the implementation side, as introduced in [HJB10; AJS08], detecting the possible
HBR can be carried on a binary implication graph using the transitive closure and the
idea is to check whether all literals in the graph have a common neighbor. As for adding
edges to the implication graph, one naive approach is to add edges indicated only from
binary constraints, but as point out in [Bac02; HJB13], one can run unit propagation
for every variable and add edges from the negation of this variable to those who are
propagated. The effectiveness of HBR is stressed in [BJK21], which shows that by
repeatedly using HBR and unit propagation, a formula could be simplified significantly.

3.2.4 General implication graph and Extended hyper resolution

As introduced in [AJS08], it is possible to construct the implication graph based on
clauses with arbitrary size. The idea is to add an edge (¯̀

i, `j), i, j ∈ [n] associated with
a context η = {¯̀k|k ∈ [n] \ {i, j}} for every clause C with n literals `1, · · · , `n where
n ≥ 3, such that an assignment satisfies η makes C a binary clause.

Unlike HBR which aims to obtain a single binary clause, the Extend Hyper Resolution
(EHR) [AJS08] tries to derive as many clauses as possible, formally:

(`1 ∨ `2 ∨ · · · ∨ `n) (¯̀
1 ∨ γ1), · · · , (¯̀

n ∨ γn))

(
⋃

1≤i≤n(γi))
(3.10)

20 CHAPTER 3. SAT PREPROCESSING

ℓ1

ℓ2

ℓn

ℓn ∨ ℓ

...
...

...

ℓ1

ℓ2

ℓn

γ1

γ2

γn

(ℓ̄1 ∨ ℓ)

(ℓ̄2 ∨ ℓ)

(ℓ̄1 ∨ γ1)

(ℓ̄2 ∨ γ2)

(ℓ̄n ∨ γn)

Hyper Binary Resolution Extend Hyper Resolution

Figure 3.3: Comparison of Hyper Binary Resolution and Extend Hyper Resolution.
Circles `1, · · · , `n represent the literals and all the rectangles γ1, · · · , γn represent the
clauses.

where γi are sub-clauses. Figure 3.3 inspired from [AJS08] illustrates the difference
between HBR and EHR.

Since EHR can be performed on a general implication graph efficiently [AJS08],
therefore how to construct the general implication graph with respect to a Pseudo-
Boolean formula becomes the key component when lifting this technique. The attempt
which tries to resolve this problem appears in [MLM09]. For clause constraint, their
approach is the same as those used in SAT. For cardinality constraints, e.g., C = xσ1 +
· · ·+ xσn ≥ A, the principle to construct an implication graph G(V,E) where:

• nodes xσi , x
1−σ
i ∈ V if and only if xσi ∈ C;

• edges e = (x1−σi , xσj , η) ∈ E if and only if xσi ∈ C and n − A − 1 ≥ 0 and

η =
⋃
k{x

1−σ
k } with (i+ 1) mod n ≤ k ≤ (i+ n− A− 1) mod n for each j such

as (i+ n−A) mod n ≤ j ≤ (i+A+ 1) mod n.

for example, given constraint

x1 + x2 + x3 + x4 ≥ 2

above inferences will add edges

(x̄1, x3, x̄2), (x̄1, x4, x̄2),

(x̄2, x4, x̄3), (x̄2, x1, x̄3),

(x̄3, x1, x̄4), (x̄3, x2, x̄4),

(x̄4, x2, x̄1), (x̄4, x3, x̄1).

For general constraint e.g., C = aσi x
σ
i + · · · + aσnx

σ
n ≥ A where

∑n
i=1 a

σ
i = m, their

approach is to add only small portion of edges to the graph, namely:

3.2. RESOLUTION-BASED PREPROCESSING 21

• nodes xσi , x
1−σ
i ∈ V if and only if xσi ∈ C;

• edges e = (x1−σi , xσj , {}) ∈ E if and only if xσi ∈ C and one of the following two
cases occurs:

1. m− aσi = A, meaning that xσi := 0 implies xσj := 1, ∀j 6= i;

2. m− aσi − aσj < A, meaning that xσi , x
σ
j cannot be both set to false in order to

satisfy C.

Actually, deciding the corresponding edge on an implication graph w.r.t a constraint
equivalent to performing probing on certain variables and detecting whether this will fix
other variables’ value. The principle for general constraints above is analogous to the
strong and weak Simple probing on a single constraint and we could add more edges
indicated by a general constraint with only small extra effort.

Formally, considering a general constraint C in form:

C
.
=

∑
i,σ

aσkx
σ
k ≥ A, k ∈ N, σ ∈ {0, 1} (3.11)

Given a (partial) assignment ρ, two variables xσi , x
σ
j ∈ C, two indices sets P,Q ⊆ N

such that xσP , x
σ
Q ∈ C, we have:

3. edges e = (x1−σi , xσj , {}) ∈ E if and only if xσi ∈ C and 0 < slack(C, ρ(x1−σi)) < aσj ;

4. edges e = (x1−σi , xσQ, x
σ
P) ∈ E if and only if xσi ∈ C and all xσj ∈ xσQ satisfy

0 < slack(C, ρ({x1−σi } ∪ x1−σP)) < aσj .

The positive slack ensures the constraint is feasible under current assignment. The
principle 3 indicates xσj would be unit propagated by xσi and principle 4 finds those xσj
that will be unit propagated to true if both xσi and xσP are falsified. However, simply
enumerate all possible xσP in principle 4 requires exponential amount of work; one of
possible substitutions is to sort the unassigned variables in C based on the ascending
order of their coefficients aσk and find the smallest/largest P which satisfies the condition.
This can be done in time O(N + logN), i.e., calculating the cumulative value of sorted
aσk and do binary search with slack(C, ρ(x1−σi)), hence adding (partially) edges shown
in 3 and 4 could be finished within O(MN logN).

For example, given following constraint C:

C
.
= 2x1 + 5x2 + 4x3 + 3x4 ≥ 2

with assignment ρ(x̄1) and slack(C, ρ(x̄1)) = 10. Figure 3.4 illustrates the sorted vari-
ables and cumulative prefix coefficient sum, where we can add the edge (x̄1, x2, {x̄3, x̄4})
then.

22 CHAPTER 3. SAT PREPROCESSING

x4 x3 x2

3 7 12

sorted variables

coefficient sum

Figure 3.4: Sorted variables and cumulative prefix sum

3.3 CNF preprocessing beyond resolution

Given a constraint C and a formula F , if F and F ∧C are equal-satisfiable, we say C is
redundant with respect to F [HKB17; BT19]. It is easy to detect whether a clause/con-
straint is redundant w.r.t a formula F by simply adding its negation to F and checking
whether this leads to conflict such as

F ∧ ¬C |=⊥ (3.12)

i.e., there is no assignment ρ which ρ(F) ∧ ρ(¬C) evaluates to true. This is sufficient
since any assignment where ρ(F ∧ ¬C) = 1 will imply ρ(F) = 1 and ρ(C) = 0, meaning
that ρ satisfies F but falsifies C. A Pseudo-Boolean generalization of above redundancy
is called substitution redundancy which appears on [GN21] as:

Definition 3.3.1 (Substitution redundancy). Constraint C is redundant with respect
to F if and only if there exists a witness ω, which is a substitution, such that:

F ∧ ¬C |= (F ∧ C)�ω (3.13)

i.e., every satisfying assignment for F ∧ ¬C must satisfy (F ∧ C)�ω. Based on the
definition above, we present two redundancy removal-based presolving techniques for
PBS: Subsumption and Block Constraint Elimination.

3.3.1 Subsumption

In SAT solving, a clause C is subsumed by another clause D if the literals in C are a
superset of D [BJK21], which implies that every satisfying assignment for D must satisfy
C as well. There are three different categories of subsumption:

• Forward subsumption. Given a clause C and a formula F , forward subsumption
tests whether C is subsumed by F , i.e., subsumed by some clauses D ∈ F ;

• Backward subsumption. Backward subsumption starts from a given clause D and
tests whether there are some clauses C ∈ F are subsumed by D; if so, C will be
removed from F ;

• Self subsumption. Self subsumption is to find those clauses C ∨ ` and D ∨ ¯̀ such
that resolving ` between these two clauses yields C, if so, D subsumes C and the
clause C ∨ ` can be replaced by C.

3.3. CNF PREPROCESSING BEYOND RESOLUTION 23

In Pseudo-Boolean setting, consider two distinguished constraints C and D, say C
is subsumed by D if C can be derived from D by adding Literal axioms:

xσi ≥ 0
(3.14)

specifically, we have 1 ≥ 0 or equivalently 0 ≥ −1. This is also known as C is syntactically
implied by D [GN21]. For example, consider following two constraints:

C
.
= 3x1 + 2x2 + x3 ≥ 2

D
.
= 3x1 + x2 + x3 ≥ 3

where constraint C is subsumed by D by adding axioms x2 ≥ 0 and 0 ≥ −1 to D.
A simple observation is that one constraint which is subsumed by another always has

non-larger degree since adding literal axioms will not increase the degree of a constraint,
while this inference is not sound, e.g.,

C
.
= x1 + x2 ≥ 1

D
.
= x1 + x3 ≥ 1

Therefore, given index sets I, U, V ⊆ N where I ∩ U ∩ V = ∅ and two constraints C
and D in form:

C
.
= aσI x

σ
I + aσUx

σ
U ≥ A (3.15)

D
.
= bσI x

σ
I + bσV x

σ
V ≥ B (3.16)

denote d =
∑

i∈I(b
σ
i − aσi), then one of the possible methods to detect if C is subsumed

(syntactically implied) by D is to check whether

A =

{
B −

∑
v∈V b

σ
v , d ≤ 0

B −
∑

v∈V b
σ
v − d , d > 0

(3.17)

holds or not. Since every syntactical transformation step from constraint D to whom
it consumes C only leads to increase of the variable number or non-increase of the
degree (remove a variable equivalent to adding its negation), therefore every satisfying
assignment for D must satisfy C and we can discard the latter without influence the
satisfiability of the formula.

Theorem 3.3.1. Discard the subsumed constraint preserves the optimality.

Proof. Proof by contradiction. Given two constraints D and C where D � C and
formula F1

.
= F ∧D and F2

.
= F ∧D ∧C with same objective function f , F1 obtains its

optimal O1 by assignment ρ1 and F2 obtains its optimal O2 by assignment ρ2. Assume
O1 < O2. By property of subsumption we have ρ1 satisfies F2 as well, since they
have same objective function, then the objective value f�ρ1 for F2 would equal to O1,
contradicting to O1 < O2. Proof finish.

24 CHAPTER 3. SAT PREPROCESSING

Another method to detect the subsumption is to check whether C is implied by D
using the redundancy detection 3.12, i.e., check whether D � C holds or not. This is
equivalent to examine

(D ∧ ¬C) �⊥ (3.18)

3.3.2 Blocked clause elimination

Given a constraint C and formula F with all constraints encoded in normalized form,
we have the following observations:

Observation 3.3.2. C is redundant w.r.t F if C has form:

aσWx
σ
W + aσUx

σ
U ≥ A (3.19)

where W,U ⊆ N,W ∩ U = ∅, xσW /∈ F and
∑

w∈W aσW ≥ A.

Proof. Let the witness ω = {xw 7→ 1|∀w ∈ W}. Now C�ω trivially satisfied, since any
satisfying assignment for F ∧ ¬C satisfies F as well, then the proof follows.

Here xσW are group of Pure variables with respect to F and it is always not worse to
set them to true even if

∑
w∈W aσw < A.

Observation 3.3.3 (Block Clause Elimination). Given a clause constraint C:

C
.
= xσi + xσW + xσU ≥ 1 (3.20)

where {i},W,U ⊆ N,W ∩ U = ∅, and a formula F contains only clause constraints.
Then C is redundant w.r.t F if for all constraints {D} ∈ F where x1−σi ∈ D, we have:

D
.
= x1−σi + x1−σj + xσV ≥ 1 (3.21)

where V ⊆ N, j ∈W and
⋃
{j} = W , i.e., perform canceling addition between C and D

on xσi will generate tautology (xσj and x1−σj).

Proof. Let the witness ω = {xσi 7→ x1−σi }. Any satisfiable assignment ρ to F ∧ ¬C
will set all variables in C to false, i.e., ρ(xσk) = 0, ∀xσk ∈ C, therefore constraints C�ω
and (F \ {D}) 3 xσi are satisfied by x1−σi . Constraints {D} ∈ F �ω are satisfied since
ρ(x1−σj) = 1 by construction. By definition 3.3.1 we finish the proof.

Note that above witness ω is equivalent to

ω′ = {xσi 7→ 1, x1−σi 7→ 0, xσj 7→ 0, x1−σj 7→ 1|j ∈W}

Based on this observation, we could generalize the Blocked Clause Elimination (BCE)
into Pseudo-Boolean configuration, which was first proposed in SAT community by
[Kul99] and later used as a preprocessing technique in [JBH10b].

3.3. CNF PREPROCESSING BEYOND RESOLUTION 25

Theorem 3.3.4 (Blocked Constraint Elimination). A normalized constraint C is re-
dundant w.r.t a formula F where all constraints are encoded in normalized form if C is
in form:

C
.
= kxσi + aσWx

σ
W + aσUx

σ
U ≥ A (3.22)

and for all constraints {D} ∈ F where x1−σi ∈ D (w.l.o.g, we assume the coefficient of
x1−σi is k), they are in form:

D
.
= kx1−σi + b1−σP x1−σP + aσV x

σ
V ≥ B (3.23)

where {i},W, P, U, V ⊆ N,P ⊆ W,
⋃
P = W, {i} ∩ W ∩ {U ∪ V } = ∅, meanwhile

k ≥ A,
∑

p∈P b
1−σ
p ≥ B and xσW /∈ F \ {D}. Then we say C is a block constraint w.r.t F

and blocked by xσi

Proof. Let the witness ω = {xσi 7→ 1, x1−σi 7→ 0, xσj 7→ 0, x1−σj 7→ 1|j ∈ W}. Every satis-
fying assignment for F ∧¬C would always satisfy (F ∧C)�ω as well, since C�ω and D�ω
after substitution are already satisfied by construction (by xσi and x1−σP respectively),
and substitute xσi and x1−σj , j ∈W to true in F never worse. Meanwhile, xσW /∈ F \ {D}
and substitute them to false has no influence on the satisfiability of constraints F \{D}.
Proof finish.

Actually, C could remain redundant even if there are some constraints E ⊆ F \ {D}
contain xσW , the idea here is that E needs to contain xσi meanwhile its coefficient should
be large enough to “compensate” substitute xσP to false, which leads to the following
corollary:

Corollary 3.3.4.1. Given constraints C and D have form defined in Theorem 3.3.4 but
without restriction xσW /∈ F \ {D}, then C remain redundant w.r.t. F if all constraints
E ⊆ F \ {D} that contain variables xσP , P ⊆W , have the form:

E
.
= aσi x

σ
i + aσPx

σ
P + aσQx

σ
Q ≥ K

where Q ⊆ N,Q ∩ {i} ∩W = ∅ and aσi ≥
∑

p∈P a
σ
p +K.

For example, consider a constraint C as:

3x1 + 2x2 + x3 + x4 ≥ 2

and a formula F as:

3x̄1 + 2x̄2 + x5 ≥ 2

3x̄1 + x̄3 + x6 + x7 ≥ 1

6x1 + 2x2 + x3 ≥ 3

x4 + x5 + x6 + x7 ≥ 3

26 CHAPTER 3. SAT PREPROCESSING

set the witness ω = {x1 7→ 1, x2 7→ 0, x3 7→ 0} and we have (F ∧ C)�ω to be:

x4 ≥ −1

x5 ≥ 0

x6 + x7 ≥ 0

0 ≥ −3

x4 + x5 + x6 + x7 ≥ 3

clearly, any satisfying assignment for F ∧¬C must satisfy x4 +x5 +x6 +x7 ≥ 3, which is
also the only non-trivial constraint in (F ∧C)�ω. In this case, C is a blocked constraint
w.r.t F which is blocked by x1.

Similarly to the Subsumption, the BCE preserve the satisfiability of the formulas
since every satisfying assignment for F ∧ ¬C must satisfy (F ∧ C)�ω. The proof of
optimality preservation is analogous to the proof of 3.3.1.

Chapter 4

MIP preprocessing

Compared with the SAT preprocessing that tries to derive “stronger” constraints from
the existing ones (partially because of the nature of various proof systems) where the
formula size may increase in general, the MIP preprocessing techniques emphasize ex-
ploring the bound properties of the current variables and constraints, such as bound
lifting, probing, parallel rows/columns detection, etc. In most cases, the presolving does
not introduce new constraints but tries to fix certain variables 1 or remove category
constraints, which generally results in a reduction in the size of the input formula.

The division of the following techniques rises from [Ach+20]. We will start from
preprocessing focus on individual constraints and variables to those applied to multiple
ones. The section ended with the presolving techniques based on the structure of the
whole problem. Since both PBS and PBO are strictly included in MIP, the adaption
of these techniques needs to pay more attention to the preservation of binary variables
instead.

4.1 Reduction for individual constraints

4.1.1 Model cleanup and removal of redundant constraints

The MIP version is from [Ach+20] and in Pesudo-Boolean setting, given a general con-
straint C: ∑

i∈[n],σ∈{0,1}

aσi ≥ A (4.1)

if
∑

i,σ a
σ
i < A the problem is infeasible, since the maximum slack of the constraint is

slack(C, ρ(∅)) =
∑
i∈[n]

aσi −A < 0 (4.2)

and there are no variables that can be propagated.

1In Pseudo-Boolean setting, any non-trivial bound strengthening of a variable, e.g., 0 → d 1
2
e → 1,

results in a value fix for that variable.

27

28 CHAPTER 4. MIP PREPROCESSING

4.1.2 Bound strengthening

This technique that removes the redundant bound for a decision variable is also known
as Domain Propagation, see [Sav94; FM05b; Ach07]. Given a general constraint C in
form:

aσi x
σ
i +

∑
j,σ

aσj x
σ
j ≥ A, i, j ∈ [n], j 6= i, σ ∈ {0, 1} (4.3)

we can lift the lower bound of xσi by:

xσi ≥ d
A−

∑
j,σ a

σ
j x

σ
j

aσi
e ≥ d

A−
∑

j a
σ
j

aσi
e (4.4)

which is equivalent to propagate xσi to true if the maximal slack of C is smaller than aσi ,
namely:

0 ≤ slack(C, ρ(∅)) = aσi +
∑
j

aσj −A < aσi (4.5)

Similarly, for a reverse general constraint D:

aσi x
σ
i +

∑
j,σ

aσj x
σ
j ≤ A, i, j ∈ [n], j 6= i, σ ∈ {0, 1} (4.6)

we could derive an upper bound for xσi as:

xσi ≤ b
A−

∑
j,σ a

σ
j x

σ
j

aσi
c ≤ b A

aσi
c (4.7)

4.1.3 Coefficient strengthening

In MIP preprocessing, the Coefficient Strengthening [Sav94] modifies the coefficients
of a constraint such that the LP relaxation of the problem gets tighter inside the box
defined by the bounds of the variable meanwhile, the domain of integer solution remains
unchanged. This arises the definition of the Constraint Domination [Ach+20], which is:

Definition 4.1.1 (Constraint Domination). Given two constraints ax ≤ b and ãx ≤ b̃
where a, ã ∈ Rn, b, b̃ ∈ R and x are either integer variables or continuous variables
bounded by [l, u]. Say ax ≤ b dominates a′x ≤ b′ if

{x ∈ Rn|x ∈ [l, u], ax ≤ b} ⊂ {x ∈ Rn|x ∈ [l, u], ãx ≤ b̃}

In Pseudo-Boolean setting, consider the reverse general constraints in form:

aσi x
σ
i +

∑
j,σ

aσj x
σ
j ≤ A, i, j ∈ [n], j 6= i, σ ∈ {0, 1} (4.8)

4.1. REDUCTION FOR INDIVIDUAL CONSTRAINTS 29

we can strengthen the coefficient of xσi if aσi ≥ d where d := A−
∑

j,σ a
σ
j > 0 with

(aσi − d)xσi +
∑
j,σ

aσj x
σ
j ≤ A− d (4.9)

and constraint 4.9 dominates initial one 4.8 in subspace xσi ∈ {0, 1}. Because when
xσi = 1 two constraints are identical and when xσi = 0, constraint 4.8 and 4.9 can be
read as

∑
j,σ a

σ
j x

σ
j ≤ A and

∑
j,σ a

σ
j x

σ
j ≤ A − d, which shows the modified constraint

still remains redundant.

4.1.4 Chvatal-Gomory strengthening of inequalities

The idea of Chvatal-Gomory Strengthening [Gom63; Chv73b] is to multiply a positive
real number s ∈ R on both sides of a constraint and check whether this constraint could
be tighter. Specifically, consider following general constraint C:∑

i,σ

aσi x
σ
i ≥ A, i ∈ [n], σ ∈ {0, 1} (4.10)

if following two conditions both hold:

daσi · seA/dA · se ≤ aσi , ∀xσi ∈ C (4.11)

daσj · seA/dA · se < aσj , ∃xσj ∈ C (4.12)

then we can replace C as:∑
i,σ

daσi · sexσi ≥ dA · se, i ∈ [n], σ ∈ {0, 1} (4.13)

This is equivalent to applying the generalized division rule. For example:

3x1 + 2x2 ≤ 4

s= 1
3−−−→ x1 + x2 ≤ 2

4.1.5 Euclidean reduction

Given a general constraint C:∑
i,σ

aσi x
σ
i ≥ A, i ∈ [n], σ ∈ {0, 1} (4.14)

the Euclidean reduction [Ach+20] divides the greatest common divisor (gcd) of the above
coefficients d = gcd(aσi), i ∈ [n] on the constraints, which can be treated as a particular
case of application of generalized division rule with divisor 1/d.

30 CHAPTER 4. MIP PREPROCESSING

4.1.6 Simple probing on a single constraint

The idea of simple probing [Ach+20] is to temporally fix the value of some binary
variables and test whether this will imply the value for others.

The strong version of simple probing on a single constraint is to only consider the
equal general constraint in form:

aσi x
σ
i +

∑
j,σ

aσj x
σ
j = A, i, j ∈ [n], i 6= j, σ ∈ {0, 1} (4.15)

if aσi +
∑

j a
σ
j = 2A and aσi = A, then fix the value of xσi would cause a propagation on

all xσj , namely:

xσi = 0→ xσj = 1, ∀j 6= i (4.16)

xσi = 1→ xσj = 0, ∀j 6= i (4.17)

consequently, we can make the substitution: xσj = 1− xσi ,∀j 6= i.

The weak version of simple probing considers a general constraint C:

aσi x
σ
i +

∑
j,σ

aσj x
σ
j ≥ A, i, j ∈ [n], i 6= j, σ ∈ {0, 1} (4.18)

if both two conditions below hold:

slack(
∑
j,σ

aσj x
σ
j ≥ A, ρ(∅)) ≥ A (4.19)

slack(
∑
j,σ

aσj x
σ
j ≥ A, ρ(x1−σk)) < A, k = arg min

j
aσj (4.20)

then setting xσi = 0 will propagate all xσj = 1.The second condition makes sure that
falsify arbitrary variable will falsify the constraint. For instance, in constraint below:

3x1 + 2x2 + 2x3 ≥ 4

falsify arbitrary variables will propagate others to true.

4.1.7 Doubleton equation substitution

The definition of doubleton equation was proposed in [BBG83], e.g., an equal general
constraint consists exactly two distinct variables:

aσi x
σ
i + aσj x

σ
j = A (4.21)

where i 6= j, σ ∈ {0, 1}. Given a doubleton equation C, one can always substitute one
variable, say xσi ∈ C, by the other xσj and discard this equation. The resulting is a

4.1. REDUCTION FOR INDIVIDUAL CONSTRAINTS 31

modified bound on xσj :

lσj ≤ xσi =
A− aσj xσj

aσi
≤ uσj (4.22)

⇐⇒
A− aσi uσj

aσj
≤ xσj ≤

A− aσi lσj
aσj

(4.23)

substitute lσj = 0 and uσj = 1 we have:

A− aσi
aσj

≤ xσj ≤
A

aσj
(4.24)

which is equivalent to perform Probing over xσi on C and strengthen the bound of xσj
accordingly.

4.1.8 Simplify inequalities

This approach removes the “unnecessary” variables in a constraint aggressively and
derive other possible reasoning constraints [Bes+21]. Concretely, given a reverse general
constraint C 3 xσS in form: ∑

i,σ

aσi x
σ
i ≤ A (4.25)

for all i ∈ S, σ ∈ {0, 1}, where S is an ordered set sorted by the decreasing order of
absolute value of the coefficients. Then we find a partition S = L ∪R where |aσl | > |aσr |
hold for all l ∈ L, r ∈ R and seek for a minimized |L| such that∑

j∈L,σ∈{0,1}

aσj ≥ A (4.26)

then we derive a new constraint: ∑
j∈L,σ∈{0,1}

(
aσj
d

)
xσj ≤ b

A

d
c (4.27)

where d is the greatest common divisor for aσj , j ∈ L. For example,

15x1 + 15x2 + 7x3 + 3x4 + x5 ≤ 26

⇐⇒ 15x1 + 15x2 ≤ 26

⇐⇒ x1 + x2 ≤ 1

If this is not always possible, then we set d to be the greatest common divisor for all
coefficient aσi ∈ S and simplify the degree of C to be bAd c · d.

32 CHAPTER 4. MIP PREPROCESSING

4.1.9 Singleton columns substitution

The definition of singleton column appears in [AA95] which is a column xj such that:

∃(j, k) : aij = 0, ∀i 6= k, akj 6= 0 (4.28)

i.e., have only one non-zero entry in the constraint matrix. In Pseudo-Boolean setting,
this is equivalent to a variable xσi which is contained in only one constraint. A free
column singleton is a column singleton with infinite lower and upper bounds, which can
be substituted out of the problem if it appears within an equation:

aijxj +
∑
k 6=j

aikxk = bi (4.29)

as

xj =
bi −

∑
k 6=j aikxk

aij
(4.30)

since xj can take an arbitrary value. Furthermore, if xj is implied-free2 on both sides,
it can be replaced using 4.30 above as well; if only one side not implied, say uj , we can
lose the LHS of the constraint as:

bi − ujaij ≤
∑
k 6=j

aikxk ≤ bi (4.31)

In Pseudo-Boolean setting, since all variables are bounded, above constraint 4.31
degenerates into:

A− aσi ≤
∑
j 6=i,σ

aσj x
σ
j ≤ A (4.32)

which is identical to weakening the singleton variable xσi and deriving the bound for the
sum of other variables.

4.2 Reduction for individual variables

4.2.1 Dual fixing and bound strengthening

In the rest of this section we assume all constraints are raw Pseudo-Boolean constraints
as defined in 2.1 with equality or less-or-equal operator.

For dual fixing [Ach+20], denote a variable xσi which does not appear in any equations
and xσi has objective coefficient wσi ≥ 0 and constraint coefficients aσi ≥ 0 holds for all
constraints where it is included, then xσi can be fixed to 0 if its negation x1−σi has
objective coefficient w1−σ

i ≤ 0 and all coefficients a1−σi ≤ 0. Since after the optimal

2The implied bound of xj by other constraints is within the variable initial bound.

4.3. REDUCTIONS THAT CONSIDER MULTIPLE CONSTRAINTS AT THE
SAME TIME 33

solution for the presolved formula has been found, one can always find a value for xσi
that satisfies all constraints.

If we are unable to fix a variable, we can obtain tighter bounds using dual arguments.
Specifically, given a variable xσi where wσi ≥ 0 and constraint Cj with less-or-equal
operator, denote that:

M+ = {j ∈M : xσi ∈ Cj , aσi > 0} (4.33)

M− = {j ∈M : xσi ∈ Cj , aσi < 0} (4.34)

then for all j ∈M+ ∪M−, if xσi := 0 causes all constraints in M− redundant 3, i.e.,∑
k 6=i

aσk ≤ A, xσk ∈ Cj (4.35)

then xσi is redundant for the feasibility of Cj and we can fix it to false.

4.2.2 Substitute implied free variables

Using the Bound strengthening we may derive a lower and upper bound for xσi , denote
l′ and u′ the tightest bound for xσi , say xσi is an implied free variable if [l′, u′] ⊆ [0, 1]
[Ach+20].

Now consider an equality constraint:

aσi x
σ
i +

∑
j,σ

aσj x
σ
j = A i, j ∈ [n], i 6= j, σ ∈ {0, 1} (4.36)

if xσi is an implied free variable, meanwhile aσj /a
σ
i ∈ Z hold for all j 6= i, then we can

substitute xσi out of the formula by:

xσi = (A−
∑
j,σ

aσj x
σ
j)/aσi (4.37)

and the formula is infeasible if A/ai /∈ Z.

4.3 Reductions that consider multiple constraints at the
same time

4.3.1 Parallel and nearly parallel rows

Given two PB constraints C and D:

C
.
=
∑
i,σ

aσi x
σ
i ◦A (4.38)

D
.
=
∑
i,σ

bσi x
σ
i ◦B (4.39)

3for j ∈M+, setting xσi := 0 never worse

34 CHAPTER 4. MIP PREPROCESSING

where i ∈ [n], σ ∈ {0, 1}, ◦ ∈ {≥,=}. Say C and D are parallel [AA95] if exists a real
number s ∈ R, s 6= 0 such that aσi = sbσi holds. If two constraints are parallel, then
following inference hold:

1. If both C and D are equal constraints:

C
.
=
∑
i,σ

aσi x
σ
i = A (4.40)

D
.
=
∑
i,σ

bσi x
σ
i = B (4.41)

then D can be discarded if A = sB. The problem is infeasible if A 6= sB.

2. If exactly one constraint is an equation:

C
.
=
∑
i,σ

aσi x
σ
i = A (4.42)

D
.
=
∑
i,σ

bσi x
σ
i ≥ B (4.43)

then D can be discarded if s > 0, A ≥ sB or s < 0, A ≤ sB holds.

3. If both constraints are inequalities:

C
.
=
∑
i,σ

aσi x
σ
i ≥ A (4.44)

D
.
=
∑
i,σ

bσi x
σ
i ≥ B (4.45)

then D can be discarded if s > 0, A ≥ sB and symmetrically if s > 0, A ≤ sB,
then C can be discarded. If s < 0, sB < A, the two constraints can be merged into
a ranged constraint in form:

sB ≤
∑
i,σ

aσi x
σ
i ≤ A (4.46)

or if s < 0, sB = A, we will have an equal constraint:∑
i,σ

aσi x
σ
i = A (4.47)

If two constraints are nearly parallel, we can still perform such detection. Two
constraints C and D are said to be nearly parallel if they contain a different singleton
variable each, plus two set of identical variables, such that:

C
.
= aσi x

σ
i +

∑
k,σ

aσkx
σ
k ◦A (4.48)

D
.
= aσj x

σ
j +

∑
k,σ

bσkx
σ
k ◦B (4.49)

4.3. REDUCTIONS THAT CONSIDER MULTIPLE CONSTRAINTS AT THE
SAME TIME 35

where i, j, k ∈ [n], i 6= j 6= k, ◦ ∈ {≥,=} and ∃s ∈ R, s 6= 0 such that aσk = sbσk holds for
all k. If C and D are nearly parallel, then following inferences hold:

1. If both constraints are equations:

C
.
= aσi x

σ
i +

∑
k,σ

aσkx
σ
k = A (4.50)

D
.
= aσj x

σ
j +

∑
k,σ

bσkx
σ
k = B (4.51)

then we can substitute xσj := txσi + d where t = aσi /(sa
σ
j) and d = (sB−A)/(saσj).

And we can tighten the bounds of xσi with relation xσi = (xσj − d)/t as:

lσi := max{0,−d/t} and uσi := min{1, (1− d)/t}, t > 0 (4.52)

lσi := max{0, (1− d)/t} and uσi := min{1,−d/t}, t < 0 (4.53)

The formula is infeasible if the updated bound lσi > uσi . Furthermore, the two
constraints are parallel after substitution and we can discard D then.

2. If only C is an equation and contains a singleton variable xσi such that:

C
.
= aσi x

σ
i +

∑
k,σ

aσkx
σ
k = A (4.54)

D
.
=
∑
k,σ

bσkx
σ
k ≥ B (4.55)

then we can tighten the bounds of xσi by:

lσi := max{0, (A− sB)/aσi }, saσi < 0 (4.56)

uσi := min{1, (A− sB)/aσi }, saσi > 0 (4.57)

D is redundant after strengthening the bound of xσi and can be discarded then.

3. If both constraints are inequalities:

C
.
= aσi x

σ
i +

∑
k,σ

aσkx
σ
k ≥ A (4.58)

D
.
= aσj x

σ
j +

∑
k,σ

bσkx
σ
k ≥ B (4.59)

where aσi = saσj , A = sB, then we can substitute xσj := xσi and discard D.

36 CHAPTER 4. MIP PREPROCESSING

4.3.2 Non-zero cancellation

In MIP, the non-zero cancellation, also known as sparsify, decreases the number of non-
zero entries in the coefficient matrix by adding an equation to an inequality [CM93].
Specifically, in Pseudo-Boolean setting, consider an equation constraint C and a general
constraint D:

C
.
=
∑
i∈I,σ

aσi x
σ
i +

∑
j∈J,σ

aσj x
σ
j +

∑
u∈U,σ

aσux
σ
u = A (4.60)

D
.
=
∑
i∈I,σ

bσi x
σ
i +

∑
j∈J,σ

bσj x
σ
j +

∑
v∈V,σ

bσvx
σ
v ≥ B (4.61)

where I, J, U, V ⊆ N, I∩J∩U∩V = ∅, σ ∈ {0, 1} and assume ∃s ∈ R : saσi = bσi , sa
σ
j 6= bσj

hold for all i ∈ I, j ∈ J above. Then we can remove xσI out of the D by subtracting sC
4 to D as:

D′
.
=
∑
j∈J,σ

(bσj − saσj)xσj −
∑
u∈U,σ

saσux
σ
u +

∑
v∈V,σ

bσvx
σ
v ≥ B − sA (4.62)

the non-zero coefficients in the matrix are reduced by |I| − |U | and in this case the
transformation is applied if |I| > |U |.

In the Pseudo-Boolean setting, we can reduce more non-zero entries by perform
canceling addition overall xσi . Assume a general constraint E:

E
.
=
∑
i∈I,σ

b1−σi x1−σi +
∑
j∈J,σ

bσj x
σ
j +

∑
v∈V,σ

bσvx
σ
v ≥ K (4.63)

with I, J, U, V ⊆ N, I ∩ J ∩ U ∩ V = ∅, σ ∈ {0, 1} and ∃s ∈ R : saσi = b1−σi hold for all
i ∈ I. One can rule out the x1−σi by perform cancelling addition on all x1−σi at once,
namely:

E′
.
=
∑
j∈J,σ

(saσj + bσj)xσj +
∑
u∈U,σ

aσux
σ
u +

∑
v∈V,σ

bσvx
σ
v ≥ K + sA−

∑
i∈I,σ

b1−σi (4.64)

Still, the non-zero coefficient in the matrix reduced by |I| − |U |.

4.3.3 Bound and coefficient strengthening

The basic idea of Bound and coefficient strengthening are presented in [Sav94]. Re-
call that in Bound strengthening we can derive bounds for a variable xσi from general
constraints and reverse general constraints C which it is involved, namely:

aσi x
σ
i +

∑
j,σ

aσj x
σ
j ◦A, ◦ ∈ {≥,≤} (4.65)

=⇒ d
A−

∑
j a

σ
j

aσi
e ≤ xσi ≤ b

A

aσi
c (4.66)

4sC is just a shorthand for multiplying s on both sides of C

4.3. REDUCTIONS THAT CONSIDER MULTIPLE CONSTRAINTS AT THE
SAME TIME 37

where i 6= j,∈ [n], σ ∈ {0, 1}. This actually comes from the bound

0 ≤
∑
j,σ

aσj x
σ
j ≤

∑
j

aσj (4.67)

The idea for bound strengthening with multiple row is to find the tightest lower bound
of
∑

j,σ a
σ
j x

σ
j implied among different rows. Since we assume all coefficient aσj ∈ N, then

the analysis of lower bound is trivial, in turn we seek for a maximized upper bound,
correspondingly,

xσi ≥ max .d
A−

∑
j a

σ
j

aσi
e (4.68)

This could be expensive to calculate such bounds for every constraint; one compro-
mise method uses the maximized upper bound among only a specific group of constraints.

4.3.4 Clique merging

A conflict graph [ANS00] is a graph which has a node for each binary variable and its
negation, there is an edge for two nodes if and only if setting one true will imply the
other to false. One specific type of constraints whose corresponding conflict graph forms
a clique is the set packing/partitioning constraint [Ach+20]:∑

i,σ

xσi +
∑
j,σ

(1− xσj) ≤ 1, i, j ∈ [n], i 6= j, σ ∈ {0, 1} (4.69)

Clearly, setting arbitrary xσi := 1 will force all xσj := 0, which suggests there are edges
from every xσi to all xσj and thereby the corresponding conflict graph forms a clique. The
idea of clique merging is to combine several set packing constraints into a single one.

This can be finished by firstly search for a larger clique which subsumes the exist-
ing one by add the variables according to the conflict graph [JP82; Sav94], once the
new clique has been found we discard other constraints dominated by this clique. For
example, consider following constraints:

x1 + x2 ≤ 1 x2 + x3 ≤ 1 x3 + x4 ≤ 1

x1 + x3 ≤ 1 x2 + x4 ≤ 1

x1 + x4 ≤ 1

The corresponding conflict graph G is shown in Figure 4.1.
Every constraint is a set packing constraint which corresponds to an edge of the

“box” in G; clearly, a larger clique formed by nodes x1, x2, x3, x4 includes every small
clique (a single edge), therefore we can derive the constraint:

x1 + x2 + x3 + x4 ≤ 1 (4.70)

This can be treated as adding x3 and x4 to x1 + x2 ≤ 1 and we can then discard all
constraints except the x1 + x2 ≤ 1.

38 CHAPTER 4. MIP PREPROCESSING

x1 x2

x3 x4

x̄1

x̄3

x̄4

x̄2

Figure 4.1: Conflict graph for set packing constraints

4.4 Reduction that considers multiple variables at the
same time

4.4.1 Fix redundant penalty variables

A penalty variable [Ach+20] xσi is a singleton variable such that wσi > 0 and aσi > 0
for all general constraints and aσi < 0 for all reverse general constraints. Intuitively,
those penalty variables with large objective coefficients and small constraints coefficients
should be discarded before others, which is also known as Column Stuffing [Gam+15].

Formally, given a partition of variable indices U and V , a set of constraints indices
S where |S| = M − 1, consider a PBO formula in normalized form:

min . wσUx
σ
U + wσV x

σ
V (4.71)∑

u,σ

aσux
σ
u +

∑
v,σ

aσvx
σ
v ≥ Aq, q ∈M \ S (4.72)∑

v,σ

bσvx
σ
v ≥ As, s ∈ S (4.73)

where u ∈ U, v ∈ V, σ ∈ {0, 1} and all xσu are penalty variables. W.l.o.g, we assume
U = [u] and

wσ1
|aσ1 |
≤ · · · ≤ wσu

|aσu|
(4.74)

If there exists an index k ∈ U such that:∑
u∈[k],σ

aσu +
∑
v∈V,σ

aσv ≥ Aq (4.75)

then we can set all penalty variables xσu, u ∈ U \ [k] to 0 since these more “expensive”
penalty variables are never needed for feasibility of the constraint with degree Aq.

4.4. REDUCTION THAT CONSIDERS MULTIPLE VARIABLES AT THE SAME
TIME 39

4.4.2 Parallel columns

Two variables xσi and xσj are called parallel [Ach+20] if they appear in the same set of
constraints and there exists a non-zero real number λ such that all of their coefficients
aσi and aσj in same constraint satisfy:

aσi = λaσj (4.76)

Then if wσi = λwσj , we can merge xσi and xσj into a new variable y by:

y := xσi + λxσj (4.77)

with bounds:

ly =

{
0, for λ > 0

λ, for λ < 0
(4.78)

uy =

{
1 + λ, for λ > 0

1, for λ < 0
(4.79)

If the image of y over xj and xk contains no holes:

{xj + λxk : xj ∈ {lj , · · · , uj}, xk ∈ {lk, · · · , uk}} = {ly, · · · , uy} (4.80)

Since all variables should have integral bound [0, 1] in Pseudo-Boolean setting, then
every |λ| 6= 0 will make y non-binary, in this case this technique is not suitable for both
PBS and PBO.

4.4.3 Dominated columns

The origin of dominated columns elimination dates back to [Gam+15]. Given two vari-
ables xσi and xσj with objective coefficients wσi and wσj , assume all constraints are encoded
in normalized form, say xσi dominates xσj written as xσi � xσj , if following criteria hold:

1. wσj ≤ wσi ;

2. aσi ≥ aσj , aσi 6= 0 holds for all constraints.

If two variables have a dominance relationship, then we can fix one’s value based on
their lower and upper bounds, for example:

• If uσj =∞ and xσi � xσj , then xσj can be set to lσj .

The reason is: assume the optimal solution for xσj is Xσ
j > lσj , we can set ∆ = Xσ

j −lσj ,
after increasing Xσ

i by ∆ and decreasing Xσ
j by ∆, the original constraint will remain

feasible:∑
k∈N\{i,j}

aσkX
σ
k + aσi (Xσ

i + ∆) + aσj (Xσ
j −∆) =

∑
k∈N

aσkX
σ
k + (aσi − aσj)∆ ≥ A (4.81)

40 CHAPTER 4. MIP PREPROCESSING

since
∑

k∈N a
σ
kX

σ
k ≥ A already satisfied in an optimal solution and the objective of

the formula deduced as well. However, in Pseudo-Boolean setting every variable has
bound [0, 1], which leads to that if Xσ

i = Xσ
j = 1 then there is no “increment space”

for xσi to compensate the decrements of xσj , therefore this method may not suitable for
PBO nor PBS.

4.4.4 Parity fixing

Consider equal constraints:

k∑
i=1

aσi x
σ
i = β, ai ∈ Z, β ∈ Z, x ∈ {0, 1} (4.82)

we can partition xσi into two sets depends on the parity of their coefficients:

d∑
j=1

bσj y
σ
j +

k∑
i=d+1

aσi x
σ
i = β (4.83)

where aσi and bσj are even and odd integers respectively. Now if β is an even number
then even number of yσj must be set to true and vice versa, namely:

d∑
j=1

yσj = β mod 2 (4.84)

When d = 1 or d = 2 above equation degenerated to the analysis mentioned in
[BHP08].5

An alternative one-hot encoding representation of relation 4.84 is: assume β is an
even number and set of indices S = {0, 1, · · · , (d−1)/2}, let the binary indicator variable
lσi to be:

li = 1⇒
d∑
j=1

yσj = 2i, i ∈ S (4.85)

and adding following two constraints:

d∑
j=1

yσj +Mil
σ
i ≤Mi + 2i, i ∈ S (4.86)

d∑
j=1

yσj + Lil
σ
i ≥ Li + 2i, i ∈ S (4.87)

5If exists exactly one i with aσi is odd, then xσi = 0 if and only if β is even, which implies that we
can fix xi = β mod 2; if there exists two odd number aσi , a

σ
j , i 6= j, then xσi = xσj if and only if β is odd.

Hence, one of the variables can be substituted.

4.5. REDUCTIONS THAT CONSIDER THE WHOLE PROBLEM 41

where Mi and Li is the upper and lower bound for (
∑d

j=1 y
σ
j − 2i), i ∈ S respectively.

Finally, we have: ∑
i∈S

lσi ≥ 1 (4.88)

the analysis when β is an odd number is exactly the same.

However, above parity reasoning seems not hold for inequalities, e.g., consider a
general constraint,

d∑
j=1

bσj y
σ
j +

k∑
i=d+1

aσi x
σ
i ≥ β (4.89)

where bσj are odd integers and aσi are evens. We can set either odd or even number of
bσj to true, regardless of the parity of β, only if it could satisfy the constraints.

4.5 Reductions that consider the whole problem

4.5.1 Aggregate pairs of symmetric variables

The symmetry is an important feature that makes the IP problems challenging. In
many situations, there exists a set of the indistinguishable object for which individual
decision variables must be denied. Given any solution to a model for such a problem,
several equivalent “symmetric solutions” can be obtained by simply re-indexing these
indistinguishable objects. As a result, the following solving procedure might explore
many wasted symmetric equivalent solutions.

The definition of symmetry w.r.t MIP can be found in [Ach+20] and we make suitable
adjustment into Pseudo-Boolean form: let π : N → N be a permutation of the index set
N . We call π a symmetry generator for a Pseudo-Boolean formula (with all constraints
in normalized form) if

1. wσi = wσπ(i),∀i ∈ N, σ ∈ {0, 1};

2. there exists a constraints’ permutation P : M → M such that two constraints
Cj and CP(j) have same degree of falsity, and for all variables xσi ∈ Ci there is
a corresponding variable xσπ(i) ∈ CP(j) with same coefficient aσi = aσπ(i) and vice
versa.

The first condition imposes that the two variables in symmetry are “same”, i.e.,
have the same objective coefficients; the second condition ensures that exchange them
will result in the same constraint system. For example, consider a formula:

min . x1 + x2 + 3x3

x1 + x2 + x3 ≥ 1

42 CHAPTER 4. MIP PREPROCESSING

there exists a symmetry generator π = (2, 1, 3), since x1 := 1 ⇔ x2 := 1. Such a
generator containing symmetry variables in the same constraint is called an overlapping
system generator ; in contrast, if all pairs of symmetry variables are located in different
constraints, then this symmetry generator is called a non-overlapping system generator.
For example:

min . x1 + x2 + 2x3 + 2x4 + 3x5

x1 + x3 + x5 ≥ 1

x2 + x4 + x5 ≥ 1

One can find there exists a symmetric generator π = (2, 1, 4, 3, 5): if we exchange
x1, x2 and x3, x4 we will have same set of constraints. Neither x1, x2 nor x3, x4 lies on
same constraints therefore it is non-overlapping. If replace x2 by x1 and x4 by x3, we
will have:

min 2x1 + 4x3 + 3x5

x1 + x3 + x5 ≤ 1

x1 + x3 + x5 ≤ 1

Then the parallel constraint detection will remove one of the constraints.

4.5.2 Probing

The idea of probing [Sav94; Ach07] is to temporarily set binary variables to true or false
and detect whether any variable’s bound can be strengthened or whether it is possible
to derive stronger inequalities.

Given a variable xσi we can tentatively set it to 0 and 1 and test whether this will
propagate some variables xσj to true. For example, consider constraints C in form:

C
.
= aσi x

σ
i + aσj x

σ
j +

∑
k,σ

aσkx
σ
k ≥ A (4.90)

where i, j, k ∈ [n], i 6= j 6= k, σ ∈ {0, 1}. The negative slack caused by probing on xσi will
incur:

slack(C, ρ(xσi)) < 0⇒ xσi := 0 (4.91)

slack(C, ρ(x1−σi)) < 0⇒ xσi := 1 (4.92)

if both cases appear then the formula is infeasible. Otherwise, we can propagate xσj to
true if its coefficient satisfies either:

0 < slack(C, ρ(xσi)) < aσj (4.93)

or: 0 < slack(C, ρ(x1−σi)) < aσj (4.94)

4.5. REDUCTIONS THAT CONSIDER THE WHOLE PROBLEM 43

4.5.3 Biconnected components

Given a variable xσk , two sets of variable indices U ∪ V = N \ {k}, U ∩ V = ∅ and two
sets of constraint indices R ∪ S = M,R ∩ S = ∅, |R| ≥ |S|; consider a Pseudo-Boolean
formula F :

F
.
= min . wσkx

σ
k + wσUx

σ
U + wσV x

σ
V (4.95)∑

u∈U,σ
aσux

σ
u + aσkx

σ
k ≥ AR (4.96)

∑
v∈V,σ

aσvx
σ
v + aσkx

σ
k ≥ AS (4.97)

where σ ∈ {0, 1}. By fixing xσk = Xσ
k ∈ {0, 1} above formula splits into two sub-formulas

which is called biconnected components [Ach+20]:

F (xσU , AR)
.
= min

{
wσUx

σ
U + wσkX

σ
k :
∑

u∈U,σ a
σ
ux

σ
u ≥ AR − aσkXσ

k

}
F (xσV , AS)

.
= min

{
wσV x

σ
V + wσkX

σ
k :
∑

v∈V,σ a
σ
vx

σ
v ≥ AS − aσkXσ

k

} (4.98)

The idea here is to solve the smaller components F (xσV , AS) for each setting of the
xσk to obtain the optimal solution of Xσ

V in each setting:

Xσ
k := 0 =⇒ X0,σ

V (4.99)

Xσ
k := 1 =⇒ X1,σ

V (4.100)

If both sub-formulas in 4.98 have been solved to optimality, we can deduce following
implicaton:

1. if Xσ
k := 0 implies F (xσV , AS) infeasible, then Xσ

k := 1 and vice versa;

2. if X0,σ
v = X1,σ

v ,∀v ∈ V hold, then we can fix xσv := X0,σ
v ;

3. if X0,σ
v 6= X1,σ

v , ∀v ∈ V hold, then we can substitute xσv := X0,σ
v + (X1,σ

v −X0,σ
v)xσk

Chapter 5

Experimental evaluation

This section aims to deliver the performance evaluation of several preprocessing tech-
niques presented above concerning the state-of-the-art PBS/PBO solver roundingSat
[EN18]. Specifically, we have implemented the Pure Literal Elimination, Hyper Binary
Resolution, and Subsumption Detection from SAT community and use the open-sourced
presolver PaPILO 2.0 [Bes+21] as an external library for testing MIP presolving tech-
niques.

The first section Implementation detail below introduces the underlying structure
of the implementation and the second section Performance evaluation summarizes the
experimental statistics.

5.1 Implementation detail

The name of our presolver is simply called Pre1 by its functionality, which is formed by
two different sub-presolvers SAT-Pre and MIP-Pre utilizing the SAT/MIP presolving
techniques respectively. The former is the novel presented presolver and the latter pro-
vides the port to run PaPILO as an external library and fetch the presolved instances.
These two sub-presolvers could run independently and if one wish to perform both SAT
and MIP presolving, the instances will be firstly fed to SAT-Pre and then to MIP-Pre.
Besides, both two presolvers supports large integer operation, i.e., arithmetic operation
on 128-bits signed integers.

The SAT-Pre uses hash set storing constraints and variables to support efficient
insert and delete operation within expected constant time. By using external library
boost::hash combine2 algorithm which implements the hash scheme presented in [Aus05],
Algorithm 1 hashes every Pseudo-Boolean constraints into an unsigned integer.

Regarding the implementation of SAT presolving techniques: the Pure Literal Elim-
ination scheme in Pre is implemented within PaPILO suite and running as part of
MIP-Pre. The implementation avoids explicitly transforming all constraints into nor-
malized form but checks the feasibility of value fixing for every variable by ensuring its

1https://github.com/RomaLzhih/Pseudo-Boolean-Presolver
2https://www.boost.org/doc/libs/1_79_0/libs/container_hash/doc/html/hash.html

45

https://github.com/RomaLzhih/Pseudo-Boolean-Presolver
https://www.boost.org/doc/libs/1_79_0/libs/container_hash/doc/html/hash.html

46 CHAPTER 5. EXPERIMENTAL EVALUATION

Algorithm 1: Hash algorithm for Pseudo-Boolean Constraints

Input: A constraint C contains variables xσU , coefficients cU and degree d, where
U ⊆ N .

Output: An unsinged integer hash value h
1 begin
2 h = |U |
3 forall xσi ∈ xσN do
4 h← boost::hash combine(h, i)
5 h← boost::hash combine(h, ci)

6 h← boost::hash combine(h, d)
7 return h

coefficients have the same sign, and the rows it presents have the same operator. The
parallelism is added by checking every column at the same time. Algorithm 2 shows the
detail.

Algorithm 2: Pure Literal Elimination

Input: A variable xσi , its matrix coefficient vector C, objective coefficient vector w and
sparse row vector R where it appears, assume all constraints have only
operators {≥,≤,=};

Output: A value v which xσi could be fixed, if it is not possible return -1.
1 begin
2 Initialize four Boolean variables op, rop and sign, rsign
3 if the first row rσ1 ∈ R is an equation then
4 return -1

5 op← whether rσ1 has greater-or-equal operator
6 sign← whether cσ1 > 0
7 forall rows rσi ∈ R do
8 rop← whether rσi has same operator as rσ1
9 rsign← whether cσi > 0

10 if rσi is an equation OR rop⊕ rsign then
11 return -1

12 if op⊕ sign AND wσi ≥ 0 then
13 return v ← 0

14 else if (NOT op⊕ sign) AND wσi ≤ 0 then
15 return v ← 1

16 else
17 return -1

The Hyper Binary Resolution in SAT-Pre implements a relatively weak version,
which constructs the implication graph using only 2−ary constraints and detects whether
the variables in other constraints have a common neighbor in the graph. Algorithm 3
illustrates the detail. Among constructing the implication graph, assume in total N

5.2. PERFORMANCE EVALUATION 47

variables appear in the formula, every variable xσi , i ∈ N will have a corresponding
node vi in the graph and its negation x1−σi is corresponding to node vi+N . During the
edge insertion in line 4, we firstly normalize the constraints and then add the edge, for
example, given a constraint x̄1 + x̄2 ≥ 1 and N = 3, we will add edges (v1, v5) and
(v2, v4). Also note in line 7, instead of calculating the intersection of the neighbors for
every xi, we pick the xi with the smallest neighbor cardinality and check whether these
neighbors are presented among others as well. This avoids the value copy during the
intersection operation and shows good performance in experiments.

Algorithm 3: Hyper Binary Resolution

Input: Constraint pool P in SAT-Pre, a empty graph G(V,E).
Output: Set of new constraints Q.

1 begin
2 forall 2− ary constraint C 3 {x1, x2} in P do
3 V = V ∪ {x1, x2, x̄1, x̄2}
4 E = E ∪ (x̄1, x2) if x1 := 0 implies x2 := 1 and vice versa
5 maps C to the newly added edge.

6 forall constraints D 3 xσU in P where |V ars(D)| ≥ 3, U ⊆ N do
7 if all variables xσi , i ∈ U\{j}, j ∈ U has a common neighbor y in G then
8 perform canceling addition between D and constraints associated to the

edges (xσi , y) over variable xσi

9 add resolvent constraint D′ 3 {xσj , y} to Q

10 return Q

The Subsumption Detection calls the roundingSat as an external tool for every pair
of constraints to detect whether the formula 3.18 holds or not and delete the subsumed
constraints immediately once it is found.

5.2 Performance evaluation

As performed in [Dev+21], we use PB163 as the test benchmark. Specifically, we test all
1600 PBO instances in OPT-SMALL-INT and 2118 PBS instances in DEC-SMALL-INT. As
for hardware, each instance runs on a single exclusive node with 6 CPU (for utilization of
presolving only) and 8192 memory per core running on Linux version 3.10.0. The default
time limit for the whole program is set to be 1800s and the time budget allocated for
presolving is set to 10% (in total 180s) as used in [MLM09].

We evaluate the impact of 13 different presolving techniques w.r.t to the Pseudo-
Boolean solver, namely: the Coefficient Strengthen, Singleton Column, Doubleton Equa-
tion, Dual Fixing, Parallel Row, Probing, Unit Propagation, Pure Literal Elimination,
Simple Probing, Simplify Inequalities, Sparsify, Column Stuffing and Hyper Binary Res-
olution (HBR) in terms of the number of solved instances, average time and instances
reduction size.

3http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar

http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar

48 CHAPTER 5. EXPERIMENTAL EVALUATION

The PaPILO suite is formed by underlying presolving scheme and provides user
switches for certain presolving techniques. We do not modify the underlying scheme since
we wish to use PaPILO as an external library. Note that even if all switches has been
turned off, the underlying scheme of PaPILO will still simplify some instances. Based
on this observation, before we start evaluate MIP techniques which we can explicitly
switch on/off, we will run PaPILO using only underlying scheme, and after that, every
technique will be turned on with all others off within one round for evaluation.

Given the benchmark we use, we write down the number of solved instances, average
solving time for running roundingSat and average presolving time for the technique,
the time calculation is based on those instances which do not trigger the time limit.
We also save the number of faster and slower instances affected by the application of
presolving; among those instances which are solved and trigger the presolving, if they are
solved by roundingSat as well, we calculate the performance improvement mean εu,
median δu and decrease mean εd, median δd respectively, otherwise this instance would
only increase the total number of faster/slower instances but won’t contribute to the
calculation of ε and δ. We also write down the number of exclusively solved/unsolved
instances by every technique, i.e., in Table 5.1, 32 instances which are not solved by
RoundingSat become solvable after applying the Pure Literal Elimination. Besides,
for each technique, we count its average calling frequency and the successfully applied
ratio 4. Finally, the average reduction ratio5 from every technique is appended at the
last column of table. Table 5.1 and 5.2 summarizes the difference of using presolving in
PBS and PBO respectively.

Table 5.1: Evaluation of presolving techniques with respect to PBS

Name nSolved(s) Sol.Time(s) Pre.Time(s) nFaster ext.Solved εu(%) δu(%) nSlower ext.Unsolved εd(%) δd(%) nCall appl(%) red(%)

PureLit 1725 52.380 0.319 361 32 42.69 37.38 103 31 140.80 27.82 2.37 24.26 9.47

roundingSat 1724 51.577 NA NA NA NA NA NA NA NA NA NA NA NA

ParallelRow 1709 55.905 0.322 514 32 35.03 28.90 268 47 482.79 50.62 1.00 43.03 15.00

SimpleProbing 1705 55.007 0.279 46 34 49.99 41.05 66 53 13844.41 372.77 1.03 2.33 2.85

CoeffStrengthen 1703 54.358 0.303 76 29 30.52 29.99 66 50 38.18 23.06 1.06 3.77 18.63

DualFix 1702 53.469 0.284 29 29 NA NA 51 51 NA NA 1.00 0.00 NA

defaultPaPILO 1702 53.636 0.278 29 29 NA NA 51 51 NA NA NA NA NA

HBR 1701 54.826 1.816 238 19 33.69 31.63 252 42 151.34 25.31 1.00 25.57 0.18

Probing 1698 55.433 18.426 327 37 53.53 48.97 168 63 478.20 48.99 2.14 25.31 29.82

Propagation 1698 53.450 0.308 89 28 68.17 79.76 80 54 1026.53 140.14 1.18 6.06 12.90

ColSingleton 1696 48.973 0.279 41 25 68.24 69.79 63 53 6842.71 297.65 1.02 1.86 2.22

Doubletoneq 1693 51.383 0.281 58 29 45.99 30.80 86 60 944.08 110.44 1.07 3.97 0.51

SimplifyIneq 1691 53.491 0.333 79 28 25.28 23.88 64 61 174.37 151.01 1.03 3.31 2.88

Stuffing 1688 48.828 0.278 41 25 68.19 69.91 71 61 6854.40 426.36 1.02 1.87 2.22

Sparsify 1684 53.383 0.282 28 27 30.19 30.19 67 67 NA NA 1.00 0.06 0.17

It is revealed from the table that applying the presolving, such as Probing, Pure
literal and Parallel Row, could accelerate the solving for a large group of instances,

4We use the reduction principle in PaPILO here. Define the transaction as the number of re-
duced/added variable/constraint among the execution of a technique. For example, if a presolving
technique deletes a row from an instance, then the transaction is 1. The applied ratio is calculated
as the number of instances where a technique produce non-empty transaction divides the number of
instances where this technique is called, e.g., a technique produces non-empty transaction for 1 instance
among 100 instances will have applied ratio 1%

5The reduction ratio is calculated as the number of applied transaction divides instances’ size. For
example, if a presolving technique reports 4 rows deletion from an instance that has 100 rows, but only
2 row deletion is applied, then the applied transaction is 2 and the reduction ratio is 2%.

5.2. PERFORMANCE EVALUATION 49

Table 5.2: Evaluation of presolving techniques with respect to PBO

Name nSolved(s) Sol.Time(s) Pre.Time nFaster ext.Faster εu(%) δu(%) nSlower ext.Slower εd(%) δd(%) nCall appl(%) red(%)

roundingSat 1031 51.801 NA NA NA NA NA NA NA NA NA NA NA NA

Doubletoneq 1023 51.733 0.269 67 6 40.48 42.67 28 14 116.63 80.14 1.08 7.44 2.53

Propagation 1023 55.546 0.322 292 10 42.16 40.07 62 18 174.27 69.24 1.65 32.94 67.56

SimpleProbing 1022 50.924 0.264 6 6 NA NA 15 15 NA NA 1.00 0.00 NA

HBR 1022 53.415 0.749 356 3 33.26 32.73 152 12 59.86 12.52 1.00 48.43 0.25

DualFix 1019 51.829 0.280 117 7 20.65 19.90 24 19 3803.15 66.43 2.34 11.57 0.33

Stuffing 1019 49.603 0.271 23 7 34.54 25.80 32 19 474.74 75.12 1.03 2.99 0.64

CoeffStrengthen 1018 50.505 0.288 117 7 28.91 26.36 47 20 985.10 27.82 1.19 13.76 31.16

ColSingleton 1017 49.162 0.268 22 7 36.36 26.80 35 21 439.20 75.49 1.03 2.99 0.64

ParallelRow 1017 57.602 0.316 309 9 30.48 21.88 112 23 257.96 60.02 1.00 39.52 6.39

SimplifyIneq 1017 51.139 0.302 36 6 31.33 28.67 31 20 296.16 91.21 1.05 4.09 8.29

Sparsify 1016 49.496 1.104 51 7 39.47 38.42 40 22 673.77 147.58 1.00 6.29 2.36

defaultPaPILO 1016 50.736 0.262 6 6 NA NA 21 21 NA NA NA NA NA

PureLit 1015 49.618 0.304 193 7 29.54 23.15 42 23 1863.73 55.57 2.59 20.90 8.24

Probing 998 49.900 50.502 497 12 38.42 35.90 131 45 2118.60 91.83 2.80 59.10 20.16

while the companied performance degeneration can not be a negligible issue either.
Unexpectedly, nearly all techniques lead to fewer instances solved within the given time
limit. For most of the techniques, the average negative impact could be much larger
than the corresponding improvement. However, the number of solved faster instances is
still considerably more than the slower ones, which can also be reflected by the shorter
average solving time.

Besides evaluating a single presolving technique, we also perform the test by turning
on several presolving techniques. Specifically, for PBS, we pick those techniques that
have a smaller δd or larger εu based on Table 5.1, including Singleton Column, Doubleton
Equation, Parallel Rows, Probing and Pure Literal Elimination; as for PBO, we use same
criteria to turn on Hyper Binary Resolution, Doubleton Equation, Unit Propagation,
Parallel Row and Simplify Inequality according to Table 5.2. Figure 5.1 and Figure
5.2 demonstrate the cumulative number of solved instances with/without applying the
presolving techniques. For some cases, simply running the presolving is enough to solve
them, which leads to the isolated points on the left-bottom corner of the figure.

For PBS, in total 1707 instances are solved after using presolving compared with
1724 solved without applying presolving. Among 1094 instances where some presolv-
ing techniques are applied, 783 of them obtain an average 47.91% acceleration (median
38.97%) and 307 instances are slowed down by 312.5% (median 52.68%). For PBO,
roundingSat manages to solve 1031 instances without presolving and 1030 after in-
tegrating with presolving; among those 840 instances where presolving techniques are
applied, 679 of them are solved with an average faster ratio 36.9% (median 33.86%) and
161 instances are solved with an average slower ratio of 181.1% (median 47.12%). Figure
5.3 illustrates the relative solving time for instances with/without presolving.

As shown in Table 5.3, the Probing causes most of the problem reduction to those
PBS instances which it applies to among all presolving techniques. For PBO instances,
the Unit propagation performs this role. Besides, nearly all techniques are called more
than once and reduce the problem size to some extent.

50 CHAPTER 5. EXPERIMENTAL EVALUATION

0

500

1000

1500

0.1 1.0 10.0 100.0 1000.0

running time of roundingSat

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

status

With_Presolve
Without_Presolve

Number of solved PBS instances with/without presolving

Figure 5.1: Solving time for PBS and PBO instances with both axes draw on log scale.

0

250

500

750

1000

0.1 1.0 10.0 100.0 1000.0

running time of roundingSat

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

status

With_Presolve

Without_Presolve

Number of solved PBO instances with/without presolving

Figure 5.2: Solving time for PBS and PBO instances with both axes draw on log scale.

5.2. PERFORMANCE EVALUATION 51

0.1

1.0

10.0

100.0

1000.0

0.1 1.0 10.0 100.0 1000.0

With Presolve

W
it
h
o
u
t
P

re
s
o
lv

e

benchmark family

PBO

PBS

Instances solving time with/without presolving

Figure 5.3: Solving time for PBS and PBO instances with both axes draw on log scale.

Table 5.3: Information for applied techniques when solving PBS and PBO instances
where dash means this technique are disabled for evaluating the corresponding bench-
mark family.

Name
PBS PBO

nCalls nApplied(%) Pre.Time(s) red(%) nCalls nApplied(%) Pre.Time(s) red(%)

ColSingleton 4.57 14.98 0.002 1.33 - - - -

Doubletoneq 2.17 17.83 0.004 3.20 1.08 6.80 0.001 1.81

ParallelRows 1.44 42.80 0.038 15.65 1.01 59.70 0.048 4.32

Probing 1.93 24.11 13.098 16.78 - - - -

PureLit 4.57 27.03 0.020 8.57 - - - -

HBR - - - - 1.00 48.74 0.809 0.26

Propagation - - - - 2.35 35.70 0.049 62.57

SimplifyIneq - - - - 1.24 22.70 0.049 0.79

Chapter 6

Conclusions and future work

We have tried to adapt/lift some preprocessing techniques in SAT and MIP communities
into Pseudo-Boolean configurations or figured out some could be trivial or unsuitable
for PBS/PBO. Concretely, among the techniques we have discussed, Parallel columns
and Dominated columns are not suitable for Pseudo-Boolean configuration: the former
tries to merge two parallel columns into a non-binary variable, and the latter requires
applied variables to have an infinite bound.

The techniques we run experiments on have shown that presolving is beneficial for
the following PB solver’s solving phase w.r.t considerably large number of instances,
while the negative impact it poses still prevents more instances from being solved within
a specific time limit, which could be the target of future research work. The techniques
we implement, such as Pure variable and Hyper binary resolution have been shown to
be valuable for reducing a problem size efficiently and accelerating the following solving.

From our side, we are preparing to investigate further the following topics:

1. Complete the implementation of HBR, such as adding edges from unit propagation
and including the edges implied by the resolvent binary constraints dynamically;

2. Explore more about the heuristics for subsumption, e.g., divide constraints into
different blocks and check whether a group of constraints would imply more sub-
sumption;

3. Implement more SAT preprocessing techniques into Pseudo-Boolean configura-
tions, such as General implication graph and Extended hyper resolution, Blocked
clause elimination, etc., and evaluate whether these techniques would bring exper-
imental performance improvement for the following solving phase in PB solver;

4. Currently, our presolver Pre is run as a stand-alone library and the I/O consump-
tion between communication and binded PB solver is large. One possible solution
is to integrate its presolving functionality into the PB solver’s suite directly;

5. From our empirical observation, it seems that applying a presolving method might
slow down the solving phase for a problem but not too much, meaning that if we

53

54 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

lose the time limit appropriately, more presolved instances might be solved. For
example, if the time limit for solving an instance is set to 500s, we observe round-
ingSat could solve 1683 PBS instances, but only 1666 PBS instances are solvable
after presolving using Pure Literal Elimination and 1644 for Parallel Row. How-
ever, when we set the time limit to 1800s, as reported in Table 5.1, roundingSat
solved 1724 instances while the number of solvable instances after applying Pure
Literal Elimination and Parallel Row became 1725 and 1709 respectively. In this
case, one possible experimental topic is to increase the time limit and see what
will happen.

Chapter 7

Acknowledgement

The author would like to express his sincere appreciation to his supervisors, Jakob Nord-
ström and Stephan Gocht for their invaluable advice, continuous support, and patience
during his thesis study. The author would also like to thank his parents and sister, whom
without this would have not been possible. The author wishes to thank his friends Hu
and Binbin for the happy dinner every Saturday, which could be the author’s most en-
joyable time within a week. The author would also like to show his thankfulness to Jinke
and Yichen, football field and fitness room are some rare places where the author could
find someone to chat with in his everyday life.

Life can always be hard, especially when one is suffering from intermittent Covid
sequelae, inner foot ankle tearing and eczema successively within four months. There
was one day when his head was groggy, skin was itchy and the severe ankle hurt from
every step he took, but he had to continue work since there was not much time left for
this thesis. He felt sad and hopeless, but just to feel and then, nothing. The author
doesn’t know what supports him to finish the long time running without relaxing, maybe
the intriguing words from books, the beautiful syllables from music, the sound of wind
and water in the lovely nature, or everyone whom once has passed his life.

Or maybe just a dream from childhood.

55

Bibliography

[Bla37] Archie Blake. “Canonical expressions in Boolean algebra”. PhD thesis. The
University of Chicago, 1937.

[DP60] Martin Davis and Hilary Putnam. “A computing procedure for quantifica-
tion theory”. In: Journal of the ACM (JACM) 7.3 (1960), pp. 201–215.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. “A machine pro-
gram for theorem-proving”. In: Communications of the ACM 5.7 (1962),
pp. 394–397.

[Gom63] Ralph E Gomory. “An algorithm for integer solutions to linear programs”.
In: Recent advances in mathematical programming 64.260-302 (1963), p. 14.

[Rob65] John Alan Robinson. “A machine-oriented logic based on the resolution
principle”. In: Journal of the ACM (JACM) 12.1 (1965), pp. 23–41.

[Dun+67] B Dunham et al. “A non-heuristic program for proving elementary logical
theorems”. In: Journal of Symbolic Logic 32.2 (1967).

[HR69] Peter L Hammer and Sergiu Rudeanu. “Pseudo-boolean programming”. In:
Operations Research 17.2 (1969), pp. 233–261.

[Coo71] Stephen A Cook. “The complexity of theorem-proving procedures”. In: Pro-
ceedings of the third annual ACM symposium on Theory of computing. 1971,
pp. 151–158.

[Dan72] George B Dantzig. Fourier-Motzkin elimination and its dual. Tech. rep.
STANFORD UNIV CA DEPT OF OPERATIONS RESEARCH, 1972.

[Chv73a] Vasek Chvátal. “Edmonds polytopes and a hierarchy of combinatorial prob-
lems”. In: Discrete mathematics 4.4 (1973), pp. 305–337.

[Chv73b] Vasek Chvátal. “Edmonds polytopes and a hierarchy of combinatorial prob-
lems”. In: Discrete mathematics 4.4 (1973), pp. 305–337.

[Lev73] Leonid Anatolevich Levin. “Universal sequential search problems”. In: Prob-
lemy peredachi informatsii 9.3 (1973), pp. 115–116.

[BMW75] AL Brearley, Gautam Mitra, and H Paul Williams. “Analysis of mathemat-
ical programming problems prior to applying the simplex algorithm”. In:
Mathematical programming 8.1 (1975), pp. 54–83.

57

58 BIBLIOGRAPHY

[APT79] Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan. “A linear-time
algorithm for testing the truth of certain quantified boolean formulas”. In:
Information processing letters 8.3 (1979), pp. 121–123.

[JS80] Ellis L Johnson and Uwe H Suhl. “Experiments in integer programming”.
In: Discrete Applied Mathematics 2.1 (1980), pp. 39–55.

[GS81] Monique Guignard and Kurt Spielberg. “Logical reduction methods in zero-
one programming—minimal preferred variables”. In: Operations Research
29.1 (1981), pp. 49–74.

[JP82] Ellis L Johnson and Manfred W Padberg. “Degree-two inequalities, clique
facets, and biperfect graphs”. In: North-Holland Mathematics Studies. Vol. 66.
Elsevier, 1982, pp. 169–187.

[BBG83] Gordon H Bradley, Gerald G Brown, and Glenn W Graves. “Structural
redundancy in large-scale optimization models”. In: Redundancy in Math-
ematical Programming. Springer, 1983, pp. 145–169.

[CJP83] Harlan Crowder, Ellis L Johnson, and Manfred Padberg. “Solving large-
scale zero-one linear programming problems”. In: Operations Research 31.5
(1983), pp. 803–834.

[CCT87] William Cook, Collette R Coullard, and Gy Turán. “On the complexity
of cutting-plane proofs”. In: Discrete Applied Mathematics 18.1 (1987),
pp. 25–38.

[Man87] CPLEX User’s Manual. “Ibm ilog cplex optimization studio”. In: Version
12 (1987), pp. 1987–2018.

[ZM88] Ramin Zabih and David A McAllester. “A Rearrangement Search Strat-
egy for Determining Propositional Satisfiability.” In: AAAI. Vol. 88. 1988,
pp. 155–160.

[HP91] Karla L Hoffman and Manfred Padberg. “Improving LP-representations of
zero-one linear programs for branch-and-cut”. In: ORSA Journal on Com-
puting 3.2 (1991), pp. 121–134.

[CM93] S Frank Chang and S Thomas McCormick. “Implementation and compu-
tational results for the hierarchical algorithm for making sparse matrices
sparser”. In: ACM Transactions on Mathematical Software (TOMS) 19.3
(1993), pp. 419–441.

[Sav94] Martin WP Savelsbergh. “Preprocessing and probing techniques for mixed
integer programming problems”. In: ORSA Journal on Computing 6.4 (1994),
pp. 445–454.

[AA95] Erling D Andersen and Knud D Andersen. “Presolving in linear program-
ming”. In: Mathematical Programming 71.2 (1995), pp. 221–245.

[VT95] Allen Van Gelder and Yumi Tsuji. Satisfiability testing with more reasoning
and less guessing. Citeseer, 1995.

BIBLIOGRAPHY 59

[BS97] Roberto J Bayardo Jr and Robert Schrag. “Using CSP look-back techniques
to solve real-world SAT instances”. In: Aaai/iaai. Providence, RI. 1997,
pp. 203–208.

[ABS99] Gilles Audemard, Belaid Benhamou, and Pierre Siegel. “La méthode d’avalanche
AVAL: une méthode énumérative pour SAT”. In: 5èmes Journées Na-
tionales sur la Résolution Pratique des Problèmes NP-Complets (JNPC’99).
1999, pp. 17–25.

[GRA99] Marques-Silva JP GRASP. “A search algorithm for propositional satisfiabil-
ity/JP Marques-Silva, KA Sakallah”. In: IEEE Transactions on Computers
48.5 (1999), pp. 506–521.

[Kul99] O. Kullmann. “On a generalization of extended resolution”. In: Discrete
Applied Mathematics 96-97 (1999), pp. 149–176. issn: 0166-218X. doi:
https://doi.org/10.1016/S0166- 218X(99)00037- 2. url: https:

//www.sciencedirect.com/science/article/pii/S0166218X99000372.

[MS99] Joao P Marques-Silva and Karem A Sakallah. “GRASP: A search algorithm
for propositional satisfiability”. In: IEEE Transactions on Computers 48.5
(1999), pp. 506–521.

[Mar99] Alexander Martin. “Integer programs with block structure”. PhD thesis.
1999.

[ANS00] Alper Atamtürk, George L Nemhauser, and Martin WP Savelsbergh. “Con-
flict graphs in solving integer programming problems”. In: European Jour-
nal of Operational Research 121.1 (2000), pp. 40–55.

[Li00] Chu Min Li. “Integrating equivalency reasoning into Davis-Putnam proce-
dure”. In: AAAI/IAAI 2000 (2000), pp. 291–296.

[DR01] Stefan Dantchev and Søren Riis. “” Planar” tautologies hard for resolu-
tion”. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science. IEEE. 2001, pp. 220–229.

[IP01] Russell Impagliazzo and Ramamohan Paturi. “On the complexity of k-
SAT”. In: Journal of Computer and System Sciences 62.2 (2001), pp. 367–
375.

[Le 01] Daniel Le Berre. “Exploiting the real power of unit propagation lookahead”.
In: Electronic Notes in Discrete Mathematics 9 (2001), pp. 59–80.

[Mos+01a] Matthew W Moskewicz et al. “Chaff: Engineering an efficient SAT solver”.
In: Proceedings of the 38th annual Design Automation Conference. 2001,
pp. 530–535.

[Mos+01b] Matthew W Moskewicz et al. “Chaff: Engineering an efficient SAT solver”.
In: Proceedings of the 38th annual Design Automation Conference. 2001,
pp. 530–535.

https://doi.org/https://doi.org/10.1016/S0166-218X(99)00037-2
https://www.sciencedirect.com/science/article/pii/S0166218X99000372
https://www.sciencedirect.com/science/article/pii/S0166218X99000372

60 BIBLIOGRAPHY

[Mos+01c] Matthew W Moskewicz et al. “Chaff: Engineering an efficient SAT solver”.
In: Proceedings of the 38th annual Design Automation Conference. 2001,
pp. 530–535.

[Bac02] Fahiem Bacchus. “Enhancing Davis Putnam with extended binary clause
reasoning”. In: AAAI/IAAI 2002 (2002), pp. 613–619.

[BH02] Endre Boros and Peter L Hammer. “Pseudo-boolean optimization”. In:
Discrete applied mathematics 123.1-3 (2002), pp. 155–225.

[DG02] Heidi E Dixon and Matthew L Ginsberg. “Inference methods for a pseudo-
boolean satisfiability solver”. In: AAAI/IAAI. 2002, pp. 635–640.

[SNS02] Patrik Simons, Ilkka Niemelä, and Timo Soininen. “Extending and im-
plementing the stable model semantics”. In: Artificial Intelligence 138.1-2
(2002), pp. 181–234.

[Bie04a] Armin Biere. “Resolve and expand”. In: International conference on theory
and applications of satisfiability testing. Springer. 2004, pp. 59–70.

[Bie04b] Armin Biere. “The evolution from Limmat to Nanosat”. In: Technical re-
ports 444 (2004).

[SP04a] Sathiamoorthy Subbarayan and Dhiraj K Pradhan. “NiVER: Non-increasing
variable elimination resolution for preprocessing SAT instances”. In: In-
ternational conference on theory and applications of satisfiability testing.
Springer. 2004, pp. 276–291.

[SP04b] Sathiamoorthy Subbarayan and Dhiraj K Pradhan. “NiVER: Non-increasing
variable elimination resolution for preprocessing SAT instances”. In: In-
ternational conference on theory and applications of satisfiability testing.
Springer. 2004, pp. 276–291.

[Aus05] Matt Austern. “Draft technical report on c++ library extensions”. In:
ISO/IEC DTR 19768 (2005).

[CK05] Donald Chai and Andreas Kuehlmann. “A fast pseudo-boolean constraint
solver”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 24.3 (2005), pp. 305–317.

[FM05a] Armin Fügenschuh and Alexander Martin. “Computational integer pro-
gramming and cutting planes”. In: Handbooks in Operations Research and
Management Science 12 (2005), pp. 69–121.

[FM05b] Armin Fügenschuh and Alexander Martin. “Computational integer pro-
gramming and cutting planes”. In: Handbooks in Operations Research and
Management Science 12 (2005), pp. 69–121.

[SE05] Niklas Sorensson and Niklas Een. “Minisat v1. 13-a sat solver with conflict-
clause minimization”. In: SAT 2005.53 (2005), pp. 1–2.

[BS06] Armin Biere and Carsten Sinz. “Decomposing SAT problems into connected
components”. In: Journal on Satisfiability, Boolean Modeling and Compu-
tation 2.1-4 (2006), pp. 201–208.

BIBLIOGRAPHY 61

[MM06] Vasco M Manquinho and Joao Marques-Silva. “On using cutting planes in
pseudo-boolean optimization”. In: Journal on Satisfiability, Boolean Mod-
eling and Computation 2.1-4 (2006), pp. 209–219.

[SS06] Hossein M Sheini and Karem A Sakallah. “Pueblo: A hybrid pseudo-boolean
SAT solver”. In: Journal on Satisfiability, Boolean Modeling and Computa-
tion 2.1-4 (2006), pp. 165–189.

[Ach07] Tobias Achterberg. “Constraint integer programming”. In: (2007).

[Bix07] Bob Bixby. “The gurobi optimizer”. In: Transp. Re-search Part B 41.2
(2007), pp. 159–178.

[AJS08] Gilles Audemard, Said Jabbour, and Lakhdar Sais. “SAT graph-based rep-
resentation: A new perspective”. In: Journal of Algorithms 63.1-3 (2008),
pp. 17–33.

[BHP08] Timo Berthold, Stefan Heinz, and Marc E Pfetsch. “Solving pseudo-Boolean
problems with SCIP”. In: (2008).

[Ach09] Tobias Achterberg. “SCIP: solving constraint integer programs”. In: Math-
ematical Programming Computation 1.1 (2009), pp. 1–41.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. “The com-
plexity of satisfiability of small depth circuits”. In: International Workshop
on Parameterized and Exact Computation. Springer. 2009, pp. 75–85.

[MLM09] Ruben Martins, Inês Lynce, and Vasco Manquinho. “Preprocessing in pseudo-
boolean optimization: An experimental evaluation”. In: Eighth Interna-
tional Workshop on Constraint Modelling and Reformulation. Citeseer. 2009.

[HJB10] Marijn Heule, Matti Järvisalo, and Armin Biere. “Clause elimination pro-
cedures for CNF formulas”. In: International Conference on Logic for Pro-
gramming Artificial Intelligence and Reasoning. Springer. 2010, pp. 357–
371.

[JBH10a] Matti Järvisalo, Armin Biere, and Marijn Heule. “Blocked clause elimina-
tion”. In: International conference on tools and algorithms for the construc-
tion and analysis of systems. Springer. 2010, pp. 129–144.

[JBH10b] Matti Järvisalo, Armin Biere, and Marijn Heule. “Blocked clause elimina-
tion”. In: International conference on tools and algorithms for the construc-
tion and analysis of systems. Springer. 2010, pp. 129–144.

[LP10] Daniel Le Berre and Anne Parrain. “The Sat4j library, release 2.2”. In:
Journal on Satisfiability, Boolean Modeling and Computation 7.2-3 (2010),
pp. 59–64.

[MML10] Vasco Manquinho, Ruben Martins, and Inês Lynce. “Improving unsatisfiability-
based algorithms for boolean optimization”. In: International conference on
theory and applications of satisfiability testing. Springer. 2010, pp. 181–193.

62 BIBLIOGRAPHY

[AW13] Tobias Achterberg and Roland Wunderling. “Mixed integer programming:
Analyzing 12 years of progress”. In: Facets of combinatorial optimization.
Springer, 2013, pp. 449–481.

[HJB13] Marijn JH Heule, Matti Järvisalo, and Armin Biere. “Revisiting hyper bi-
nary resolution”. In: International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research. Springer.
2013, pp. 77–93.

[BBL14] Christian Bliek1ú, Pierre Bonami, and Andrea Lodi. “Solving mixed-integer
quadratic programming problems with IBM-CPLEX: a progress report”. In:
Proceedings of the twenty-sixth RAMP symposium. 2014, pp. 16–17.

[Gam+15] Gerald Gamrath et al. “Progress in presolving for mixed integer program-
ming”. In: Mathematical Programming Computation 7.4 (2015), pp. 367–
398.

[Bal+16] Tomáš Balyo et al. “SAT race 2015”. In: Artificial Intelligence 241 (2016),
pp. 45–65.

[HKB17] Marijn JH Heule, Benjamin Kiesl, and Armin Biere. “Short proofs with-
out new variables”. In: International Conference on Automated Deduction.
Springer. 2017, pp. 130–147.

[Kor+17] Tuukka Korhonen et al. “MaxPre: An Extended MaxSAT Preprocessor”.
In: Proceedings of the 20th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT 2017). Ed. by Serge Gaspers and
Toby Walsh. Vol. 10491. Lecture Notes in Computer Science. Springer,
2017, pp. 449–456.

[EN18] Jan Elffers and Jakob Nordström. “Divide and Conquer: Towards Faster
Pseudo-Boolean Solving.” In: IJCAI. Vol. 18. 2018, pp. 1291–1299.

[BT19] Sam Buss and Neil Thapen. “DRAT proofs, propagation redundancy, and
extended resolution”. In: International Conference on Theory and Applica-
tions of Satisfiability Testing. Springer. 2019, pp. 71–89.

[Ach+20] Tobias Achterberg et al. “Presolve reductions in mixed integer program-
ming”. In: INFORMS Journal on Computing 32.2 (2020), pp. 473–506.

[Pio20] Marek Piotrów. “Uwrmaxsat: Efficient solver for maxsat and pseudo-boolean
problems”. In: 2020 IEEE 32nd International Conference on Tools with Ar-
tificial Intelligence (ICTAI). IEEE. 2020, pp. 132–136.

[Bes+21] Ksenia Bestuzheva et al. “The SCIP Optimization Suite 8.0”. In: arXiv
preprint arXiv:2112.08872 (2021).

[BJK21] Armin Biere, Matti Järvisalo, and Benjamin Kiesl. “Preprocessing in SAT
solving”. In: Handbook of Satisfiability (2021), pp. 391–435.

[BN21] Samuel R Buss and Jakob Nordström. “Proof complexity and SAT solving”.
In: Handbook of Satisfiability 336 (2021), pp. 233–350.

BIBLIOGRAPHY 63

[Dev+21] Jo Devriendt et al. “Cutting to the core of pseudo-Boolean optimization:
combining core-guided search with cutting planes reasoning”. In: Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2021, Virtual Event. 2021, pp. 3750–3758.

[GN21] Stephan Gocht and Jakob Nordström. “Certifying parity reasoning effi-
ciently using pseudo-Boolean proofs”. In: 35th AAAI Conference on Arti-
ficial Intelligence. AAAI Press. 2021.

