1

KOBENHAVNS ,
UNIVERSITET @@

Computability and Complexity: Problem Set 1

Due: Tuesday February 21 at 23:59 AoE .

Submission: Please submit your solutions via Absalon as a PDF file. State your name
and e-mail address close to the top of the first page. Solutions should be written in ITEX
or some other math-aware typesetting system with reasonable margins on all sides (at least
2.5 cm). Please try to be precise and to the point in your solutions and refrain from vague
statements. Make sure to explain your reasoning. Write so that a fellow student of yours
can read, understand, and verify your solutions. In addition to what is stated below, the
general rules for problem sets stated on the course webpage always apply.

Collaboration: Discussions of ideas in groups of two to three people are allowed—and
indeed, encouraged—but you should always write up your solutions completely on your own,
from start to finish, and you should understand all aspects of them fully. It is not allowed
to compose draft solutions together and then continue editing individually, or to share any
text, formulas, or pseudocode. Also, no such material may be downloaded from or generated
via the internet to be used in draft or final solutions. Submitted solutions will be checked
for plagiarism. You should also clearly acknowledge any collaboration. State close to the top
of the first page of your problem set solutions if you have been collaborating with someone
and if so with whom. Note that collaboration is on a per problem set basis, so you should
not discuss different problems on the same problem set with different people.

Reference material: Some of the problems are “classic” and hence it might be possible
to find solutions on the Internet, in textbooks or in research papers. It is not allowed to
use such material in any way unless explicitly stated otherwise. Anything said during the
lectures or in the lecture notes should be fair game, though, unless you are specifically asked
to show something that we claimed without proof in class. All definitions should be as given
in class or in Arora-Barak and cannot be substituted by versions from other sources. It is
hard to pin down 100% watertight, formal rules on what all of this means—when in doubt,
ask the main instructor.

Grading: A score of 100 points is guaranteed to be enough to pass this problem set.
Questions: Please do not hesitate to ask the instructor if any problem statement is unclear,
but please make sure to send private messages sometimes specific enough questions could
give away the solution to your fellow students, and we want all of you to benefit from working
on, and learning from, the problems. Good luck!

(10 p) In class, we defined NP to be the set of languages L with the following property: There is
a polynomial-time (deterministic) Turing machine M and a polynomial p such that z € L holds
if and only if there is a witness y of length ezactly p(|z|) for which M(z,y) = 1.

Show that we can relax this so that the witness y is of length at most p(|z|), but might be
shorter for some x. That is, prove formally that with this new definition we get exactly the
same set of languages in NP. (This is not hard, but please be careful so that you do not run into
problems with any annoying details.)

Page 1 (of 5)

NDAAQ9007U Computability and Complexity e 2022/2023
Jakob Nordstrém

2

(10 p) Consider the reduction from 3-SAT to INDEPENDENTSET in the proof of Theorem 2.15
in Arora-Barak establishing that the latter problem is NP-hard. Suppose that we modify the
reduction in the obvious way to be from general CNFSAT instead of 3-SaT. Would this work just
as fine to establish NP-harduness, or would there be problems? For full credit, give a complete
proof of the correctness of this new reduction or point out where it fails.

(20 p) A legal k-colouring of a graph G = (V, E) is an assignment of colours {1,2,...,k} to the
vertices in V' such that if (u,v) € F is an edge, then the colours of u and v are distinct. Let
k-COLOURING be the language consisting of graphs that have a legal k-colouring. Recall that
we proved in class that 3-COLOURING is NP-complete.

3a What is the complexity of 2-COLOURING?

3b What is the complexity of 4-COLOURING?

For full credit on each of these subproblems, provide either an explicit algorithm (for an upper
bound) or a reduction from some problem proven NP-complete in chapter 2 in Arora-Barak or
during the lectures.

(30 p) A wertex cover of a graph G = (V, E) is a subset S C V of vertices such that for each
edge (u,v) € F it holds that either v € S or v € S. The language

VERTEXCOVER = {(G, k) |G has a vertex cover of size k}

is known to be NP-complete (and this fact can be assumed without proof).

Suppose that you are given a graph G and a parameter k and are told that the smallest
vertex cover of G is either (i) of size at most k or (ii) of size at least 3k. Show that there is a
polynomial-time algorithm that can distinguish between the cases (i) and (ii). Can you do the
same for a smaller constant than 37 If so, how small? Since VERTEXCOVER is NP-complete,
why does this not show that P = NP?

(40 p) For a CNF formula F, let F' denote the “canonical 3-CNF version” of F' constructed as
follows:

e Every clause C' € I’ with at most 3 literals appears also in F.

e For every clause C' € F' with more than 3 literals, say, C = a; Vas V---Vag, we add to F
the set of clauses

{yo. YoVarVuyr,, y1VazVyz, .o, Y1 Var Ve, Yit,
where yp, ...,y are new variables that appear only in this subset of clauses in F.
5a (10 p) Prove that F is unsatisfiable if and only if F is unsatisfiable. (Please make sure

to prove this claim in both directions, and to be careful with what you are assuming and
what you are proving.)

Page 2 (of 5)

NDAAQ9007U Computability and Complexity e 2022/2023
Jakob Nordstrém

6

5b

5c

(10 p) A CNF formula F is said to be minimally unsatisfiable if F' is unsatisfiable but any
formula F' = F\ {C} obtained by removing an arbitrary clause C' from F' is always satis-
fiable. Prove that F'is minimally unsatisfiable if and only if F' is minimally unsatisfiable.

(20 p) Consider the language
MINUNSAT = {F |F is a minimally unsatisfiable CNF formula} .

What can you say about the computational complexity of deciding this language?

For this subproblem, and for this subproblem only, please look at textbooks,
search in the research literature, or roam the internet to find an answer. As
your solution to this subproblem, provide a brief but detailed discussion of your findings
regarding MINUNSAT together with solid references where one can look up any definitions
and/or proofs (i.e., not a webpage but rather a research paper or possibly texthook). Note
that vou should still follow the problem set rules in that you are not allowed to collaborate
or interact with anyone other than your partner(s) on this problem set.

(50 p) Given a (mnulti)set A = {ay,aq,...,a,} of integer terms and a target sum B, does there
exist a subset S C [m] such that), ga; = B? This problem is known as SUBSETSUM and is
NP-complete. We want to analyse a purported proof of NP-hardness and study what happens
when one tinkers with the reduction.

6a

(15 p) Consider the following suggested reduction of 3-SAT to SUBSETSUM. We are given
a 3-CNF formula £ with m clauses 'y, ..., Cy, over n variables xy, ..., x,. We build from
this F' a SUBSETSUM instance with 2(n + m) integer terms and target sum as follows,
where all numbers below have n + m decimal digits each:

e lor each variable x;, construct numbers ¢; and f; such that:
— the ith digit of t; and f; is equal to 1;
— for n+1 < j < n+m, the jth digit of ¢; is equal to 1 if the clause C';_,, contains
the literal z;;
— for n+1 < j < n+m, the jth digit of f; is equal to 1 if C;_,, contains z;, and
— all other digits of ¢; and f; are 0.
e For each clause Cj , construct numbers u; and v; such that
— the (n + j)th digit of w; and v; is equal to 1 and
— all other digits of u; and v; are 0.

e The target sum B has

— jth digit equal to 1 for 1 < 7 < n and
— jth digit equal to 3 for n +1 < 5 < n+ m.

Is the the above a correct reduction from 3-SAT to SUBSETSUM that proves the NP-hardness
of the latter problem? If your answer is yes, then give a full proof of correctness showing that
the reduction (i) is polynomial-time computable, (ii) maps yes-instances to yes-instances,
and (iii) maps no-instances to no-instances. If your answer is no, then show how at least
one of these conditions fails to hold.

Page 3 (of 5)

NDAAQ9007U Computability and Complexity e 2022/2023
Jakob Nordstrém

6b (15 p) Given a 3-CNF formula F' with m clauses over n variables, run the same reduction
as in problem@except that the numbers u; and v; are omitted and the target sum B has
all digits equal to 1. Formulas that map into satisfiable instances of SUBSETSUM under
this modified reduction have a very specific form of satisfying assignments. Describe what
such assignments look like.

6¢c (20 p) Consider the language HACKEDSAT consisting of 3-CNF formulas that map to satisi-
fiable SUBSETSUM instances under the reduction in problem [6b] What is the complexity
of deciding this language? Is it in NP? In P? Or NP-complete? For full credit, provide
either a polynomial-time algorithm or a reduction from some problem proven NP-complete
in chapter 2 in Arora-Barak or during the lectures.

(60 p) Your task in this problem is to produce a complete, self-contained proof of (the vanilla
version of) Ladner’s theorem that we sketched in class. The goal is (at least) twofold:

e To have you work out the proof in detail and make sure you understand it.
e To train your skills in mathematical writing.

When you write the proof, yvou can freely consult the lecture notes as well as the relevant material
in Arora-Barak, but you need to fill in all missing details. Also, the resulting write-up should
stand on its own without referring to the lecture notes, Arora-Barak, or any other source.

Your write-up should be accessible to a student who has studied and fully understood the
material during the first two weeks of lectures of this course but does not necessarily know more
than that. (However, you do not need to explain again the material in our first lectures, but can
assume that they have been fully digested.)

You are free to structure your proof as you like, except that all of the ingredients listed below
should be explicitly addressed somewhere in your proof. (You can take care of them in whatever
order you find appropriate, however. Please do not refer to the labelled subproblems in your
write-up, since it should be a stand-alone text, but make sure that it is easy to find where in
your solution the different items are dealt with.)

Ta Define

SATp = {1/;01”””) ’

1) € CNFSAT and n = |1,D|}

as the language of satisfiable CNF formulas padded by a suitable number of ones at the
end as determined by the function P, which we assume to be polynomial-time computable.

Tb Prove that if P(n) = O(1), then SaTp is NP-complete.
Tc Prove that if P(n) = Q(n/logn), then SATp € P.

7d Give a complete description of the algorithm computing H(n) (as in the lecture notes) and
prove that H is well-defined in that the algorithm terminates and computes some specific
function.

Page 4 (of 5)

NDAAQ9007U Computability and Complexity e 2022/2023
Jakob Nordstrém

Te

7

7h

Prove that not only does the algorithm terminate, but it can be made to run in time
polynomial in n. (Note that there are a number of issues needing clarification here, such
as, for instance, how to solve instances of CNFSAT efficiently enough.)

Prove that SATy € P if and only if H(n) = O(1).

Prove that if SATy ¢ P, then H(n) — oo as n — oc.

Assuming that P £ NP, prove that SATy does not lie in P but also cannot be NP-complete.

Page 5 (of 5)

NDAAQ9007U Computability and Complexity e 2022/2023
Jakob Nordstrém

