1

KOBENHAVNS ,
UNIVERSITET @@

Computability and Complexity: Problem Set 2

Due: Tuesday March 7 at 23:59 AoE .

Submission: Please submit your solutions via Absalon as a PDF file. State your name
and e-mail address close to the top of the first page. Solutions should be written in ITEX
or some other math-aware typesetting system with reasonable margins on all sides (at least
2.5 cm). Please try to be precise and to the point in your solutions and refrain from vague
statements. Make sure to explain your reasoning. Write so that a fellow student of yours
can read, understand, and verify your solutions. In addition to what is stated below, the
general rules for problem sets stated on the course webpage always apply.

Collaboration: Discussions of ideas in groups of two to three people are allowed—and
indeed, encouraged—but you should always write up your solutions completely on your own,
from start to finish, and you should understand all aspects of them fully. It is not allowed
to compose draft solutions together and then continue editing individually, or to share any
text, formulas, or pseudocode. Also, no such material may be downloaded from or generated
via the internet to be used in draft or final solutions. Submitted solutions will be checked
for plagiarism. You should also clearly acknowledge any collaboration. State close to the top
of the first page of your problem set solutions if you have been collaborating with someone
and if so with whom. Note that collaboration is on a per problem set basis, so you should
not discuss different problems on the same problem set with different people.

Reference material: Some of the problems are “classic” and hence it might be possible
to find solutions on the Internet, in textbooks or in research papers. It is not allowed to
use such material in any way unless explicitly stated otherwise. Anything said during the
lectures or in the lecture notes should be fair game, though, unless you are specifically asked
to show something that we claimed without proof in class. All definitions should be as given
in class or in Arora-Barak and cannot be substituted by versions from other sources. It is
hard to pin down 100% watertight, formal rules on what all of this means—when in doubt,
ask the main instructor.

Grading: A score of 100 points is guaranteed to be enough to pass this problem set.
Questions: Please do not hesitate to ask the instructor if any problem statement is unclear,
but please make sure to send private messages sometimes specific enough questions could
give away the solution to your fellow students, and we want all of you to benefit from working
on, and learning from, the problems. Good luck!

(20 p) We proved in class that there are oracles relative to which P and NP are equal by
defining the language ExpCom = {(M,z,1") |M accepts = within 2" steps} and showing that
pixeCon _ npExrCoM _ EXP - In this problem we want to understand how important (or
unimportant) the exact details in the definition of ExpCoM is for this result to hold.

la Let ExpCoM = {(]\/I,:c, 1m) |M’ accepts z within n steps}. Do the equalities pExrCon’ _

NPFxPCoM’ — EXP hold? Modify the argument we gave in class to establish these equalities

or explain where the proof fails.

Page 1 (of 2)

NDAAQ9007U Computability and Complexity e 2022/2023
Jakob Nordstrém

1b Let ExpCom” = {(M,l‘,ﬂ) ’ﬂ/f accepts & within 2% Steps} (where n in the input is a
number given in binary). Does it hold that PFxrCoM” — NpExrCoM” — EXP? Adapt the
proof given in class or explain where it fails.

(10 p) We say that a language L C {0,1}* is sparse if there is a polynomial p such that it holds
for every n € Nt that |L N {0,1}"| < p(n). Show that if L is sparse, then L € P/poly.

(30 p) Consider the language
SPACEBOUNDEDTM = {(I‘Ll,:c, 1) !M' accepts x in space n}

where M is a deterministic Turing machine and 1" denotes a string of ones of length n (as
usual). Prove that SPACEBOUNDEDTM is PSPACE-complete from first principles (i.e., prove
that SPACEBOUNDEDTM is in PSPACE and that any other language in PSPACE reduces to it).

(In this problem, we assume that all Turing machines have a fixed configuration in terms of
alphabet and number of tapes, and that a universal TM for space-bounded computation as in
Exercise 4.1 in Arora-Barak can be assumed without proof.)

(30 p) Let us say that a function f : {0,1}* — {0,1}* is write-once logspace computable if f
can be computed by a Turing machine M that uses O(logn) space on its work tapes and whose
output tape is write-once. By a write-once tape we mean a tape where at every time step M
can either keep its head at the same position on the tape or write a symbol to it and move one
location to the right, but M can never read from the tape or move left. The used cells on the
write-once tape are not counted towards the space bound on M.

Prove that f is write-once logspace computable if and only if it is implicitly logspace com-
putable as defined in class.

(40 p) Recall that we write IIY = coX? to denote the complement of the complexity class £¥ and
that the union of all such classes form the polynomial hierarchy PH = ,;crt 27 = Uens 15 If
it would hold that PH = ¥ one says that “the polynomial hierarchy collapses to the ith level”
(which, as we said in class, is generally not believed to be the case).

Prove that if £ = II?, then the polynomial hierarchy collapses to the ith level.

(40 p) In our lectures on Boolean circuits we defined DTIME(T'(n)) /a(n) as the class of languages
decided by Turing machines M running in time O(T(n)) that also get a specific advice string
oy € {0,139 for inputs of size n. We then proved (or at least outlined a proof) that P/poly =
Ue ger+ DTIME(n®) /nc.

Is it possible to change the definition so that not only the advice string «,, depends on the size
of the input, but so that we can also pick different Turing machines M,, for different input sizes
(while still maintaining that all running times be bounded by a common polynomial p(n)), and
prove that P/poly is equal to the set of languages decided by such sequences of Turing machines
{Mp},en+ with advice strings {ay, }pen+? Work out the details to show that this alternative
definition is just as fine, or give a clear mathematical argument why it seems problematic.

(60 p) Show that P # SPACE(n*) for any fixed k € N*.
Hint: Use padding. (Also, just to avoid confusion, note that P C | o+ SPACE(n*) = PSPACE,
and of course we do not know that P # PSPACE, but the point here is that we are fixing k.)

Page 2 (of 2)

NDAAQ9007U Computability and Complexity e 2022/2023
Jakob Nordstrém

