1

KOBENHAVNS
UNIVERSITET .

Computability and Complexity: Problem Set 1

Due: Thursday February 19 at 23:59 AoE.

Submission: Please submit your solutions via Absalon as a PDF file. State your name and
e-mail address at the top of the first page. Solutions should be written in I¥TEX or some
other math-aware typesetting system with reasonable margins on all sides (at least 2.5 cm).
Please try to be precise and to the point in your solutions and refrain from vague statements.
Never just state an an answer, but make sure to also explain your reasoning. Write so that a
fellow student of yours can read, understand, and verify your solutions. In addition to what
is said below, the general rules for problem sets stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two to three people are allowed—and
indeed, encouraged—but you should always write up your solutions completely on your own,
from start to finish, and you should understand all aspects of them fully. It is not allowed
to compose draft solutions together and then continue editing individually, or to share any
text, formulas, or pseudocode. Also, no such material may be downloaded from or generated
via the internet to be used in draft or final solutions. Submitted solutions will be checked
for plagiarism. You should also clearly acknowledge any collaboration. State close to the top
of the first page of your problem set solutions if you have been collaborating with someone
and if so with whom. Note that collaboration is on a per problem set basis, so you should
not discuss different problems on the same problem set with different people.

Reference material: Some of the problems are “classic” and hence it might be possible to
find solutions on the internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes, or any material found in Arora-Barak, should be fair game, though,
unless you are specifically asked to show something that we claimed without proof in class.
All definitions should be as given in class or in Arora—Barak and cannot be substituted by
versions from other sources. It is hard to pin down 100% watertight, formal rules on what
all of this means—when in doubt, ask the main instructor.

Grading: A total score of 70 points will be enough for grade 02, 105 points for grade 4,
140 points for grade 7, 175 points for grade 10, and 210 points for grade 12 on this problem
set. Please note that problems are not necessarily presented in order of difficulty. Unless
otherwise stated, every subproblem can be solved independently of other subproblems. Any
revised versions of the problem set with clarifications and/or corrections will be posted on
the course webpage |[jakobnordstrom.se/teaching/CoCo26/.

Questions: Please do not hesitate to ask the instructors or TA if any problem statement
is unclear, but please make sure to send private messages when using Absalon—sometimes
specific enough questions could give away the solution to your fellow students, and we want
all of you to benefit from working on, and learning from, the problems. Good luck!

(10 p) The Arora—Barak textbook defines NP to be the set of languages L with the following
property: There is a polynomial-time (deterministic) Turing machine M and a polynomial p such
that 2 € L holds if and only if there is a witness y of length ezactly p(|x|) for which M (z,y) = 1.
An attentive listener will have noticed that in the lectures we were in fact a bit more relaxed,
and stipulated that the witness y should be of length at most p(|x|), but might be shorter for
some .

Page 1 (of 6)

NDAA09007U Computability and Complexity e 2025/2026
Jakob Nordstrom and Amir Yehudayoff

Show that these two different definitions of NP are equivalent. That is, prove formally that
the two definitions yield exactly the same set of languages in NP. (This is not hard, but please
be careful so that you do not run into problems with any annoying details.)

(20 p) Let ONENEGSAT be the language of satisfiable CNF formulas in which each clause has
at most one negated literal. Prove that ONENEGSAT is in P.

(20 p) Assuming that P = NP, describe a polynomial-time algorithm that gets a graph G as
input and outputs a proper 3-colouring of G if the graph is 3-colourable and otherwise outputs
the message “the graph is not 3-colourable.”

(Note that the algorithm should solve the search problem of actually producing a 3-colouring
and not just the decision problem of determining whether such a colouring exists. You are free
to use any fact that follows immediately from the assumption P = NP, but please explain clearly
when and how you use such facts.)

(40 p) When we established the Cook-Levin theorem in class, one of the lemmas we proved (or,
at least, hand-waved a proof for) was that any Boolean function f : {0,1}" — {0,1} can be
represented as a CNF formula. Can vou use the construction in our proof of this lemma to write
down such CNF representations of the following functions? For a full score, can you make the
representation more concise than what a naive application of the lemma would give? (If a more
concise representation is possible, then just giving such a representation is sufficient for a full
score, as long as you explain how you found it and why it is correct.)

4a The even function

1 if 30 2 =0 (mod 2),

0 otherwise.

EVEN(CCl, 9,3, .174) = {

4b The majority function

1 if 0 2 >3,

0 otherwise.

MAJ(x1, 22,73, T4, 25) = {

4c The not-all-equal function

1 if there are 4, j € [6] such that x; = 1 and z; = 0,

NEQ(xy, 22,23, T4, 25, T6) =)
0 otherwise.

Page 2 (of 6)

NDAA09007U Computability and Complexity e 2025/2026
Jakob Nordstrom and Amir Yehudayoff

5

(60 p) The reason we were not done with the Cook-Levin theorem after having proven the lemma
mentioned in Problem []is that this lemma said that for a Boolean function f: {0,1}" — {0,1}
the size of the CNF representation could be as large as n - 2. This means that a reduction that
would write a CNF representation of the function f(y) indicating whether the witness y makes
the Turing machine verifier accept would not necessarily run in polynomial time.

Can you prove that such a pessimistic size estimate is in fact necessary by exhibiting an
exponential lower bound for the CNF representation of some Boolean function? Concretely, if
we generalize the functions in Problem [f to n bits (where we can also say that n is always odd
for the majority function to make sense), can you prove an exponential lower bound exp(£2(n))
for any of these functions? What is the best lower bound you can get?

(Note that we are looking for a formal proof here of any lower bounds for a full score, but
partial results or convincing intuitive arguments can give partial credits.)

(50 p) Given a (multi)set A = {a1,aq,...,a,} of integer terms and a target sum 7', does there
exist a subset S C [m] such that) ,_ga; = T? We have learned in class that this problem,
known as SUBSETSUM, is NP-complete. In this problem, we want to look more closely at the
reduction establishing NP-hardness and study what happens when we tinker with this reduction.

6a Recall the reduction we saw from 3-SAT to SUBSETSUM constructed as follows: We are
given a 3-CNF formula F with m clauses C4,...,C,, over n variables x1, ..., z,. We build
from this F' a SUBSETSUM instance with 2(n+m) integer terms and target sum as follows,
where all numbers below have n + m decimal digits each:

e For each variable x;, construct numbers A7 and Al such that:
the ith digit of A7 and Al is equal to 1;

— for n4+1 < j < n+m, the jth digit of AT is equal to 1 if the clause Cj_p contains
the literal x;;

for n +1 < j <n+m, the jth digit of Af is equal to 1 if C;_,, contains Z;, and
all other digits of AT and AF are 0.

e For each clause C; , construct numbers le and BJ2- such that
— the (n + j)th digit of B} is equal to 1;
— the (n + j)th digit of Bf is equal to 2; and
— all other digits of B} and BJ? are 0.
e The target sum 1" has
— jth digit equal to 1 for 1 < 7 < n and
— jth digit equal to 4 for n +1 < j < n+ m.
Since we discussed this only briefly in class, write down a detailed proof establishing that
the above is a correct reduction from 3-SAT to SUBSETSUM that proves the NP-hardness

of the latter problem. That is, argue that the reduction (i) is polynomial-time computable,
(ii) maps yes-instances to yes-instances, and (iii) maps no-instances to no-instances.

Page 3 (of 6)

NDAA09007U Computability and Complexity e 2025/2026
Jakob Nordstrom and Amir Yehudayoff

6b Given a 3-CNF formula F' with m clauses over n variables, run the same reduction as in
problem [6a) except that the numbers B]l and ng- are omitted and the target sum T has all
digits equal to 1. Formulas that map into satisfiable instances of SUBSETSUM under this
modified reduction have a very specific form of satisfying assignments. Describe what such
assignments look like.

6c Consider the language HACKEDSAT consisting of 3-CNF formulas that map to satisifiable
SUBSETSUM instances under the reduction in problem What is the complexity of
deciding this language? Is it in NP? In P? Or NP-complete? For full credit, provide either
a polynomial-time algorithm or a reduction from some problem proven NP-complete in
chapter 2 in Arora-Barak or during the lectures.

(50 p) Recall that as discussed in class, we can agree on some fixed, standardized encoding of
Turing machines in the binary alphabet {0,1}. This allows us to view each Turing machine as
an integer, namely the number whose binary expansion is the encoding of the Turing machine
in question. We can also also agree that integers that do not correspond to Turing machines
under this translation are interpreted as the Turing machine that immediate halts regardless of
input. Given this convention, any number x encodes a Turing machine M, and we can define a
function g : N — N by

(@) s if M, takes s < oo steps before halting given the empty string as input;
glx) = . . . ‘
0 if M, does not halt given the empty string as input.

Note that given that we have fixed the encoding of Turing machines into binary strings, this is
certainly a well-defined mathematical function that maps any non-negative integer x into some
non-negative integer y = g(x).

Even though the function g(x) exists, computing it is another matter. In this problem, we
want to show that g(z) is not computable in a very strong sense. Namely, your task is to
prove that g(z) grows faster than any computable function. That is, show that there cannot
exist any monotonically increasing function h : N — N and any Turing machine M}, such that
g(x) = O(h(x)) and M}, computes h(x) when given z as input.

Page 4 (of 6)

NDAA09007U Computability and Complexity e 2025/2026
Jakob Nordstrom and Amir Yehudayoff

8

(60 p) We claimed in class that if M is a Turing machine that decides a language L in time T'(n),
then there is an oblivious Turing machine M, that also decides L and runs in time O(T (n)g)
Your task is to prove (a slightly restricted version of) this claim.

8a

8b

8c

Here are some useful facts that can be used freely:

1. We can assume that M has two tapes, just as usual, but that our oblivious Turing ma-

chine M to be constructed has four tapes, where we think of the third tape as an “input
copy tape” and the fourth tape as a “timer tape”. For the purposes of this problem, let us
refer to such a Turing machine as an “extended Turing machine”.

. We can assume that the upper bound on the running time T'(n) is a time-constructible

function, meaning that given an input string = of length n = |z| it is possible to compute
the number T'(n) and write it in binary to the work tape in time O(7'(n)).

. Adding or substracting some fixed constant K from a number written on the work tape

can also be done efficiently.

. The Turing machine can detect when it reaches the first position on the work tape and

cannot move further right. We can also think of the work tape as being pre-filled with a
special blank symbol so that the Turning machine can detect when it has reached a tape
cell where the tape head has never been bhefore.

. If the alphabet of the Turing machine M is ¥, then we can let the alphabet of Mg, be

¥* ={o0,0% | 0 € ¥}, where we can think of 0* as encoding some useful information such
as “the symbol written in this tape cell is ¢ and the tape head of M would be here right
now.”

Given a Turing machine M as above that runs in time at most 7'(n) = ﬂ(n) for any input «
of size n = |x|, where T'(n) is a time-constructible function, describe how to construct an
extended Turing machine M’ that accepts the same language as M but runs in time exactly
T'(n) for all inputs = of size n = |z|, where T'(n) = O(T'(n)) is some well-chosen function.

Explain how, by using the extended alphabet ¥* = {o,0" | 0 € X} described above, one
single transition (computation step) of M can be simulated by a constant number of passes
back and forth over the input and work tapes on an extended Turing machine M’. That is,
at end of the passes the extended Turing machine tape heads should be in the first position
of the tapes, the work tape should have changed as after a single write during a transition
of M, and special symbols ¢* on the input copy tape and work tape should indicate the
new positions of the tape heads for M.

Given a Turing machine M as above that runs in time at most T(n) = Q(n) for any
input x of size n = |z| and for T'(n) being a time-constructible function, describe how to
construct an extended Turing machine M, that decides the same language as does M;
runs in time O(7'(n)?); and is oblivious.

Page 5 (of 6)

NDAA09007U Computability and Complexity e 2025/2026
Jakob Nordstrom and Amir Yehudayoff

9

(80 p) Your task in this problem is to produce a complete, self-contained proof of (the vanilla
version of) Ladner’s theorem that was discussed briefly during one of the lectures. The goal of
this endeavour is (at least) twofold:

e To have you work out the proof in detail and make sure you understand it.
e To train your skills in mathematical writing.

When you write the proof, you can freely consult the lecture notes as well as the relevant material
in Arora—Barak, but you need to fill in all missing details. Also, the resulting write-up should
stand on its own without referring to the lecture notes, Arora—Barak, or any other source.

Your write-up should be accessible to a student who has studied and fully understood the
material during the first two weeks of lectures of this course but does not necessarily know more
than that. (However, you do not need to explain again the material in our first lectures, but can
assume that these lectures have been fully digested.)

You are free to structure your proof as you like, except that all of the ingredients listed below
should be explicitly addressed somewhere in your proof. (You can take care of them in whatever
order you find appropriate, however. Please do not refer to the labelled subproblems in your
write-up, since it should be a stand-alone text, but make sure that it is easy to find where in
your solution the different items are dealt with.)

9a Define

P(n)

SATp = {'g/)()l” ’ 1) € CNFSAT and n = |§b|}

as the language of satisfiable CNF formulas padded by a suitable number of ones at the
end as determined by the function P, which we assume to be polynomial-time computable.

9b Prove that if P(n) = O(1), then SATp is NP-complete.

9c Prove that if P(n) = Q(n/logn), then SATp € P.

b

9d Give a complete description of the algorithm computing H(n) (as in the lecture notes) and
prove that H is well-defined in that the algorithm terminates and computes some specific
function.

9e Prove that not only does the algorithm terminate, but it can be made to run in time
polynomial in n. (Note that there are a number of issues needing clarification here, such
as, for instance, how to solve instances of CNFSAT efficiently enough.)

9f Prove that SATy € P if and only if H(n) = O(1).
9g Prove that if SATy ¢ P, then H(n) — oo as n — oc.

9h Assuming that P # NP, prove that SATy does not lie in P but also cannot be NP-complete.

Page 6 (of 6)

NDAA09007U Computability and Complexity e 2025/2026
Jakob Nordstrom and Amir Yehudayoff

