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1 Brief Introduction to Proof Complexity and Interpolation

For the purposes of this lecture we can define propositional proof complexity as the study of how to
certify unsatisfiability of formulas in conjunctive normal form (CNF). In what follows, let us write UNSAT
to denote the set/language of (syntactically well-formed) CNF formulas that do not have any satisfying
assignments. Unless otherwise specified, F' will denote a CNF formula, which is usually assumed to be
unsatisfiable.

Definition 1.1. A proof system for UNsAT is a deterministic algorithm P (F, ) that runs in time polynomial
in the size | F'| 4 |7| of the input and is such that:

o if F' € Unsar, then there exists a proof, or refutation, 7 such that P(F, ) = 1;
¢ if F' ¢ Unsar, then for any purported proof it holds that P(F, 7) = 0.

Definition 1.2. A proof system P is polynomially bounded if there exists a polynomial p such that for all
F € Unsar there is a proof 7 such that |x| < p(|F|) and P(F, ) = 1.

It is widely believed that no polynomially bounded proof systems for UNsAT exist, because this would
imply NP = coNP. The converse is also true in that if NP = coNP, then there exists a polynomially
bounded proof system for UnsaT (with a standard NP verifier acting as the proof checker P). Since
P = NP implies NP = coNP, we can conclude the following theorem.

Theorem 1.3 ([(CR79]). If there are no polynomially bounded proof systems for Unsart, then P £ NP.

One conceivable approach to prove P £ NP is to prove superpolynomial lower bounds for UnsAT for
stronger and stronger proof systems until we reach a deep enough understanding that makes it possible to
prove lower bounds for completely general proof systems for UnsaT. This is known in the proof complexity
community as Cook’s program.'

Cook’s program has not been very successful if measured in terms of progress towards its (very
ambitious) final goal, but it has generated a lot of beautiful (and sometimes mysterious) mathematics.
Today we will see an example of this in the form of an exponential lower bound on proof length for the
resolution proof system. Resolution was introduced in [Bla37] and started being studied more in earnest
in the context of satisfiablity algorithms in [DP60, DLL62, Rob65]. This proof system is arguably the
most well-studied proof system in proof complexity and is (still) the basis of state-of-the-art satisfiability
algorithm using a paradigm known as conflict-driven clause learning (CDCL) [BS97, MS99, MMZ"01].

Our plan for today is as follows:

* Define the resolution proof system.
* Show how short resolution proofs can be turned into small circuits via the interpolation technique.

* Use the lower bound for monotone circuits computing clique that we showed in the last couple of
lectures to obtain a lower bound on resolution proof size for a related family of CNF formulas.

We will only be able to scratch the surface of proof complexity. Some more reading on this topic can be
found in the survey article [BN21] or the book [Kral9].

'Actually, Cook’s program was not proposed by Steve Cook, at least not according to Steve Cook, but this name is well
established. Probably the first to refer to this approach towards proving P # NP was Peter Clote in his PhD thesis.
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2 Resolution

The resolution proof system starts with the clauses of an unsatisfiable CNF formula F' and iteratively
derives new clauses until an explicit contradiction is reached. The formal definition is as follows.

Definition 2.1 (Resolution proof system). A resolution refutation w of an unsatisfiable CNF formula F’,
which we will often denote 7 : F'F L, is a sequence of clauses 7 = (D1, D2, ..., Dy_1, Dy) such that
Dy is the empty clause containing no literals, denoted L, and each clause D); is either

(a) an axiom clause D; € F', or

(b) aclause on the form D; = BV C derived from clauses D; = BV x and D, = C'V 7 for j, k < i by

the resolution rule B

BvC ’
where we say that B V C'is the resolvent over x of BV x and C' V 7.

We view clauses as sets of literals, so that there is no repetition and order is immaterial. Without loss
of generality, we will also assume that all clauses we encounter in resolution derivations are nontrivial in
that they do not contain both x and ¥ for any variable x. It is not hard to show that any trivial clauses can
always just be removed from a resolution derivation.

An important property for any proof system for Unsar is that it should be sound (i.e., should never
be able to refute a formula that in fact is satisfiable) and (refutationally) complete (i.e., should be able to
refute any unsatisfiable formula). Resolution is sound and refutationally complete.

Lemma 2.2. A CNF formula F is unsatisfiable if and only if there exists a resolution refutation of F.

Proof sketch. (<) Suppose there exists a satisfying assignment « to F, i.e., such that for every axiom
clause in F' the assignment « satisfies some literal in it. By induction over 7 = (D1, Dy, ..., Dr_1,Dy)
we conclude that o must satisfy some literal in every resolvent (this follows by a simple case analysis for
the resolution rule (2.1)). But this is a contradiction since there is no literal to be satisfied in the empty
clause L (this is why the empty clause is just another way of denoting contradiction).

(=) This direction is not hard, but requires an argument. It is left as an exercise. O

We can think of a resolution refutation as a list of clauses annotated with explanations for each clause
how it was obtained. This is illustrated in Figure 1a for the example CNF formula

F=xVyAN(@zVyVz)A@TVz)AEZVw)AEZVD). (2.2)

To every such refutation m we can also associate a directed acyclic graph (DAG) G in the following way.
Sources of the DAG are axioms, and the unique sink is the empty clause L.> Every node that is not a
source has indegree two, and is the resolvent of its two predecessors. See Figure 1b for the proof DAG
corresponding to the refutation in Figure 1a.

Given an unsatisfiable formula, the complexity measure we care most about is the length of refuting it
in resolution. The length of a refutation 7 is the number of clauses in it (so the length of the refutation
in Figure la is 10), and is denoted L(). The length of refuting F' is the length of a shortest refutation
of I, and is denoted L (F F_L). We will sometimes drop the subscript and write just L(F' - L) if it is
clear from context that we are looking at resolution refutations.

A more general measure that can be defined in any proof system is the size of a refutation, measured
as the total number of symbols in it. When defining size in proof complexity, we tend to be somewhat
relaxed, however, in that we do not care too much about a linear factor more or less—what we are really
interested in is whether the size is polynomial or superpolynomial. Since every clause can have at most
linear size, the length and size measures for resolution differ by at most a linear factor, and in fact in the

2Strictly speaking, the DAG could have several sinks, but if so this means that the resolution refutation contains redundant
clauses that can be removed. Therefore, we can assume without loss of generality that the sink is unique.
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1. TVy Axiom

2. rVyVz Axiom

3. TVz Axiom
4. yvz Axiom
5. yvz Axiom
6. z Res(4, 5)
7. T Res(3,6)
8. VY Res(2, 6)
9. x Res(1, 8)
10. € Res(7,9)
(a) Resolution refutation as an annotated list. (b) Resolution refutation as a DAG.

Figure 1: Resolution refutation for the CNF formula in (2.2).

literature the size of a resolution refutation is usually defined to simply be the length. There are other
proof systems where the distinction between length and size is more important, however. In addition to
length/size, other complexity measures of interest for resolution are, for instance, clause space, which is
the number of clauses needed in memory while carrying out a refutation, and width, which is the size of
the largest clause in the refutation, but in this lecture we will only care about length.

3 Circuits

Just to make sure we are on the same page, let us recall what we mean by a circuit.

Definition 3.1 (Circuit). A circuit is a directed acyclic graph (DAG). It has n sources, which are nodes
labelled by variable inputs, and a unique sink without outgoing edges. All non-source vertices are labelled
by one of a fixed set of Boolean functions, and are often referred to as gates. Typically we require the
fan-in, which is just another name for the in-degree of a vertex, to be at most 2. The standard gates are
A (AND) with fan-in 2, V (OR) with fan-in 2, and — (NOT) with fan-in 1. A circuit C' can be thought of as
a Boolean function fc : {0,1}" — {0, 1}, where the source vertices are the input values, every non-source
vertex computes the function it is labelled with on the values provided by its immediate predecessors, and
the output of the function is the value computed at the sink. The size of a circuit is the total number of
vertices in the DAG.

For x,y € {0,1}" we write z < y if for all i € [n] it holds that z; < y;. A Boolean function
f:{0,1}" — {0,1} is monotone if © < y implies that f(z) < f(y). Equivalently, a function f is
monotone if flipping an input bit from 0 to 1 can never flip f from 1 to 0.

Fact 3.2. A Boolean function f : {0,1}" — {0, 1}" can be computed by a monotone circuit if and only if
it is monotone.

For a family of functions { f,, : {0,1}" — {0,1}}7°; we can study the sizes of the smallest circuits
computing these functions. This field of research is known as circuit complexity and is another line of
attack for proving P # NP (by trying to show something stronger, namely that NP cannot be decided
by polynomial-size circuits, or in computational complexity notation that NP C P/poly). Just as proof
complexity, this approach has not been terribly successful at reaching its ultimate goal, but there have
been many results for restricted subclasses of circuits such as monotone circuits.
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4 Interpolation and Clique-Colouring Formulas

There are several different techniques for proving lower bounds in proof complexity. Today we want to talk
about one of the most powerful ones, namely the interpolation method introduced by Krajicek [Kra94]
and used by Pudldk [Pud97] to establish his celebrated lower bound for formulas talking about cliques in
and colouring of graphs.

Pudlék focused on cutting planes [CCT87], a proof system that is exponentially stronger than resolution
and much less well understood. In order to illustrate the interpolation method we will do a simpler version
of his proof that applies to the resolution proof system. This will makes our lives a little bit easier, but
will still illustrate the key ideas in this method. We now proceed to give a formal description of the
clique-colouring formulas for which we want to prove lower bounds.

The clique-colouring formulas are unsatisfiable CNF formulas encoding the contradictory claim
that there exist undirected graphs G = (V, E) on n = |V| vertices which have an m-clique but are
also (m — 1)-colourable. The encoding uses sets of Boolean variables p = {p; ; | 1 < i < j < n},
q={qr;| ke€[m],ien]},andr = {r;, | i € [n], £ € [m — 1]}, which are intended to be interpreted
as follows:

* p; ; indicates whether the edge (¢, j) is present in G’ or not (where we enforce i < j since the graph
is undirected);

* g, indicates whether the vertex 7 in G is the kth member of the m-clique;
* r; ¢ indicates whether the vertex 4 in G has colour ¢.
The clique-colouring formula consists of the following clauses:

« for each k € [m], some vertex in G is the kth member of the clique:

V ki (4.1a)

i€[n]

for all k, k" € [m], k # K/, i € [n], clique vertices have unique member numbers:

T Vs s (4.1b)

forall k, k" € [m], k # k', 4,7 € [n], i < j, the clique members are connected by edges:
p’i,j V qk,i V qk",j s (41C)
* for each ¢ € [n], vertex ¢ gets assigned some colour:

\ e, (4.1d)

Le[m—1]
e forall ¢ € [m — 1},4,j € [n], 7 < j, neighbouring vertices have distinct colours:
ﬁi,j V ?Lg V ?]j . (416)

We observe for later use that the clauses in the clique-colouring formula can be split into two parts
sharing only the variables p encoding the edges of the graph. That is, it can be written as A(p, q) A B(p, r)
for A(p, q) being the conjunction of the clauses (4.1a)—(4.1c) and B(p, r) being the conjunction of the
clauses (4.1d)—(4.1e), where the sets of variables p, q, r are disjoint.

Given a partial truth value assignment, or restriction, p to the variables Vars(F') of a CNF for-
mula F', we write F'[, for the new formula obtained by assigning variable values according to p and
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then simplifying F' by removing satisfied clauses and falsified literals. For example, for the formula
F=(xVy) AN(ZV=z)A(yVZ)and restriction p = {z — 0} = {Z} we obtain F'[, = (z V y) A Z.

Suppose we have an unsatisfiable CNF formula on the form A(p, q) A B(p, r) for disjoint variable
sets p, g, r as above (which could be a clique-colouring formula or some other formula). Notice that
if we plug in some assignment p to p, we get the conjunction of two formulas A(p,q)[, = A’(q) and
B(p,r)[, = B'(r) over disjoint sets of variables q and r. Since the original formula was unsatisfiable, at
least one of these restricted subformulas must be unsatisfiable.

We say that a Boolean circuit I(p) is an interpolant for CNF formula A(p, q) A B(p, r) with disjoint
sets of variables p, q, r if for every assignment p to the variables p it holds that I(p) = 0 implies that A[,
is unsatisfiable and I(p) = 1 implies that B[, is unsatisfiable. In case both subformulas are unsatisfiable
the interpolant is free to choose whichever subformula it likes best (but the function has to be well-defined,
so it has to make a choice). Note that such an interpolant always exists by definition—we can define
a function I(p) that evaluates to 0 whenever A[, is unsatisfiable and takes the value 1 otherwise, and
this is a well-defined mathematical function that can be computed by some circuit—but the interpolating
circuit might be quite large. We are interested in when the interpolant can be written as a small (i.e.,
polynomial-size) Boolean circuit. It turns out this is possible if the formula A(p, q) A B(p, r) has a short
resolution refutation! (This is not obvious, and indeed we will have to spend quite some time on proving
this.) Flipping this implication around, in the other direction this means that interpolants can be used to
obtain proof complexity lower bounds from circuit complexity lower bounds.

This suggests the following strategy for proving lower bounds on refutation length:

* Start with a formula A(p, q) A B(p,r).

¢ Assume, towards contradiction, that the formula has a short resolution refutation.

* Deduce that there exist a small interpolating circuit.

* Appeal to a(n already known) circuit complexity lower bound saying that no such circuit can exist.
* Contradiction! Hence there cannot exist any short resolution refutation.

Proof systems for which this strategy works are said to have feasible interpolation. Resolution has feasible
interpolation (as does cutting planes). We will use this fact to show that clique-colouring formulas are
hard for resolution.

5 Statement of Clique-Colouring Formula Lower Bound

In order to establish lower bounds on the refutation length of clique-colouring formulas, we will need the
following circuit complexity lower bound.

Theorem 5.1 ([Raz85, AB87]). Let an undirected graph G be represented by (g) bits encoding its edges

and non-edges. Then for m = © (%) there is no monotone circuit of size 2°V™) that can distinguish
the following two cases:

* G has an m-~clique.
* G is (m — 1)-colourable.

But what an interpolant I(p) for the clique-colouring formula does is exactly to distinguish the two
cases in Theorem 5.1. Since an interpolant determines which part of the formula is unsatisfiable for a
given assignment to the variables p encoding the graph, it can separate the cases when G has an m-clique
and when it is (m — 1)-colourable. What Theorem 5.1 says is that every monotone circuit computing such
an interpolant must have size exp (Q ( {3/77) )

Remark 5.2. The monotonicity assumption in Theorem 5.1 is very important. We do not have such strong
lower bounds for explicit functions for non-monotone circuits.
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In what follows, we will focusing on constructing an interpolant I(p) without caring too much about
the (crucial) fact that we want it to be a monotone circuit. Let us define the ternary selector function sel by

if x =0,
sel(x,y,2) = {'Z 1 (5.1)

We will build circuits with gates {A, V, sel}. It is not hard to see that sel can be implemented by a subcircuit
over {A, V, -} of constant size, so using sel is just a convenient shorthand. A more serious concern is that
sel is not a monotone function, but let us decide not to worry about this for now and take care of it at the
end of the lecture.

We can now state the theorem that is the main goal of this lecture.

Theorem 5.3 ([Pud97]). Suppose that A(p,q) A B(p,r) is an unsatisfiable CNF formula over disjoint
sets of variables p, q,r, and that there is a resolution refutation m : AN B & L in length L. Then the
following holds:

1. There is an interpolating circuit I(p) over gates {\,V,sel} of size O(L);
2. From m we can construct a resolution refutation

(a) ma: A(p,q) = LifI(p) =0, or
(b) g : B(p,x) - LifI(p) =1,

in both cases of length at most L;

3. If the p-variables occur only positively in A(p, q) or only negatively in B(p, ), then sel-gates can
be replaced by N\- and V-gates, yielding a monotone circuit of size O(L).

Here is the plan for the proof:

* Fixing the p-variables to take values as assigned by p, we will split the (restricted) clauses of 7 into
two derivations 74 from A(p, q) and 7 from B(p,r).

* At least one of 74 and wp will be assigned the final empty clause and will thus be a resolution
refutation of A(p, q) or B(p, r), respectively.

* We can build a circuit representing our choice of how to split the clauses in 7 that figures out whether
4 or T gets assigned the final clause, and hence which of the formulas A(p, q) and B(p,r) is
unsatisfiable.

By combining Theorem 5.3 with Theorem 5.1 we get a resolution lower bound for clique-colouring
formulas as follows.

Corollary 5.4. The clique colouring formulas (4.1a)—(4.1¢e) with m = @(\‘Vﬁ) require resolution refuta-
tions of length exp (Q(/n)).

6 Proof of Interpolation Theorem for Resolution

Suppose that A(p, q) A B(p, r) is an unsatisfiable CNF formula over disjoint sets of variables p, g, and r
(which, as noted above, is the case for the clique-colouring formula). Let 7 = (C1,...,CL) be any
resolution refutation of A(p,q) A B(p,r) and let p be any assignment to the p-variables. Let us first
prove part 2 of Theorem 5.3.
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6.1 Extracting a Resolution Refutation of One of the Subformulas

We start by making a pair of key definitions. For a fixed restriction p of the variables in p, we define a
q-clause to be a clause C over variables q that is in A(p, q) or is derivable from A(p, q). Similarly, an
r-clause is a clause C' over variables r which is a member of or is derivable from B(p,r). We will let
1 denote the trivial clause that is always satisfied, and we will consider 1 to be derivable from anything so
that it qualifies both as a g-clause and as an r-clause.

We will go trough the clauses in 7 = (C1,...,CL) in order and construct another sequence of
clauses T = (C’l, . C L) which will contain the two derivations w4 from A(p, q) and 75 from B(p, r)
mentioned above in our proof plan for Theorem 5.3. More precisely, from each C; in = we will obtain a
clause CN'Z satisfying the following properties:

1. @ is designated to be either a g-clause or r-clause as defined above, where we write type (CZ) =q
or type(C;) = r to denote the label chosen for C;.

2. ;=1 only if C;[, = 1, and if C; # 1 it holds that C; C G \{a,a|ac€p}.

3. With any C; = 1 we associate an axiom clause E; that is satisfied by an assignment p(a) = 1 for
some literal a € C; N E;, where we have E; € A(p,q) if type (CZ) = qand E; € B(p,r) if

type (51) =r.

The clauses C; that are mainly of interest to us are nontrivial clauses, but in general we can expect to
have a number of trivial clauses since the restriction p might satisfy a large portion of the clauses in the
formula. For such trivial clauses we can think of the clause F; in Property 3 as a justification axiom with
Justification literal a € C; N E; such that p(a) = 1 explaining why we chose the trivial clause 1 for 51
These justification axioms and literals will not be needed in our construction of the resolution refutation in
part 2 of Theorem 5.3, but will play an important role later when we prove part 3 about monotone circuits
in Section 6.3.

We construct C; for each C; € by forward induction over 7. Observe that this is sufficient to establish
part 2 of Theorem 5.3. To see this, note that when we reach the final clause C;, = 1 € 7, by Property 2
we will have that C L € CLl,=1,ie, C’L = 1. Furthermore, CL will be labelled as either a g-clause
or an r-clause by Property 1, meaning that it is derived from A(p, q) only or B(p, r) only, respectively. It
will be clear from the construction that follows below that the length of this derivation is at most L.

In the base case C; is an axiom. For such clauses we simply let a = Cjl,. If C; is part of A(p,q),
we label CN'Z as a g-clause, and if Cj; is from B(p,r), then 6’2 is an r-clause. Properties 1 and 2 are clearly
satisfied by definition. It is important to note that for many axiom clauses C; we might have C; =1, but
that does not violate Property 2. If 5, = Cjl, = 1, then we let E; = C; be the justification axiom, which
obviously fulfils the conditions in Property 3.

For the inductive step, suppose C; = C'V D was derived by applying the resolution rule

CVzx DVvzx
v D (6.1)
to two previous clauses C; = C Vz and C, = D V 7 for j,k < i. By induction, we have already

constructed C and C), and we know their types as q- or r-clauses. Also, if C = 1 and/or Cy, = 1,
then we have Justlﬁcatlon axioms F; and/or E, that are satisfied by p. We make a case analysis over the
variable x resolved over depending on whether z € p, x € q,orz € r.

Case 1 (w € p): If p(z) = 0, then we set C; = C; and let type(C;) = type(C;). Observe that if

[, 7 1, then we have C; C Cilp, € Cilp. If C; = C’ = 1, we copy the justification axiom also
and let E; = E;. Note that any justification literal a € C N E; (which cannot be z since p(z) = 0)

is present in C; as well. If instead p(x) = 1, then if C; [, 7 1 we have C~’k C Cklp € Cilp, s0 we
set C; = C and let C; inherit its type, and possibly its justification axiom E;, from Cy.
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With this construction we are guaranteed to maintain Properties 2 and 3. Property 1 holds since if
p(z) = 0, then by the inductive hypothesis we have that C; = C} is derivable from only A(p,q) or

only B(p,r) depending on its type, and if p(x) = 1 then the same holds for C; = C..

As noted above, it might well be that éj =1lor Ck = 1 (or both), but we do not care about this.
The case analysis based on the value of p(z) remains valid, and Properties 1 and 2 are preserved.

Case 2 (x € q): Here we divide the analysis into subcases depending on the types of 5]- and (Nl’k

* If exactly one of éj or C~’k is an r-clause, set @ to that r-clause. If both éj or C~Z’k are r-clauses,
arbitrarily pick one of them (say, the one with smallest index). Label C; as an r-clause, and
if C; = 1 let it inherit the justification clause from its chosen parent clause. Note that by
our inductive hypothesis C; constructed in this way will not contain any variable in q. Since
T € q is the only variable that disappears in the resolution step, this means that we preserve
Properties 2 and 3.

* Otherwise, if either C or C’k is a g-clause not containing any literal over x (which is true, for
instance, if one of C or Ck is a trivial clause 1 labelled by type q), let C equal that g-clause
and set type(C ) = @ (Again, if both C; or Cj, qualify, just arbitrarily pick one of them.)
Also, let C’ inherit the justification clause from its chosen parent if it is trivial.

* If none of the above cases apply, then we have two g-clauses 5]- = C~’]’ V z and 5’k = 5,; VT
which are both nontrivial (i.e., distinct from 1). Set C; to be the resolvent 5]’ V 5,2 of these two
clauses and let type (51) = q. (Note that this is the first time we actually used the resolution
rule to construct @-.)

By construction, 6’2 will not contain z, and it can be verified that we will only have C~’l =1if
Cil, = 1 (using again that x € q is the only variable that disappears in the resolution step, and
recalling that p does not assign values to any variables in q). Hence, Property 2 holds. Property 3
also holds, since no variable in p disappears in the resolution step. For Property 1, just observe
that if C; gets classified as an r-clause, then no resolution step is involved, and if the end result is a
g-clause obtained by resolution, then both premises are g-clauses derivable from A(p, q) and so
this holds also for their resolvent.

Case 3 (z € r): this case is analogous to the case © € g but exchanging the roles of r- and g-variables.
We leave the details to the reader.

As explained above, part 2 of Theorem 5.3 now follows by the induction principle.

6.2 Writing down the Interpolating Circuit

We proceed to prove part 1 of Theorem 5.3. We will use the construction in Section 6.1 with the labelling
of the clauses C; as g-clauses or r-clauses to build the desired interpolant /(p). Note that at the very end
of the process we label the final clause C7, as either a g-clause or an r-clause, and this tells us whether
A(p, q) or B(p,r) is unsatisfiable. All that we need to do is to build a circuit that performs the same kind
of classification of the clauses in the refutation until we know what type is assigned to C'r..

We will build this circuit I(p) using gates {V, A, sel} and constants {0,1}.> As we construct the
circuit we will associate the vertices v; in it with the clauses C; € 7. We will maintain the invariant that if
C; is labelled as a g-clause under some assignment p of p, then the value computed at v; in the circuit
on input p is 0, and if C; is labelled as an r-clause, then v; computes value 1. The output of the circuit,
which is the type of C, = L, will then tell us that A(p, q) is unsatisfiable if I(p) = 0 and that B(p, r) is
unsatisfiable if I(p) = 1. This is all that we need to show part 1 of the theorem.

3We did not have constants in Definition 3.1, but if this troubles us we can get rid of them in a postprocessing step by
propagating simplifications 0 Az = 0,1 Az = 2,0V 2 = x, and 1 V = 1 through the circuit until all constants have been
removed.
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More formally, as the blueprint for our circuit I (p) we will take the DAG representation G of the
resolution refutation 7. For every clause C; € 7 we will label the vertex v; in I(p) with a suitable gate
taking suitable inputs. As in Section 6.1, we argue by forward induction over 7 = (C1, ..., CL).

If C; is an axiom in A(p, q), we fix v; to the constant 0, otherwise if it belongs to B(p, r) we fix v; to 1.
Remember that we want to maintain the invariant that g-clauses correspond to vertices v; computing 0
and r-clauses correspond to vertices v; computing 1. So far, so good.

If C; was derived by resolution from C; = C'V x and C, = D V 7 for j, k < i, we have the same

kind of case analysis as in Section 6.1. Let us overload type (C’l) to denote the binary value of the type of
the clause as defined above, so that

type (C’z) =

_ {0 if C; is a g-clause, (6.2)

1 if 51 is a r-clause.
We now choose the gate for v; as follows.

Case 1 (x € p): Mark vertex v; with the selector function sel taking as inputs = and the outputs of v;
and v, (which by our inductive hypothesis compute type (C;) and type(C}), respectively). It is
straightforward to verify that the way the type of C; is determined in Section 6.1 is by computing

type (51) = sel(nlc7 type (C~'j), type (ék)) = sel(x,vj,vg) . (6.3)

Case 2 (x € q): Mark vertex v; with an OR-gate V taking v; and vy, as inputs. If at least one of éj or 5’19
has been classified as an r-clause, which by our inductive hypothesis means that either v; or vy,
computes the value 1, then @ gets classified as an r-clause, and otherwise it becomes a q-clause.
This is just another way of saying that type (@) = type (CN’j) V type (ék), which is exactly the
values that v; now computes.

Case 3 (x € r): Mark vertex v; with an AND-gate A taking inputs v; and vy,. This is (anti-)symmetric to
the case when = € q, and as in Section 6.1 we leave the details of this case to the reader.

6.3 Removing Selector Gates

We have constructed an interpolating circuit and have proven parts 1 and 2 of Theorem 5.3. To establish
part 3 we need to prove that if the p-variables occur only positively in A(p, q) or only negatively in B(p, r),
then we can change the circuit above slightly by replacing the sel-gates with small monotone subcircuits.
This will give us a monotone interpolating circuit.
Let as assume that the p-variables appear only positively in A(p, q). In this case we choose to replace
all occurrences of
sel(z,a,b) = (zVa) A (T VD) (6.4)

by the function
(xVa)Nb. (6.5)

What this means is that we replace sel-gates in (6.3), the only case where a non-monotone gate could be
introduced in /(p), with the computation

type (5’1) :(a: V type (CN’j)) A type (5%) . (6.6)

A closer study of the functions in (6.4) and (6.5) reveals that they only differ in that the monotone function
in (6.5) returns 0 instead of 1 on input (x, a,b) = (0, 1,0).

When does this happen in our proof? This is when we are in the first case in our case analysis, i.e., when
we have C; = C'V D derived from C; = C'V z and Cy, = D V7 for z € p such that p(z) = 0. Moreover,
5’j has been classified as an r-clause and C~’k as a g-clause under the current restriction p. According to
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our original case analysis we should have set C; = éj and classified C; as an r-clause. Instead, according
to (6.5) we set 6’1 = ék, which is a g-clause.

Why is this a problem? The clause 6’k does not contain € p by construction. Hence, if C~’k is
nontrivial, then Property 2 holds since z € p is the only variable that disappears in the resolution step. It
is also easy to see that Property 1 always holds by the inductive hypothesis when we copy a clause. What
is more problematic, though, is if we have a resolvent C; such that

Cil,=(CVD),#1 (6.7)

but have chosen 5}: = 1 since
Crl,=(DVZ),=1. (6.8)

If this is the case, then setting C; = 6~’k violates Property 2 in the definition of q- and r-clauses, since now
@ = 1 but C;[, # 1. Should this happen, the whole proof crashes and burns. Not good.

Let us analyse this worrying scenario more closely. If ék = 1, then by Property 3 in our construction
there is also a justification axiom clause FJ, satisfied by an assignment p(a) = 1 for some literal a € CyNEj,
where in addition £}, € A(p, q) since CN’k is a g-clause. In view of (6.7) and (6.8), the justification literal a
must satisfy a € (D V) \ (C'V D), i.e., we must have a = T satisfied by the assignment p(z) = 0. But
this means that the axiom clause Ej, € A(p, q) would need to contain the literal Z, and by assumption
variables x € p appear only positively in A(p, q). So we do not need to worry—this problematic scenario
never arises. Although the computation for v; in the monotone version of the circuit seems to make a
mistake for the input (z, a, b) = (0, 1,0), the previously constructed clause C}, is guaranteed to be nice
enough for the invariants to be preserved when we set @ = 5’k and type (6’,) = type (5k)

An analogous hack works if p-variables instead appear only negatively in B(p, r). We leave the details
to the reader. This concludes our proof of part 3 of Theorem 5.3. If we apply this theorem to the formulas
in (4.1a)—(4.1e) and combine it with Theorem 5.1, then we can deduce that for the clique-colouring
formulas for graphs over n vertices with m = © ( {‘/ﬁ) it holds that resolution needs refutations of length
exp(Q(n?)) for § = 1/8, just as claimed in Corollary 5.4.

In a future lecture, we will prove an analogous lower bound for the cutting planes proof system. To
do so will require us to lift the interpolation technique from Boolean circuits to real circuits, which are
circuits computing with arbitrary real numbers instead of just Boolean values {0, 1}. But enough for
today!
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