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1 Introduction

So far in the course we have investigated the proof systems resolution and polynomial calculus.
Resolution is a very well-studied proof system, and there are several techniques for proving lower

bounds. We mainly focused on

• Prosecutor-Defendant games,

• random restrictions, and

• size-width relations.

In some sense, these approaches are all variations on the same theme, but we do not want to spend time
now on elaborating on this and making the connections formal. For polynomial calculus, the menu of
options was much more limited. Although we used random restrictions to establish that low-degree proofs
could have maximal possible size, almost all the other size lower bounds we did for this proof system
boiled down to showing degree lower bounds and then using the size-degree relation.

Today we will start to study the cutting planes proof system, which is much less well understood. As a
case in point, for a long time there has essentially been only one technique for proving size lower bounds,
namely interpolation, which works by establishing a connection to circuit complexity. We acquainted
ourselves with interpolation early on in the course for resolution, but this was really intended as a warm-up
for what is about to follow now. In this lecture we will:

• Provide a formal definition of the cutting planes proof system and review some preliminaries.

• Refresh our memory regarding what interpolation is.

• Use interpolation to prove size lower bounds for cutting planes (except that as for resolution we will
not do the details of the circuit lower bound needed to obtain the final result).

In coming lectures, we will discuss a few more recent proof techniques that have been developed for the
cutting planes proof system.

2 Cutting Planes Definition and Preliminaries

The cutting planes proof system, introduced in [CCT87] to formalize the integer linear programming
algorithm in [Gom63, Chv73], allows geometric reasoning with linear inequalities with coefficients in Z.
As before, we think of “true” as 1 and “false” as 0, and translate a clause

C =
∨
x∈P

x ∨
∨
y∈N

y (2.1)

to the linear inequality ∑
x∈P

x+
∑
y∈N

(1− y) ≥ 1 (2.2)

which we standardize as ∑
x∈P

x−
∑
y∈N

y ≥ 1− |N | (2.3)
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by bringing all constant terms to the right of the inequality sign. For example, the clause x∨y∨z becomes
x+ y + (1− z) ≥ 1 or x+ y − z ≥ 0. Note that falsehood (the empty clause) simply translates to 0 ≥ 1,
and deriving this inequality will be how we prove the falsity of a CNF formula.

As a side note, it makes perfect sense to consider cutting planes applied to general systems of linear
inequalities with integer coefficients, but we will mostly focus on applying cutting planes to CNF formulas
translated into inequalities as explained above.

The derivation rules in cutting planes as it is usually derived in the proof complexity literature are

Variable axioms
xi ≥ 0

and −xi ≥ −1
(2.4a)

Addition
∑

i aixi ≥ A
∑

i bixi ≥ B∑
i (ai + bi)xi ≥ A+B

(2.4b)

Multiplication
∑

i aixi ≥ A∑
i caixi ≥ cA

(c ∈ N+) (2.4c)

Division
∑

i caixi ≥ A∑
i aixi ≥ ⌈A/c⌉

(c ∈ N+) (2.4d)

where ai, bi, c, A, and B are all integers and in addition c is positive (as noted above). We want to highlight
that in the division rule (2.4d) we can divide with the common factor c on the left and then divide and
round up the constant term on the right to the closest integer, since we know that we are only interested in
0–1-valued solutions. This division rule is where the power of cutting planes lies.

The division rule is modelling what is referred to as Chvátal-Gomory cuts in the operations research
literature. An alternative definition of division, which is closer to what is used in practice, is

General division
∑

i aixi ≥ A∑
i⌈ai/c⌉xi ≥ ⌈A/c⌉

(c ∈ N+) . (2.5)

To see that this rule is valid, note that
∑

i aixi ≥ A clearly implies that
∑

i
ai
c xi ≥

A
c , and this is only

strenghted by rounding up on the left-hand side to get
∑

i

⌈
ai
c

⌉
xi ≥ A

c . Since the left-hand side is integral,
it must now hold that

∑
i

⌈
ai
c

⌉
xi ≥

⌈
A
c

⌉
. We will think of cutting planes as being defined with this more

general division rule when convenient.
Sometimes it is also helpful to write the 0–1 integer linear inequalities in so-called normalized form

as a positive linear combination of literals
∑

i aiℓi ≥ A for ai, A ∈ N+, where the constant term A is
referred to as the degree of falsity (or just degree). In this setting, the clause C =

∨
x∈P x ∨

∨
y∈N y is

simply translated to ∑
x∈P

x+
∑
y∈N

y ≥ 1 (2.6)

saying that the sum of the literal in the clause is at least one. Normalized form is particularly useful when
cutting planes is used as the reasoning method in so-called pseudo-Boolean solvers, some of which use
the rule

Saturation
∑

i aiℓi ≥ A∑
imin(ai, A) · ℓi ≥ A

(2.7)

instead of division. The saturation rule says that no coefficient on the right need to be larger than the
degree of falsity. Note that this rule is only sound if coefficients are non-negative. Since we will focus
on theoretical aspects of the cutting planes proof system in our lectures, we will represent our 0–1 linear
inequalities in terms of linear combinations of variables unless stated otherwise.

The length of a cutting planes refutation is the total number of lines/inequalities in it, and the size
also sums the sizes of all coefficients (i.e., the bit size of representing them). The natural generalization
of clause space in resolution is to define cutting planes (line) space as the maximal number of linear
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inequalities needed in memory during a refutation, since every clause is translated into a linear inequality.
There is no useful analogue of the width measure for clauses known for cutting planes.

Clearly, cutting planes is sound. It is also implicationally complete—i.e., if a set of 0–1 linear
inequalities imply some other 0–1 linear inequality, then there is also a syntactic cutting planes derivation
of this fact—though we will not prove this now. For CNF formulas, which is the case we are interested in,
the fact that cutting planes is refutationally complete—i.e., can derive contradiction from any unsatisfiable
formula—follows from the next lemma.

Lemma 2.1 (Cutting planes efficiently simulates resolution). If a CNF formula F can be refuted in
resolution in length L and clause space s, then there is a cutting planes refutation (with general division)
in length O

(
L
)

and line space O(s).

Proof sketch. Cutting planes can simulate resolution efficiently by mimicking the resolution steps one by
one. We leave the details as an exercise.

This means that cutting planes has the same exponential worst-case upper bound on size as resolution.
Recall that a proof system P is said to be exponentially stronger than another proof system Q if P

performs at most polynomially worse on every input than Q but on some family of inputs Q requires
exponentially larger proofs than P .

Theorem 2.2 ([CCT87]). Cutting planes is exponentially stronger than resolution.

Proof sketch. By the observation above, cutting planes is never more than polynomially worse than
resolution on any input. To see that it is sometimes exponentially better, it suffices to show that the
pigeonhole principle formulas have polynomial-size refutations in cutting planes. In cutting planes we
can simply count and see that the number of pigeons exceeds the number of holes and from this obtain an
immediate contradiction. It is a good exercise to work out the details here to better understand cutting
planes.

To widen our horizons a bit, let us look at another example of formulas exponentially separating
resolution and cutting planes, namely the even colouring (EC) formulas constructed by Markström [Mar06]
and shown in Figure 1. These formulas are defined in terms of connected graphs G = (V,E) having an
Eulerian cycle, i.e., with all vertex degrees even. We identify the edges E with variables {xe | e ∈ E}
and write down constraints that edges should be labelled 0/1 in such a way that for every vertex v ∈ V the
number of 0-edges and 1-edges incident to v is equal. If the total number of edges in the graph is even (as
in Figure 1a), then this formula is satisfiable—just fix any Eulerian cycle and label every second edge 0
and 1, respectively. If the number of edges is odd, however, then cutting planes can derive and then sum
up the at-least-2 constraints in Figure 1c (the ones with positive coefficients) over all vertices to derive
2 ·

∑
e∈E(G) xe ≥ |E(G)| and then divide by 2 and round up to obtain

∑
e∈E(G) xe ≥ (|E(G)|+ 1)/2.

By instead summing up all at-most-2 constraints (the ones with negative coefficients) and dividing by 2
one obtains

∑
e∈E(G) xe ≤ (|E(G)| − 1)/2, and subtracting these two inequalities yields 0 ≥ 1. It is not

hard to show that the 0–1 linear encoding in in Figure 1c can be derived from Figure 1b.
Formalizing the reasoning in the above paragraph yields the following lemma, where the necessary

and sufficient condition for unsatisfiability is from [Mar06].

Lemma 2.3. Let G = (V,E) be an undirected graph with all vertex degrees even. Then the formula
EC (G) is unsatisfiable if and only if the number of edges |E| is odd, and tree-like cutting planes can
refute any unsatisfiable formula EC (G) efficiently.

For resolution, however, the even colouring formulas are hard for the right type of graphs G.

Theorem 2.4 ([AR22]). If G = (V,E) is a “well-connected enough” graph of large enough even degree
with |E| odd, then EC (G) is exponentially hard to refute in resolution (and also in polynomial calculus
over field of characteristic distinct from 2).
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(a) Eulerian graph.

(u ∨ w) ∧ (w ∨ x ∨ y)

∧ (u ∨ w) ∧ (w ∨ x ∨ z)

∧ (u ∨ z) ∧ (w ∨ y ∨ z)

∧ (u ∨ z) ∧ (x ∨ y ∨ z)

∧ (v ∨ x) ∧ (w ∨ x ∨ y)

∧ (v ∨ x) ∧ (w ∨ x ∨ z)

∧ (v ∨ y) ∧ (w ∨ y ∨ z)

∧ (v ∨ y) ∧ (x ∨ y ∨ z)

(b) Corresponding CNF formula.

u+ w ≥ 1

−u− w ≥ −1

u+ z ≥ 1

−u− z ≥ −1

v + x ≥ 1

−v − x ≥ −1

v + y ≥ 1

−v − y ≥ −1

x+ y + z + w ≥ 2

−x− y − z − w ≥ −2

(c) Pseudo-Boolean encoding.

Figure 1: Example of Markström’s even colouring (EC) formula (but for a satisfiable instance).

The bound obtained in [AR22] requires graph of very large (but constant) degree, and the lower bound
is exp(Ω(n/ log n)) instead of exp(Ω(n)). It seems like it should be possible to prove truly exponential
lower bounds by taking G to be a random 6-regular or 10-regular graph on n = 2m+ 1 vertices, so that
the number of edges is odd, and then use fairly standard proof complexity machinery as in [BW01], but
the lecturer is not aware of that anyone would have worked through the calculations (which might be a
good exercise) In any case, even colouring formulas provide another example, besides the pigeonhole
principles, that cutting planes is exponentially stronger than resolution.

3 Brief Interlude on Pseudo-Boolean Solving

THE TEXT BELOW IS BADLY OUT OF DATE AND WOULD BE GOOD TO UPDATE
An intriguing fact is that there are SAT solver that use cutting planes reasoning, so-called pseudo-

Boolean solvers, and instances like pigeonhole principle formulas and even colouring formulas are where
these solvers should shine in comparison to CDCL solvers based on resolution.1 For pigeonhole principle
formulas, pseudo-Boolean solvers do indeed perform very well, but although EC (G) is easy for cutting
planes, the solvers taking part in the pseudo-Boolean competitions still seem to take exponential time on
such formulas. It would be great to understand better why this is the case. . .

THE TEXT ABOVE IS BADLY OUT OF DATE AND WOULD BE GOOD TO UPDATE

4 Recap of Clique-Colouring Formulas and Interpolation

As already mentioned, cutting planes is a poorly understood proof system. The first, and for a long time
only, method for proving superpolynomial length on the lower bounds on length for cutting planes is
the interpolation method introduced by Krajı́ček [Kra94] and used by Pudlák [Pud97] to establish lower
bounds for formulas talking about cliques in and colouring of graphs.

Recall that the clique-colouring formulas formulas are unsatisfiable CNF formulas encoding the
contradictory claim that there exist undirected graphs G = (V,E) on n = |V | vertices that have an
m-clique but are also (m− 1)-colourable. The encoding uses the following Boolean variables:

1For this to be possible, though, it is important to make full use of the expressivity of linear inequalities and encode, for
instance, the even colouring formulas in so-called pseudo-Boolean form as in Figure 1c rather than as the CNF formula in
Figure 1b. Pseudo-Boolean solvers tend not to perform better than CDCL solvers when given CNF input, but explaining why is
outside the scope of this lecture.
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• pi,j , for i, j ∈ [n], i < j, representing the truth value of “there is an edge between vertices i and j;”

• qk,i, for i ∈ [n] and k ∈ [m] representing the truth value of “vertex i is the kth member of the
m-clique;” and

• ri,ℓ, for i ∈ [n] and ℓ ∈ [m− 1] representing the truth value of “vertex i is has colour ℓ.”

The clique-colouring formula consists of the following clauses (where we write (x1 ∧ · · · ∧ xm) → y to
denote the equivalent clause x1 ∨ · · · ∨ xm ∨ y to highlight that a clause on this form can be viewed as
encoding an implication):

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n k ∈ [m] (4.1a)
qk,i ∨ qk′,i i ∈ [n]; k, k′ ∈ [m], k ̸= k′ (4.1b)
(qk,i ∧ qk′,j) → pi,j i, j ∈ [n], i < j; k, k′ ∈ [m], k ̸= k′ (4.1c)
ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 i ∈ [n] (4.1d)
(ri,ℓ ∧ rj,ℓ) → pi,j i, j ∈ [n], i < j; ℓ ∈ [m− 1] (4.1e)

where (4.1a)–(4.1b) encodes that the graph has an m-clique and (4.1d)–(4.1e) that it is (m−1)-colourable.
We observe for later use that the clauses in the clique-colouring formula can be split into two parts

sharing only the variables p encoding the edges of the graph. That is, it can be written as A(p,q)∧B(p, r)
for A(p,q) being the conjunction of the clauses (4.1a)–(4.1c) and B(p, r) being the conjunction of the
clauses (4.1d)–(4.1e), where the sets of variables p,q, r are disjoint.

Recall that given a partial truth value assignment, or restriction, ρ to the variables Vars(F ) of a CNF
formula F , we write F↾ρ for the new formula obtained by assigning variable values according to ρ and
then simplifying F . To simplify, we remove satisfied clauses and falsified literals. For example, for the
formula F = (x∨y)∧ (x∨ z)∧ (y∨ z) and restriction ρ = {z 7→ 0} = {z} we obtain F↾ρ = (x∨y)∧x.

Suppose we have a an unsatisfiable CNF formula in the form A(p,q) ∧ B(p, r) as above (but not
necessarily the clique-colouring formula). Notice that when we plug in a particular assignment ρ to p
we get the conjunction of two formulas A(p,q)↾ρ = A′(q) and B(p, r)↾ρ = B′(r) on disjoint sets of
variables q and r. Since the original formula was unsatisfiable, at least one of these restricted subformulas
must be unsatisfiable.

We say that a Boolean circuit I(p) is an interpolant for CNF formula A(p,q) ∧B(p, r) with disjoint
sets of variables p,q, r if for every assignment ρ to the variables p it holds that I(ρ) = 0 implies that A↾ρ
is unsatisfiable and I(ρ) = 1 implies that B↾ρ is unsatisfiable. In case both subformulas are unsatisfiable
the interpolant is free to choose whichever subformula it likes best (but the function has to be well-defined,
so it has to make a choice). Note that such an interpolant always exists by definition—we can define a
function I(p) that evaluates to 0 whenever A↾ρ is unsatisfiable and takes the value 1 otherwise, and this is
a well-defined mathematical function that can be computed by some circuit—but the interpolating circuit
might be quite large. We are interested in when the interpolant can be written as a small (polynomial-size)
Boolean circuit. It turns out this is possible if the formula A(p,q) ∧ B(p, r) has a short refutation!
Flipping this implication around, in the other direction this means that interpolants can be used to obtain
proof complexity lower bounds from circuit complexity lower bounds.

This suggests the following strategy for proving lower bounds on refutation length:

• Start with a formula A(p,q) ∧B(p, r).

• Assume, towards contradiction, that the formula has a short refutation.

• Deduce then that there exist a small interpolating circuit.

• Appeal to a(n already known) circuit complexity lower bound saying no such circuit can exist.

• Contradiction! Hence no such short refutation can exist.

20-5



Proof systems for which this strategy works are said to have feasible interpolation. For the final step
to work and yield unconditional lower bounds it is important that the interpolating circuit is monotone,
because it is currently not known how to prove strong enough lower bounds for general, non-monotone,
circuits. This is referred to as monotone feasible interpolation. We saw in an earlier lecture that resolution
has monotone feasible interpolation, and today we will prove an analogous result for cutting planes.

To obtain the lower bounds for resolution, we used the following result in circuit complexity.

Theorem 4.1 ([Raz85, AB87]). Let an undirected graph G be represented by
(
n
2

)
bits encoding its edges

and non-edges. Then for m = Θ
(

4
√
n
)

there is no monotone circuit of size 2o(
√
m) that can distinguish

the following two cases:

• G has an m-clique.

• G is (m− 1)-colourable.

We observed that what an interpolant I(p) for the clique-colouring formula does is exactly to distinguish
the two cases in Theorem 4.1. Since an interpolant determines which part of the formula is unsatisfiable
for a given assignment to the variables p encoding the graph, it can separate the cases when G has an
m-clique and when it is (m − 1)-colourable. What Theorem 4.1 says is that every monotone circuit
computing such an interpolant must have size exp

(
Ω
(

8
√
n
))

.
To obtain lower bounds for cutting planes, we use the same overall proof strategy, but in order to

extract interpolating circuits from cutting planes refutations we have to use a more general class of real
circuits, which are circuits that compute with real numbers and have arbitrary real functions as gates. Our
goal for today is to show how to build small interpolants in the form of monotone real circuits from short
cutting planes refutations of clique-colouring formulas. After this, we will sketch the main ideas in the
proof that these formulas cannot have such small interpolating circuits, but due to time constraints we will
not do the full proof.

As already explained, when we want to refute a CNF formula in cutting planes we translate clauses
to inequalities by replacing connectives ∨ with addition and negated variables x with (1 − x). When
converting the clauses (4.1b) in clique-colouring formulas to inequalities, however, we can note that a set
of clauses {

xi ∨ xj
∣∣1 ≤ i < j ≤ s

}
, (4.2a)

which is translated to {
−xi − xj ≥ −1

∣∣1 ≤ i < j ≤ s
}
, (4.2b)

is just another way to encode the constraint

s∑
i=1

xi ≤ 1 , (4.2c)

and since (4.2c) can be written natively as just one linear constraint

s∑
i=1

−xi ≥ −1 (4.2d)

in the context of cutting planes (where we switched to negations just to keep the format
∑

i cixi ≥ K of
greater-than inequalities that we have adopted for cutting planes) it seems more natural to use the latter
encoding rather than a quadratic number of constraints as in (4.2b). For our purposes, it does not really
matter which form we use since one can derive (4.2b) from (4.2d) and vice-versa in polynomial length. In
one direction (the one we care about in order to get lower bounds for refutations of CNF formulas) this is
obvious—from

∑s
i=1−xi ≥ −1 one can derive −xi1 − xi2 ≥ −1 for any i1, i2 ∈ [s], i1 ̸= i2, by just

adding axioms xi ≥ 0 for all i ∈ [s] \ {i1, i2}; the other direction is also straightforward. This means that
superpolynomial length lower bounds for clique-colouring formulas using the encoding in (4.2d) imply

20-6



superpolynomial bounds for the encoding using (4.2b) and the other way round. In view of this, we will
define the clique-colouring formula in cutting planes as consisting of the inequalities

qk,1 + qk,2 + · · ·+ qk,n ≥ 1 k ∈ [m] (4.3a)
−q1,i − q2,i − · · · − qm,i ≥ −1 i ∈ [n] (4.3b)

pi,j − qk,i − qk′,j ≥ −1 i, j ∈ [n], i < j; k, k′ ∈ [m], k ̸= k′ (4.3c)
ri,1 + ri,2 + · · ·+ ri,m−1 ≥ 1 i ∈ [n] (4.3d)

−pi,j − ri,ℓ − rj,ℓ ≥ −2 i, j ∈ [n], i < j; ℓ ∈ [m− 1] (4.3e)

and prove a lower bound on the length of cutting planes derivations establishing that this set of linear
constraints is inconsistent.

5 Interpolation for Cutting Planes

Since lines in a cutting planes proofs consist of linear inequalities and the coefficients can be arbitrary
integers, we need a more general computational model than standard Boolean circuits when we want to
construct interpolants from cutting planes proofs.

Definition 5.1 (Real circuit [Pud97]). A real circuit C is a directed acyclic graph (DAG) with s sources,
which are vertices labelled by variable inputs, and a unique sink. Every non-source vertex v with fan-in dv
is labelled by a function fv : Rdv → R of arity matching the fan-in of the vertex, and we will also refer to
such vertices v as gates. The incoming edges from the predecessors of v are ordered in some fixed way, so
that the function fv labelling v is well-defined, and every gate v computes the value of the function fv
applied to the values provided by its predecessors. We require all vertices to have bounded fan-in O(1),
and although the exact bound is not too important in what follows we will insist on fan-in at most 2. The
output of the circuit C is the value computed by the sink vertex, and this defines a function fC : Rs → R
on the inputs in the natural way, which is the function computed by the circuit. The size of a circuit is the
total number of vertices in the DAG.

A real circuit is monotone if all gates in it compute non-decreasing functions. We say that a real circuit
computes a Boolean function if when restricted to inputs in {0, 1}s it produces an output in {0, 1} (but in
intermediate steps the circuit can still work with arbitrary real numbers).

Gates in a monotone real circuit can emulate Boolean gates such as ∧ and ∨ with for example max and
min, respectively, so monotone real circuits are at least as strong as monotone Boolean circuits. Are they
stronger, and if so how much? Well, all we know is that there exist functions computable by linear-size
real monotone circuits that require exponential-size monotone Boolean circuits, but we do not know of
any explicit example of such a function [Ros97].

We can now formally state the theorem we will prove today.

Theorem 5.2 ([Pud97]). Let π be a cutting planes refutation of the inequalities∑
p∈p

ci,pp+
∑
q∈q

ci,qq ≥ Di i ∈ I (5.1a)∑
p∈p

cj,pp+
∑
r∈r

cj,rr ≥ Dj j ∈ J (5.1b)

for disjoint sets of variables p, q, and r, and let w be the maximal number of p-variables that appear in
any of these inequalities. Then if all coefficients ci,p for i ∈ I are non-negative or if all coefficients cj,p for
j ∈ J are non-positive, it holds that the formula has an interpolant in the form of a monotone real circuit
of size at most w · L(π).

We will refer to inequalities (5.1a) as q-axioms and inequalities (5.1b) as r-axioms.
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As defined, the clique-colouring formula already gives us a natural partition p, q, and r of the variables.
Moreover, it is easy to see that if we partition the inequalities of the clique-colouring formula so that
(4.3a)–(4.3c) correspond to q-axioms and (4.3d)–(4.3e) correspond to r-axioms, then the conditions of
the theorem are satisfied. Since there is at most one p-variable in each inequality, we immediately get the
following corollary.

Corollary 5.3 ([Pud97]). Let π is a cutting planes proof refutation of the clique-colouring formula. Then
the formula has an interpolant in the form of a monotone real circuit of size at most L(π).

6 Proof of Cutting Planes Interpolation Theorem

We proceed to prove Theorem 5.2. Let π be a cutting planes refutation of a set of inequalities as in the
statement of the theorem and let ρ be an assignment to the p-variables.

Our plan is to split the refutation π↾ρ in to two derivations, one from restricted q-axioms and one from
restricted r-axioms, in such a way that at least one of these will be deriving contradiction. We will then
build an interpolating real circuit for the formula using one of these derivations and finally argue that this
can be done by a monotone circuit.

Consider the following generic cutting planes line∑
p∈p

cpp+
∑
q∈q

cqq +
∑
r∈r

crr ≥ D (6.1)

representing an inequality in the refutation π. When restricted by the assignment ρ, this inequality becomes∑
q∈q

cqq +
∑
r∈r

crr ≥ D −
∑
p∈p

cpρ(p) . (6.2)

In order to build two derivations, one from q-axioms and one from r-axioms, we will replace each such
line (6.2) in π↾ρ with two inequalities ∑

q∈q
cqq ≥ Dq (6.3a)

and ∑
r∈r

crr ≥ Dr , (6.3b)

where Dq and Dr are integers to be chosen appropriately as described next. Note that the sum of the
left-hand side of (6.3a) and the left-hand side of (6.3b) equals the left-hand side of (6.2). For the right-hand
sides, the choices of Dq and Dr will be such that the inequality

Dq +Dr ≥ D −
∑
p∈p

cpρ(p) (6.4)

holds. This will guarantee that (6.3a) and (6.3b) together imply (6.2).
In what follows, we refer to Dq (the constant term in the inequality only containing q-variables) as the

q-term, and similarly to Dr as the r-term.

6.1 Extracting a Cutting Planes Refutation of One of the Subformulas

We now describe how to build the two derivations, one from only restricted q-axioms and the other from
only restricted r-axioms, such that each of the derivations has length at most L(π), and at least one of the
derivations will be deriving contradiction.

The proof is by a forward induction over the cutting planes refutation π. We go through π line by
line, maintaining the invariant that for all lines seen so far written on the form (6.1) we have two split
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inequalities (6.3a) and (6.3b) that satisfy (6.4) and that can be obtained by two independent and valid
derivations, one from restricted q-axioms and the other from restricted r-axioms. Moreover every step
in π will correspond to at most one step in each of the new derivations, so the length of these derivations
will be bounded by the length of π.

Since the final inequality in π is 0 ≥ 1, the split inequalities will be 0 ≥ Dq and 0 ≥ Dr with Dq

and Dr satisfying Dq + Dr ≥ 1. Because Dq and Dr are integers, at least one of Dq and Dr must
be greater than or equal to 1. This implies that a contradiction has been derived from either restricted
q-axioms or restricted r-axioms.

Suppose that all lines so far satisfy the invariant. All we need to show is how to obtain the two split
inequalities for the next line while maintaining the invariant. We do so by a case analysis over the cutting
planes derivation rules:

Axioms The current line
∑

p∈p cpp+
∑

q∈q cqq+
∑

r∈r crr ≥ D is a q-axiom, an r-axiom or a variable
axiom (i.e., x ≥ 0 or −x ≥ −1 for some variable x).
Since none of the axioms contains both q- and r-variables we need only consider two cases. If the
axiom does not contain r-variables, then it holds that

∑
r∈r crr = 0 and we can set Dq = D −∑

p∈p cpρ(p) and Dr = 0. Note that the inequality with the r-term is 0 ≥ 0. If the axiom contains
r-variables, it does not contain q-variables and thus we can setDq = 0 andDr = D−

∑
p∈p cpρ(p).

In both cases it is clear thatDq andDr satisfy (6.4). Moreover, these are valid independent derivation
steps, since the split inequalities are either a restricted axiom or the trivial inequality 0 ≥ 0. Therefore
the invariant is maintained.

Addition The current line is obtained by adding two inequalities
∑

p∈p c
′
pp+

∑
q∈q c

′
qq+

∑
r∈r c

′
rr ≥ D′

and
∑

p∈p c
′′
pp+

∑
q∈q c

′′
qq +

∑
r∈r c

′′
rr ≥ D′′.

By the induction hypothesis, we have that the first (respectively, the second) of the above 0–1 linear
inequalities is associated to two split inequalities of the form (6.3a) and (6.3b) with q-term D′

q

(resp. D′′
q) and r-term D′

r (resp. D′′
r ), such that

D′
q +D′

r ≥ D′ −
∑
p∈p

c′pρ(p) (6.5a)

D′′
q +D′′

r ≥ D′′ −
∑
p∈p

c′′pρ(p) (6.5b)

hold. By adding the split inequalities separately, we obtain∑
q∈q c

′
qq ≥ D′

q

∑
q∈q c

′′
qq ≥ D′′

q∑
q∈q(c

′
q + c′′q )q ≥ D′

q +D′′
q

(6.6)

and ∑
r∈r c

′
rr ≥ D′

r

∑
r∈r c

′′
rr ≥ D′′

r∑
r∈r(c

′
r + c′′r)r ≥ D′

r +D′′
r

. (6.7)

Clearly these are valid derivation steps and, by adding (6.5a) and (6.5b) it is easy to see that the
invariant is maintained.

Multiplication The current line is obtained from multiplying
∑

p∈p c
′
pp+

∑
q∈q c

′
qq +

∑
r∈r c

′
rr ≥ D′

by the positive integer λ.
By the induction hypothesis, we have two split inequalities of the form (6.3a) and (6.3b) with
q-term D′

q and r-term D′
r, such that such that (6.4) holds. By multiplying each split inequality by λ

separately we get ∑
q∈q c

′
qq ≥ D′

q∑
q∈q(λc

′
q)q ≥ λD′

q

(6.8)
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and ∑
r∈r c

′
rr ≥ D′

r∑
r∈r(λc

′
r)r ≥ λD′

r

, (6.9)

and it is easy to see that the invariant is maintained.

Division The current line is obtained from dividing
∑

p∈p c
′
pp+

∑
q∈q c

′
qq +

∑
r∈r c

′
rr ≥ D′ by λ.

By the induction hypothesis, we have two split inequalities of the form (6.3a) and (6.3b) with q-term
D′

q and r-term D′
r, such that such that

D′
q +D′

r ≥ D′ −
∑
p∈p

c′pρ(p) (6.10)

holds. By dividing each split inequality by λ separately we get∑
q∈q c

′
qq ≥ D′

q∑
q∈q(c

′
q/λ)q ≥ ⌈D′

q/λ⌉
(6.11)

and ∑
r∈r c

′
rr ≥ D′

r∑
r∈r(c

′
r/λ)r ≥ ⌈D′

r/λ⌉
. (6.12)

Since the coefficients of the q- and the r-variables in the split inequalities are divisible by λ (the
original derivation in π was valid), these are valid applications of the division rule. Moreover,
by (6.10) we have that⌈

D′
q

λ

⌉
+

⌈
D′

r

λ

⌉
≥

⌈
D′

q +D′
r

λ

⌉
≥

⌈
D −

∑
p∈p c

′
pρ(p)

λ

⌉
=

⌈
D

λ

⌉
−
∑
p∈p

c′p
λ
ρ(p) (6.13)

and hence the invariant still holds. (One can note that if we would instead prefer to use general
division (2.7) here, this step would still go through).

This completes our goal to produce two independent derivation, one of 0 ≥ Dr from restricted
r-axioms and one of 0 ≥ Dq from restricted q-axioms, such that Dr +Dq ≥ 1.

6.2 Writing down the Interpolating Circuit

Our final goal is to build an interpolating circuit for the original formula, and not to produce two independent
derivations of the restricted formula. So how can these derivations help us to obtain an interpolant? Observe
that since Dr+Dq ≥ 1 it is enough for the circuit to compute either Dr or Dq in order to output the correct
answer, i.e., to output 1 if Dr ≥ 1 and 0 if Dq ≥ 1. Indeed, if, for example, the circuit computes Dr and
outputs 1 if Dr ≥ 1 and 0 otherwise, then the fact that Dr +Dq ≥ 1 guarantees that Dq ≥ 1 whenever
the circuit outputs 0. In the concrete case of the clique-colouring formulas in equations (4.3a)–(4.3e) what
this boils down to is that if the circuit outputs 1 the graph defined by ρ has no (m− 1)-colouring and if it
outputs 0 the graph has no m-clique.

Depending on whether p-variables appear only negatively in r-axioms or whether p-variables appear
only positively in q-axioms, we build a circuit from the derivation that we obtain from the r-axioms or
that from q-axioms. We assume here that p-variables appear only negatively in r-axioms and leave the
other case as an exercise to the reader (observing that it requires a slight modification in how we defined
the r- and q-terms for lines that are axioms, but this should become clear from the analysis below).

Let us see how to build a circuit based on the derivation we obtain from the r-axioms. The circuit has
a gate for every step in the derivation. Each gate receives as input one or two previously computed r-terms
and outputs the value of the r-term of the new line derived. For each step in the derivation that is not an
axiom, the circuit has a gate that either adds two inputs, or multiplies the input by a positive constant, or
divides the input by a positive constant (and rounds up). For axioms, the gate must compute the r-term
which is either 0 or D −

∑
cpρ(p). At the end we will also need a threshold gate that will output 1 if

Dr ≥ 1. Let us see each of these cases in more detail and it will be clear that all gates are monotone.
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Axioms with r-variables To compute the value of the r-term of such axioms (either r-axioms or variable
axioms for r-variables) we need a circuit that computes D −

∑
cpρ(p). By assumption, for all

axioms that contain r-variables it holds that the coefficients cp are non-positive. This means that we
can compute D −

∑
cp · ρ(p) = D +

∑
(−cp) · ρ(p) with a monotone circuit. Since there are at

most w p-variables in any axiom, this means that this subcircuit has at most w gates.

Axioms with no r-variables The value of the r-term in this case is 0, so we use the constant gate 0 (and
if we do not want constants in our circuits, it is easy to remove them in a postprocessing step).

Addition The value of the r-term is the sum of two r-terms, so we can use a binary addition gate to
compute this sum.

Multiplication The value of the r-term is multiplied by a positive constant, so we can use a unary
multiplication gate to compute the new value.

Division The value of the r-term is divided by a positive constant and rounded up, so we can use a unary
gate that computes this operation.

Output gate At the end if the r-term is at least 1, then the r-axioms are unsatisfiable and the circuit can
output 1. If the r-term is strictly less than 1, then the q-axioms are unsatisfiable and the circuit can
output 0. The output can be computed by using a unary threshold gate which outputs 1 if the input
is greater or equal to 1.

It is easy to see that all gates described above are monotone, so we can conclude that the circuit is
monotone. This completes the proof of Theorem 5.2.

7 Outline of Monotone Real Circuit Lower Bound

Now that we know how to build interpolating circuits from cutting planes refutations of clique-colouring
formulas, we want to show that monotone circuits computing interpolants for clique-colouring formulas
must have exponential size. Although we will not do present the full proof of this lower bound, let us state
the theorem and outline how the argument goes.

Theorem 7.1 ([Pud97]). Let C be a monotone real circuit that receives as input a Boolean vector of
length

(
n
2

)
encoding the edges of a graph on n vertices and let m =

⌊
1
8(n/ log n)

2/3
⌋
. If C outputs 1 on

all graphs that are not (m− 1)-colourable and 0 on all graphs that do not contain an m-clique, then C
must have size at least exp

(
nΩ(1)

)
.

One of the very few known techniques to prove circuit lower bounds is Razborov’s approximation
method [Raz85]. Razborov’s original method, which yields superpolynomial lower bounds for monotone
Boolean circuits, was later extended in [AB87] to obtain exponential lower bounds and generalized
in [Pud97] to capture monotone real circuits. Let us discuss the basic idea behind this method.

Let N =
(
n
2

)
. Given a monotone real circuit C that receives as input a string in {0, 1}N , we wish to

find some class of functions F ⊆ {f : {0, 1}N → R} such that:

• All dictator functions are in F , that is, for every i ∈ [N ], F contains the function which on
input (b1, b2, . . . , bN ) ∈ {0, 1}N outputs bi.

• For every gate in C, if it receives as inputs the output of two functions fi, fj ∈ F , then there exists
some f̃ ∈ F that closely approximates the output of the gate (i.e., f̃ errs—disagrees with the output
of the gate—only on a small fraction of the inputs).

• The output of C cannot be approximated within the class (i.e., there is no function in the class that
only errs—disagrees with the output of the circuit—on a small fraction of the inputs).
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Suppose we have such a class of functions F . Then we can argue that F contains functions that
compute the inputs to the bottom gates with no error, for every gate there is a function in F that introduces
very few new errors, but all functions in F make a huge amount of errors on the circuit output. From this
we can conclude that the circuit must have many gates.

What exactly do we mean by errors? To define this concept we introduce the notion of 1-inputs and
0-inputs. We say an input x ∈ {0, 1}N is a 1-input (or 0-input), if the circuit outputs 1 (or 0, respectively)
on input x. Given two functions f, f̃ : {0, 1}N → R, where we think of f̃ as approximating f , we define
to two types of errors:

• If x is a 1-input and f̃(x) < f(x), then we say x is a 1-error (of f̃ with respect to f ).

• If x is a 0-input and f̃(x) > f(x) then we say x is a 0-error (of f̃ with respect to f ).

Note that we only consider errors in one direction. The reason for this is that if we want a function f
that outputs zero on 0-inputs and one on 1-inputs, it is enough to have a function that is ≤ 0 on 0-inputs
and ≥ 1 on 1-inputs, since applying a monotone threshold gate would give us f . So in some sense, if
f̃(x) > f(x) for x a 1-input or f̃(x) < f(x) for x a 0-input, then f̃ is only “doing better”.

To define how much a function f̃ errors with respect to another function f , we could count errors
over all possible inputs, that is, measure errors over the uniform distribution over all inputs. However, the
approximation method for proving circuit lower bounds that we are describing allows us to choose any
distribution of inputs, whichever suits us best. Once we fix a distribution we must prove that the class of
functions F satisfy the properties we require for this particular distribution.

In our case, we will consider the uniform distribution over critical inputs. A 0-input x is critical if
flipping the value of any coordinate in x from 0 to 1 yields a 1-input; analogously, a 1-input x is critical if
flipping the value of any coordinate in x from 1 to 0 yields a 0-input. For the clique-colouring formula,
the critical inputs are graphs of two types: complete (m− 1)-partite graphs, because these are 0-inputs
but adding any edge will ruin the colouring property and change the answer from 0 to 1; and m-cliques
(i.e., graphs that contain an m-clique and all vertices not in the clique are isolated vertices), because these
are 1-inputs but removing any edge makes it (m− 1)-colourable.

Let us now sketch in more detail the proof of Theorem 7.1. One first proves that given a monotone real
circuit C that receives as input a string in {0, 1}N , there is a class of functions F ⊆ {f : {0, 1}N → R}
such that:

1. For every i ∈ [N ], the class contains a function which given input (b1, b2, . . . , bN ) ∈ {0, 1}N
outputs bi.

2. If f is the function computed by a gate inC when given as inputs the outputs of two functions fi, fj ∈
F , then there is a function f̃ ∈ F such that there is at most an exp(−nδ) fraction of critical 0-inputs
are 0-errors and of critical 1-inputs are 1-errors of f̃ with respect to f , for some δ > 0.

3. For any function f ∈ F , either f ≥ 1 on all critical inputs, or f < 1 on 2/9 fraction of cliques (that
is, of critical 1-inputs).

Let us see why the existence of such a class of functions would be enough to prove Theorem 7.1.
Item 1 implies that there are functions in F that approximate the input to the bottom gates of the circuit
with no error. From 2 we have that if there are functions in F that approximate the inputs to a gate, say
fi and fj , then there is a function in F that approximates the output of the gate making only a few more
errors than fi and fj . Finally, by 3 we can conclude that for all f ∈ F either f ≥ 1 for all critical inputs,
in which case f is far from approximating the circuit since it errs on all critical 0-inputs, or f < 1 for
2/9 fraction of cliques, in which case f errs on a large fraction of critical 1-inputs and is also far from
approximating the circuit. Together this implies that the circuit has many gates in order for the small errors
introduced to add up to the large error. To determine how many gates, we must consider two cases.

If f ≥ 1 on all critical inputs, then the circuit errs on all critical 0-inputs, so there must be at least
1
ϵ = exp

(
N δ′

)
gates. If f < 1 on 2/9 fraction of cliques, then there must be at least 2

9 ·
1
ϵ′ =

2
9 ·exp

(
N δ′′

)
gates. In both cases the circuit has exponentially many gates, so this concludes the proof.
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From Corollary 5.3 and Theorem 7.1 we immediately get the following corollary.

Corollary 7.2 ([Pud97]). Cutting planes refutations of the clique-colouring formula (4.3a)–(4.3e) for
m =

⌊
1
8(n/ log n)

2/3
⌋

require length exp
(
nΩ(1)

)
.

8 Summing up

In this lecture, we proved that from a short cutting planes refutation of the clique-colouring formula we can
construct a small interpolant in the form of a monotone real circuit for the clique-colouring formula. We
then sketched the argument (but did not provide a proof) that any such circuit must be of exponential size,
and this implies that the cutting planes refutation has exponential length. For the full proof of Theorem 7.1,
we will have to refer the reader to Pudlák’s paper [Pud97].
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