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What is a Proof?
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The Subject Matter of This Course

What is a proof?

Which (logical) statements have efficient proofs?

How can we find such proofs? (Is it even possible?)

What are good methods of reasoning about logical statements?

What are natural notions of “efficiency” of proofs? (size, complexity, et cetera)

How are these notions related?
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Today’s Lecture

More “theory-oriented” introduction to proof complexity

Some “teasers” for what to expect in coming lectures

Recap of resolution proof system

Proof that resolution cannot reason efficiently about the pigeonhole principle
(on the board)

Introductory slides might go slightly fast, but

everything will be online to allow recap
we will repeat everything more carefully when we need it later
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Propositional Proof Systems
Proof Systems and Computational Complexity

Propositional Proof Systems and Unsatisfiable CNF Formulas

The Notion of a Proof
Propositional Logic
Complexity of Proofs

So What Is a Proof?

Claim: 25957 is the product of two primes
True or false? What kind of proof would convince us?

“I told you so. Just factor and check it yourself!”
Not much of a proof

25957 ≡ 1 (mod 2) 25957 ≡ 0 (mod 101)
25957 ≡ 1 (mod 3) 25957 ≡ 1 (mod 103)
25957 ≡ 2 (mod 5)

...
... 25957 ≡ 0 (mod 257)

25957 ≡ 19 (mod 99)
...

OK, but maybe even a bit of overkill

“25957 = 101 · 257; check yourself that these are primes”

Key demand: A proof should be efficiently verifiable
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Propositional Proof Systems
Proof Systems and Computational Complexity

Propositional Proof Systems and Unsatisfiable CNF Formulas

The Notion of a Proof
Propositional Logic
Complexity of Proofs

Proof system

Proof system for a language L (adapted from Cook & Reckhow [CR79]):

Deterministic algorithm P(x, π) that runs in time polynomial in |x| and |π| such that

for all x ∈ L there is a string π (a proof) for which P(x, π) = 1

for all x ̸∈ L it holds for all strings π that P(x, π) = 0

Think of P as “proof checker”
Note that proof π can be very large compared to x
Only have to achieve polynomial time in |x|+ |π|

Propositional proof system: proof system for the language TAUT of all valid
propositional logic formulas (or tautologies)
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Propositional Proof Systems
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Propositional Proof Systems and Unsatisfiable CNF Formulas

The Notion of a Proof
Propositional Logic
Complexity of Proofs

Propositional Logic: Syntax

Set Vars of Boolean variables ranging over {0, 1} (false and true)

Logical connectives:

negation ¬
conjunction ∧
disjunction ∨
implication →
equivalence ↔

Set PROP of propositional logic formulas is smallest set X such that

x ∈ X for all propositional logic variables x ∈ Vars

if F,G ∈ X then
(
F ∧G

)
,
(
F ∨G

)
,
(
F → G

)
,
(
F ↔ G

)
∈ X

if F ∈ X then
(
¬F

)
∈ X
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Propositional Logic: Semantics

Let α denote a truth value assignment, i.e., α : Vars → {0, 1}

Extend α from variables to formulas by:

α(¬F ) = 1 if α(F ) = 0

α(F ∨G) = 1 unless α(F ) = α(G) = 0

α(F ∧G) = 1 if α(F ) = α(G) = 1

α(F → G) = 1 unless α(F ) = 1 and α(G) = 0

α(F ↔ G) = 1 if α(F ) = α(G)

We say that F is

satisfiable if there is an assignment α with α(F ) = 1

valid or tautological if all assignments satisfy F

falsifiable if there is an assignment α with α(F ) = 0

unsatisfiable or contradictory if all assignments falsify F
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Propositional Proof Systems
Proof Systems and Computational Complexity

Propositional Proof Systems and Unsatisfiable CNF Formulas

The Notion of a Proof
Propositional Logic
Complexity of Proofs

Example Propositional Proof System

Example (Truth table)

p q r (p ∧ (q ∨ r)) ↔ ((p ∧ q) ∨ (p ∧ r))

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Certainly polynomial-time checkable measured in “proof” size
Why does this not make us happy?
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Propositional Proof Systems
Proof Systems and Computational Complexity

Propositional Proof Systems and Unsatisfiable CNF Formulas

The Notion of a Proof
Propositional Logic
Complexity of Proofs

Proof System Complexity

Complexity cplx (P) of a proof system P:

Smallest g : N → N such that x ∈ L if and only if there is a proof π of size |π| ≤ g(|x|)
such that P(x, π) = 1

If a proof system is of polynomial complexity, it is said to be polynomially bounded or
p-bounded

Example (Truth table continued)

Truth table is a propositional proof system, but of exponential complexity!
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Propositional Proof Systems
Proof Systems and Computational Complexity

Propositional Proof Systems and Unsatisfiable CNF Formulas

Proofs and Computational Complexity
Satisfiability Algorithms and Efficient Proof Search
Power of Mathematics

Proof systems and P vs. NP

Theorem (Cook & Reckhow [CR79])

NP = coNP if and only if there exists a polynomially bounded propositional proof system

Proof sketch.

NP is exactly the set of languages with p-bounded proof systems.

(⇒) TAUT ∈ coNP since F is not a tautology iff ¬F ∈ Sat.
If NP = coNP, then TAUT ∈ NP has a p-bounded proof system by definition.

(⇐) Suppose there exists a p-bounded proof system. Then TAUT ∈ NP, and since
TAUT is complete for coNP it follows that NP = coNP.
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Proofs and Computational Complexity
Satisfiability Algorithms and Efficient Proof Search
Power of Mathematics

Polynomial Simulation

The conventional wisdom is that NP ̸= coNP
Seems that proof of this is light-years away
(Would imply P ̸= NP as a corollary)

Reason 1 for proof complexity: approach this distant goal by studying successively
stronger proof systems and relating their strengths

Definition (p-simulation)

P1 polynomially simulates, or p-simulates, P2 if there exists a polynomial-time computable
function f such that for all F ∈ TAUT it holds that P2(F, π) = 1 iff P1(F, f(π)) = 1

Weak p-simulation: cplx (P1) = (cplx (P2))
O(1) but we do not know explicit translation

function f from P2-proofs to P1-proofs
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Proofs and Computational Complexity
Satisfiability Algorithms and Efficient Proof Search
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Polynomial Equivalence

Definition (p-equivalence)

Two propositional proof systems P1 and P2 are polynomially equivalent, or p-equivalent,
if each proof system p-simulates the other

If P1 p-simulates P2 but P2 does not (even weakly) p-simulate P1, then P1 is strictly
stronger than P2

Lots of results proven relating strength of different proof systems
Will see some examples in this course
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Power of Mathematics

A Fundamental Theoretical Problem. . .

The constructive version of the problem:

Problem

Given a propositional logic formula F , can we decide efficiently whether is it true no
matter how we assign values to its variables?

TAUT: Fundamental problem in theoretical computer science ever since the discovery of
NP-completeness [Coo71, Lev73]

And significance realized much earlier — cf. Gödel’s famous letter to von Neumann
in 1956 (rjlipton.wordpress.com/the-gdel-letter)

These days recognized as one of the main challenges for all of mathematics — one of the
million dollar “Millennium Problems” of the Clay Mathematics Institute [Mil00]
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Problem

Given a propositional logic formula F , can we decide efficiently whether is it true no
matter how we assign values to its variables?

TAUT: Fundamental problem in theoretical computer science ever since the discovery of
NP-completeness [Coo71, Lev73]

And significance realized much earlier — cf. Gödel’s famous letter to von Neumann
in 1956 (rjlipton.wordpress.com/the-gdel-letter)

These days recognized as one of the main challenges for all of mathematics — one of the
million dollar “Millennium Problems” of the Clay Mathematics Institute [Mil00]
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. . . with Huge Practical Implications

All known algorithms run in exponential time in worst case

But enormous progress on applied computer programs last 30 years
(see, e.g., [BS97, MS99, MMZ+01, ES04, AS09, Bie10] or [BHvMW21] for more
comprehensive references)

These so-called SAT solvers are routinely deployed to solve large-scale real-world
problems with 100 000s or even 1 000 000s of variables

Used in, e.g., hardware verification, software testing, software package management,
artificial intelligence, cryptography, bioinformatics, operations research, railway
signalling systems, et cetera (and even in pure mathematics)

But we also know small example formulas with only hundreds of variables that trip
up even state-of-the-art SAT solvers
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Automated Theorem Proving or SAT Solving

Reason 2 for proof complexity: understand proof systems used for solving formulas
occurring in “real-world applications”

Approach:

Study proof systems used by SAT solvers

Model actual methods of reasoning used by SAT solvers as “refinements”
(subsystems) of these systems

Prove upper and lower bounds in these systems

Try to explain or predict theoretically what happens in practice

Interesting and (arguably) important questions
But messy reality is hard to model with clean mathematics. . .
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Proof Search Algorithms and Automatability

Proof search algorithm AP for propositional proof system P:
Deterministic algorithm with

input: formula F

output: P-proof π of F or report that F is falsifiable

Definition (Automatability)

P is automatable if there exists a proof search algorithm AP such that if F ∈ TAUT
then AP on input F outputs a P-proof of F in time polynomial in size of F plus size of a
smallest P-proof of F
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Short Proofs Seem Hard to Find (at Least in Theory)

Example (Truth table continued)

Truth table is (trivially) an automatable propositional proof system (but the proofs we
find are of exponential size, so this is not very exciting)

We want proof systems that are both

strong (i.e., have short proofs for all tautologies) and

automatable (i.e., we can find these short proofs efficiently)

Seems that this is not possible unless P = NP [AM20]

But can find proof search algorithms that work really well “in practice”
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Potential and Limitations of Mathematical Reasoning

Reason 3 for proof complexity: understand how deep / hard various mathematical
truths are

Look at logic encoding of various mathematical theorems (e.g., combinatorial
principles such as pigeonhole principle, least number principle, handshaking lemma,
et cetera)

Determine how strong proof systems are needed to provide efficient proofs

Tells us how powerful mathematical tools are needed for establishing such statements

Fascinating questions that are systematically explored in bounded arithmetic
Some of the results we will cover are tangentially related, but this is not our main focus
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Transforming Tautologies to Unsatisfiable CNF Formulas

Any propositional logic formula F can be converted to formula F ′ in conjunctive normal
form (CNF) such that

F ′ only linearly larger than F

F ′ unsatisfiable if and only if (“iff”) F tautology

Approach by Tseitin [Tse68]:

Introduce new variable xG for each subformula G
.
= H1 ◦H2 in F , ◦ ∈

{
∧,∨,→,↔

}
Translate G to set of disjunctive clauses Cl(G) which enforces that truth value of xG
is computed correctly given xH1 and xH2
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Sketch of Transformation

Two examples for ∨ and → (∧ and ↔ are analogous):

G ≡ H1 ∨H2 : Cl(G) :=
(
¬xG ∨ xH1 ∨ xH2

)
∧
(
xG ∨ ¬xH1

)
∧
(
xG ∨ ¬xH2

)
G ≡ H1 → H2 : Cl(G) :=

(
¬xG ∨ ¬xH1 ∨ xH2

)
∧
(
xG ∨ xH1

)
∧
(
xG ∨ ¬xH2

)
Finally, add clause ¬xF
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Proof Systems for Refuting Unsatisfiable CNFs

Easy to verify that constructed CNF formula F ′ is unsatisfiable iff F is a tautology

So any sound and complete proof system which produces refutations of formulas in
CNF can be used as a propositional proof system

From now on and for the rest of this course, we will focus exclusively on proof
systems for refuting CNF formulas

Warning:

Because of this duality, proof complexity terminology is slightly schizophrenic

Unsatisfiable formulas sometimes referred to as “tautologies” in the literature

We won’t go quite that far. . .

But throughout the course “proof” and “refutation” will be synonyms
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Sequential Proof Systems

Proof system could be any polynomial-time computable predicate. . .
But often natural to view proof as sequence of derivation steps

More formally, a proof system P is sequential if a proof π in P is a

sequence of lines π = {L1, . . . , Lτ}
of some prescribed syntactic form (depending on the proof system in question)

where each line is derived from previous lines by one of a finite set of allowed
inference rules

We will mostly study sequential proof systems in this course
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The Resolution Proof System

Resolution:

Most well-studied proof system in all of proof complexity

Originally described by Blake [Bla37]

Used in the context of SAT solving [DP60, DLL62, Rob65]

Still the basis of state-of-the-art SAT solvers

Lines in refutation are disjunctive clauses

Just one inference rule, the resolution rule:

B ∨ x C ∨ x

B ∨ C

B ∨ C is the resolvent of B ∨ x and C ∨ x
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Soundness and Completeness of Resolution

Resolution derivation π from CNF formula F :

Start with clauses in F

Interatively derive new clauses by resolution rule and add
Final clause in π is A ⇔ π is derivation of A (notation: π : F ⊢A)

Resolution is:

Sound If there is a resolution derivation π : F ⊢A then F ⊨ A
(easy to show)

Complete If F ⊨ A then there is a resolution derivation π : F ⊢A′ for some A′ ⊆ A
(not hard to prove, but we will skip this)

In particular:

F is unsatisfiable
⇕

∃ resolution refutation of F = derivation of unsatisfiable empty clause ⊥
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Example Resolution Refutation

Recap of set-up:

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Refutation/proof ends when empty clause ⊥ derived

Can represent refutation as

annotated list or

directed acyclic graph

Tree-like resolution if DAG is tree

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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Resolution Length and Size

Length = # clauses in resolution refutation (9 in our example)

Size = total # literals in refutation, strictly speaking

In practice, ignore linear factor and set size = length for resolution

Proof size/length is the most fundamental measure in proof complexity
Main complexity measure of interest in this course
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Resolution Space

Space = amount of memory needed when performing
refutation

Can be measured in different ways:

clause space

total space

Clause space at step t: # clauses at steps ≤ t used at
steps ≥ t
Total space at step t: Count also literals

Example: Line space at step 7
Total space at step 7 is 9

Space of refutation: Max over all steps
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Refutation Size and Space

For any unsatisfiable CNF formula F and any proof system P:

Size of refuting F = size of smallest P-refutation of F
Clause space of refuting F = max # lines in memory in most

space-efficient P-refutation of F
Total space of refuting F = max # literals in memory in most

space-efficient P-refutation of F

Interesting to study:

size bounds (≈ SAT solver running time)

space bounds (≈ SAT solver memory usage)

size-space trade-offs (because solvers aggressively minimize both)
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How to Prove Size/Length Lower Bounds

Find suitable family of unsatisfiable CNF formulas with size scaling polynomially

Show that smallest possible refutations in proof system P of these formulas scale
superpolynomially or even exponentially

How to prove this? Have to establish that no short proofs exist, even totally crazy
ones!

In order to do so, need to understand formulas really well

So the formulas we know how to prove lower bounds for are mostly formulas that
look very easy to humans

A bit of a paradox. . . Let’s now turn to the most famous formula family
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Pigeonhole Principle (PHP) Formulas

“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i goes into hole j”, i ∈ [n+ 1], j ∈ [n]

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n [every pigeon i gets a hole]

pi,j ∨ pi′,j [no hole j gets two pigeons i ̸= i′]

Can also add “functionality” and/or “onto” axioms

pi,j ∨ pi,j′ [no pigeon i gets two holes j ̸= j′]

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j [every hole j gets a pigeon]

All versions are hard for resolution [Hak85]
We will give a proof for the simplest PHP version following the exposition in [Pud00]
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