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The Subject Matter of This Course

What is a proof?

Which (logical) statements have efficient proofs?

@ How can we find such proofs? (lIs it even possible?)

@ What are good methods of reasoning about logical statements?

e What are natural notions of “efficiency” of proofs? (size, complexity, et cetera)

@ How are these notions related?
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Today's Lecture

More “theory-oriented” introduction to proof complexity

Some “teasers” for what to expect in coming lectures

Recap of resolution proof system

@ Proof that resolution cannot reason efficiently about the pigeonhole principle
(on the board)

Introductory slides might go slightly fast, but

e everything will be online to allow recap
o we will repeat everything more carefully when we need it later
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Propositional Proof Systems The Notion of a Proof
Propositi -
Complexi

So What Is a Proof?

Claim: 25957 is the product of two primes
True or false? What kind of proof would convince us?
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Propositional Proof Systems

So What Is a Proof?

Claim: 25957 is the product of two primes
True or false? What kind of proof would convince us?

@ "l told you so. Just factor and check it yourself!”
Not much of a proof
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Propositional Proof Systems Th
Pro
Cor

So What Is a Proof?

Claim: 25957 is the product of two primes
True or false? What kind of proof would convince us?

@ "l told you so. Just factor and check it yourself!”
Not much of a proof

@ 25957 =1 (mod2) 25957=0 (mod 101)
25057 =1 (mod3) 25957 =1 (mod 103)
25957 =2  (mod 5) :

: 25957 = 0 (mod 257)

25957 =19 (mod 99) :

OK, but maybe even a bit of overkill
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So What Is a Proof?

Claim: 25957 is the product of two primes
True or false? What kind of proof would convince us?

@ "l told you so. Just factor and check it yourself!”
Not much of a proof

@ 25957 =1 (mod2) 25957=0 (mod 101)
25057 =1 (mod3) 25957 =1 (mod 103)
25957 =2  (mod 5) :

: 25957 = 0 (mod 257)

25957 =19 (mod 99) :

OK, but maybe even a bit of overkill

@ "25957 = 101 - 257; check yourself that these are primes”
Key demand: A proof should be efficiently verifiable
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Propositional Proof Systems The Notion of a Proof
Pro i i

Proof system

Proof system for a language L (adapted from Cook & Reckhow [CR79]):

Deterministic algorithm P(z, 7) that runs in time polynomial in |z| and |7| such that
e for all z € L there is a string m (a proof) for which P(z,7) =1
e for all x & L it holds for all strings 7 that P(z,7) =0
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Propositional Proof Systems The Notion of a Proof
Pro i i

Proof system

Proof system for a language L (adapted from Cook & Reckhow [CR79]):

Deterministic algorithm P(z, 7) that runs in time polynomial in |z| and |7| such that
e for all z € L there is a string m (a proof) for which P(z,7) =1
e for all x & L it holds for all strings 7 that P(z,7) =0

Think of P as “proof checker”
Note that proof 7 can be very large compared to z
Only have to achieve polynomial time in |z| + |7|
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Propositional Proof Systems The Notion of a Proof
Pro i i

Proof system

Proof system for a language L (adapted from Cook & Reckhow [CR79]):

Deterministic algorithm P(z, 7) that runs in time polynomial in |z| and |7| such that
e for all z € L there is a string m (a proof) for which P(z,7) =1
e for all x & L it holds for all strings 7 that P(z,7) =0

Think of P as “proof checker”
Note that proof 7 can be very large compared to z
Only have to achieve polynomial time in |z| + |7|

Propositional proof system: proof system for the language TAUT of all valid
propositional logic formulas (or tautologies)
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Propositional Proof Systems The Notion of a Proof
Prop05|t|onal Loglc
Complexity

Propositional Logic: Syntax

Set Vars of Boolean variables ranging over {0, 1} (false and true)
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Propositional Proof Systems The n of
Propositional Logic
Complexity o

Propositional Logic: Syntax

Set Vars of Boolean variables ranging over {0, 1} (false and true)

Logical connectives:
@ negation —
conjunction A
disjunction Vv
implication —

equivalence <
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Propositional Proof Systems The Nc

Propositional Logic: Syntax

Set Vars of Boolean variables ranging over {0, 1} (false and true)

Logical connectives:
@ negation —
@ conjunction A
@ disjunction V
@ implication —

@ equivalence +

Set PROP of propositional logic formulas is smallest set X such that
@ x € X for all propositional logic variables = € Vars
o if F,G € X then (FAG),(FVG),(F—=G),(F+G)eX
o if F € X then (-F) € X

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 2 Nov 4, 2025 7/31



Propositional Proof Systems The Notion of a Proof
Prop05|t|onal Loglc
Complexity

Propositional Logic: Semantics

Let o denote a truth value assignment, i.e., a: Vars — {0,1}
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Propositional Proof Systems The Notion of f
Propositional Logic
Complexity of Proofs

Propositional Logic: Semantics

Let o denote a truth value assignment, i.e., a: Vars — {0,1}

Extend o from variables to formulas by:
o a(-F)=1ifa(F)=0

a(FVG) =1 unless o(F) = a(G) =0

a(FANG)=11if a(F) =a(G) =

a(F — G) =1 unless o(F) =1 and a(G) =0

a(F < G)=1if a(F) = o(G)
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Propositional Proof Systems The Notion of f
Propositional Logic
Complexity of Proofs

Propositional Logic: Semantics

Let o denote a truth value assignment, i.e., a: Vars — {0,1}

Extend o from variables to formulas by:
o a(-F)=1ifa(F)=0

a(FVG) =1 unless o(F) = a(G) =0

a(FANG)=11if a(F) =a(G) =

a(F — G) =1 unless o(F) =1 and a(G) =0

a(F < G)=1if a(F) = o(G)

We say that F'is
e satisfiable if there is an assignment a with a(F) =1
@ valid or tautological if all assignments satisfy F’
e falsifiable if there is an assignment a with a(F) =0
@ unsatisfiable or contradictory if all assignments falsify F’
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Propositional Proof Systems e on of a Proof
Propositional Logic
Complexity of Proofs

Example Propositional Proof System

Example (Truth table)

pla|r|A(gVr) < ((PAgV(PAT))
0/0]0 1
001 1
0/1]0 1
011 1
1]0/o0 1
1]0]1 1
1/1]0 1
1|11 1
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Propositional Proof Systems e on of a Proof
Propositional Logic
Complexity of Proofs

Example Propositional Proof System

Example (Truth table)

pla|r|A(gVr) < ((PAgV(PAT))
0/0]0 1
001 1
0/1]0 1
011 1
1]0/o0 1
1]0]1 1
1/1]0 1
1|11 1

Certainly polynomial-time checkable measured in “proof” size
Why does this not make us happy?
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Propositional Proof Systems

Complexity of Proofs

Proof System Complexity

Complexity eplz(P) of a proof system P:

Smallest g : N — N such that = € L if and only if there is a proof 7 of size |7| < g(|z|)
such that P(z,7) =1

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 2 Nov 4, 2025 10/31



Propositional Proof Systems
Pro -
Complexity of Proofs

Proof System Complexity

Complexity eplz(P) of a proof system P:

Smallest g : N — N such that = € L if and only if there is a proof 7 of size |7| < g(|z|)
such that P(z,7) =1

If a proof system is of polynomial complexity, it is said to be polynomially bounded or
p-bounded
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Propositional Proof Systems

Complexity of Proofs

Proof System Complexity

Complexity eplz(P) of a proof system P:

Smallest g : N — N such that = € L if and only if there is a proof 7 of size |7| < g(|z|)
such that P(z,7) =1

If a proof system is of polynomial complexity, it is said to be polynomially bounded or
p-bounded

Example (Truth table continued)

Truth table is a propositional proof system, but of exponential complexity!
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Proofs and Computational Complexity
Proof Systems and Computational Complexity tisfiability rithms and Efficient Proof Search

Proof systems and P vs. NP

Theorem (Cook & Reckhow [CR79])

NP = coNP if and only if there exists a polynomially bounded propositional proof system
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Proofs and Computational Complexity
Proof Systems and Computational Complexity sfiability Algorithms and Efficient Proof Search

Proof systems and P vs. NP

Theorem (Cook & Reckhow [CR79])
NP = coNP if and only if there exists a polynomially bounded propositional proof system

Proof sketch.
NP is exactly the set of languages with p-bounded proof systems.
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Proofs and Computational Complexity
Proof Systems and Computational Complexity Satisfi i ithms and Efficient Proof Search

Proof systems and P vs. NP

Theorem (Cook & Reckhow [CR79])

NP = coNP if and only if there exists a polynomially bounded propositional proof system

Proof sketch.
NP is exactly the set of languages with p-bounded proof systems.

(=) TAUT € coNP since F'is not a tautology iff =F € SAT.
If NP = coNP, then TAUT &€ NP has a p-bounded proof system by definition.
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tational Complexity
Proof Systems and Computational Complexity Sa B thms and Efficient Proof Search
tics

Proof systems and P vs. NP

Theorem (Cook & Reckhow [CR79])
NP = coNP if and only if there exists a polynomially bounded propositional proof system

Proof sketch.
NP is exactly the set of languages with p-bounded proof systems.

(=) TAUT € coNP since F'is not a tautology iff =F € SAT.
If NP = coNP, then TAUT &€ NP has a p-bounded proof system by definition.

(«=) Suppose there exists a p-bounded proof system. Then TAUT € NP, and since
TAUT is complete for coNP it follows that NP = coNP. []
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Proofs and Computational Complexity
Proof Systems and Computational Complexity lit thms and Efficient Proof Search

Polynomial Simulation

The conventional wisdom is that NP # coNP
Seems that proof of this is light-years away
(Would imply P # NP as a corollary)
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Proof Systems and Computational Complexity

Polynomial Simulation

The conventional wisdom is that NP # coNP
Seems that proof of this is light-years away
(Would imply P # NP as a corollary)

Reason 1 for proof complexity: approach this distant goal by studying successively
stronger proof systems and relating their strengths

Jakob Nordstrom (UCPH & LU)
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Proofs and Computational Complexity
Proof Systems and Computational Complexity S thms and Efficient Proof Search
P ics

Polynomial Simulation

The conventional wisdom is that NP # coNP

Seems that proof of this is light-years away
(Would imply P # NP as a corollary)

Reason 1 for proof complexity: approach this distant goal by studying successively
stronger proof systems and relating their strengths

Definition (p-simulation)

P1 polynomially simulates, or p-simulates, Ps if there exists a polynomial-time computable
function f such that for all F € TAUT it holds that Pa(F,w) = 1 iff P1(F, f(r)) =1
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Proofs and Computational Complexity
Proof Systems and Computational Complexity Satisfi i i and Efficient Proof Search

Polynomial Simulation

The conventional wisdom is that NP # coNP
Seems that proof of this is light-years away
(Would imply P # NP as a corollary)

Reason 1 for proof complexity: approach this distant goal by studying successively
stronger proof systems and relating their strengths

Definition (p-simulation)

P1 polynomially simulates, or p-simulates, Ps if there exists a polynomial-time computable
function f such that for all F € TAUT it holds that Pa(F,w) = 1 iff P1(F, f(r)) =1

Weak p-simulation: cplz(P1) = (eplz(P2))°) but we do not know explicit translation
function f from Ps-proofs to P;-proofs
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Proofs and Computational Complexity
Proof Systems and Computational Complexity lit thms and Efficient Proof Search

Polynomial Equivalence

Definition (p-equivalence)

Two propositional proof systems P; and Py are polynomially equivalent, or p-equivalent,
if each proof system p-simulates the other
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Proof Systems and Computational Complexity

Polynomial Equivalence

Definition (p-equivalence)

Two propositional proof systems P; and Py are polynomially equivalent, or p-equivalent,
if each proof system p-simulates the other

If P1 p-simulates Py but P, does not (even weakly) p-simulate Py, then Py is strictly
stronger than Ps
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Proof Systems and Computational Complexity

Polynomial Equivalence

Definition (p-equivalence)
Two propositional proof systems P; and Py are polynomially equivalent, or p-equivalent,
if each proof system p-simulates the other

If P1 p-simulates Py but P, does not (even weakly) p-simulate Py, then Py is strictly
stronger than Ps

Lots of results proven relating strength of different proof systems
Will see some examples in this course
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Proofs and Computational Complexity

Proof Systems and Computational Complexity Satisfiability Algorithms and Efficient Proof Search
P of Mathematics

A Fundamental Theoretical Problem. ..

The constructive version of the problem:

Problem

Given a propositional logic formula F', can we decide efficiently whether is it true no
matter how we assign values to its variables?

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 2 Nov 4, 2025 14/31


https://rjlipton.wordpress.com/the-gdel-letter/

[ 0 ational Complexity
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A Fundamental Theoretical Problem. ..

The constructive version of the problem:

Problem

Given a propositional logic formula F', can we decide efficiently whether is it true no
matter how we assign values to its variables?

TAUT: Fundamental problem in theoretical computer science ever since the discovery of
NP-completeness [Coo71, Lev73]
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A Fundamental Theoretical Problem. ..

The constructive version of the problem:

Problem

Given a propositional logic formula F', can we decide efficiently whether is it true no
matter how we assign values to its variables?

TAUT: Fundamental problem in theoretical computer science ever since the discovery of
NP-completeness [Coo71, Lev73]

And significance realized much earlier — cf. Godel's famous letter to von Neumann
in 1956 (rjlipton.wordpress.com/the-gdel-letter)
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Proofs and Computational Complexity

Proof Systems and Computational Complexity

A Fundamental Theoretical Problem. ..

The constructive version of the problem:

Problem

Given a propositional logic formula F', can we decide efficiently whether is it true no
matter how we assign values to its variables?

TAUT: Fundamental problem in theoretical computer science ever since the discovery of
NP-completeness [Coo71, Lev73]

And significance realized much earlier — cf. Godel's famous letter to von Neumann
in 1956 (rjlipton.wordpress.com/the-gdel-letter)

These days recognized as one of the main challenges for all of mathematics — one of the
million dollar “Millennium Problems” of the Clay Mathematics Institute [Mil00]
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Proofs and Computational Complexity
Proof Systems and Computational Complexity Satisfiability Algorithms and Efficient Proof Search
of Mathematics

.with Huge Practical Implications

All known algorithms run in exponential time in worst case

@ But enormous progress on applied computer programs last 30 years
(see, e.g., [BS97, MS99, MMZ*01, ES04, AS09, Biel0] or [BHVYMW?21] for more
comprehensive references)

@ These so-called SAT solvers are routinely deployed to solve large-scale real-world
problems with 100 000s or even 1 000 000s of variables

@ Used in, e.g., hardware verification, software testing, software package management,
artificial intelligence, cryptography, bioinformatics, operations research, railway
signalling systems, et cetera (and even in pure mathematics)

@ But we also know small example formulas with only hundreds of variables that trip
up even state-of-the-art SAT solvers
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Proofs and Computational Complexity
Proof Systems and Computational Complexity Satisfiability Algorithms and Efficient Proof Search
P of Mathematics

Automated Theorem Proving or SAT Solving

Reason 2 for proof complexity: understand proof systems used for solving formulas
occurring in “real-world applications”
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ational Complexity

hms and Efficient Proof Search

Reason 2 for proof complexity: understand proof systems used for solving formulas
occurring in “real-world applications”
Approach:

@ Study proof systems used by SAT solvers

@ Model actual methods of reasoning used by SAT solvers as “refinements”
(subsystems) of these systems

@ Prove upper and lower bounds in these systems

@ Try to explain or predict theoretically what happens in practice
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Proofs and Computational Complexity
Proof Systems and Computational Complexity

Automated Theorem Proving or SAT Solving

Reason 2 for proof complexity: understand proof systems used for solving formulas
occurring in “real-world applications”
Approach:

@ Study proof systems used by SAT solvers

@ Model actual methods of reasoning used by SAT solvers as “refinements”
(subsystems) of these systems

@ Prove upper and lower bounds in these systems

@ Try to explain or predict theoretically what happens in practice

Interesting and (arguably) important questions
But messy reality is hard to model with clean mathematics. ..
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Proofs and Computational Complexity
Proof Systems and Computational Complexity Satisfiability Algorithms and Efficient Proof Search
P of Mathematics

Proof Search Algorithms and Automatability

Proof search algorithm Ap for propositional proof system P:
Deterministic algorithm with

@ input: formula F

@ output: P-proof 7 of F or report that F' is falsifiable
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Proofs and Computational Complexity

Proof Systems and Computational Complexity i Algorithms and Efficient Proof Search
Mathematics

Proof Search Algorithms and Automatability

Proof search algorithm Ap for propositional proof system P:
Deterministic algorithm with

@ input: formula F
@ output: P-proof 7 of F or report that F' is falsifiable

Definition (Automatability)

‘P is automatable if there exists a proof search algorithm Ap such that if £/ € TAUT
then Ap on input F outputs a P-proof of F' in time polynomial in size of F' plus size of a
smallest P-proof of F
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Proofs and Computational Complexity
Proof Systems and Computational Complexity Satisfiability Algorithms and Efficient Proof Search
r of Mathema

Short Proofs Seem Hard to Find (at Least in Theory)

Example (Truth table continued)

Truth table is (trivially) an automatable propositional proof system (but the proofs we
find are of exponential size, so this is not very exciting)
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Proofs and Computational Complexity
Proof Systems and Computational Complexity Satisfiability Algorithms and Efficient Proof Search
Power of Mathematics

Short Proofs Seem Hard to Find (at Least in Theory)

Example (Truth table continued)

Truth table is (trivially) an automatable propositional proof system (but the proofs we
find are of exponential size, so this is not very exciting)

We want proof systems that are both
@ strong (i.e., have short proofs for all tautologies) and

@ automatable (i.e., we can find these short proofs efficiently)

Seems that this is not possible unless P = NP [AM20]

But can find proof search algorithms that work really well “in practice”
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al Complexity

Satis! ty hm d Efficient Proof Search

Proof Systems and Computational Complexity g
Power of Mathematics

Potential and Limitations of Mathematical Reasoning

Reason 3 for proof complexity: understand how deep / hard various mathematical

truths are

@ Look at logic encoding of various mathematical theorems (e.g., combinatorial
principles such as pigeonhole principle, least number principle, handshaking lemma,

et cetera)

@ Determine how strong proof systems are needed to provide efficient proofs

@ Tells us how powerful mathematical tools are needed for establishing such statements

Nov 4, 2025 19/31
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Proofs and Computational Complexity
Satisfiability ithms and Efficient Proof Search

Proof Systems and Computational Complexity
Power of Mathematics

Potential and Limitations of Mathematical Reasoning

Reason 3 for proof complexity: understand how deep / hard various mathematical

truths are

@ Look at logic encoding of various mathematical theorems (e.g., combinatorial
principles such as pigeonhole principle, least number principle, handshaking lemma,

et cetera)

@ Determine how strong proof systems are needed to provide efficient proofs

@ Tells us how powerful mathematical tools are needed for establishing such statements

Fascinating questions that are systematically explored in bounded arithmetic
Some of the results we will cover are tangentially related, but this is not our main focus
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R tional Proof S
Propositional Proof Systems and Unsatisfiable CNF Formulas olution and th ole Principle

Transforming Tautologies to Unsatisfiable CNF Formulas

Any propositional logic formula F' can be converted to formula F” in conjunctive normal
form (CNF) such that

e F’ only linearly larger than F
e F’ unsatisfiable if and only if (“iff") F' tautology
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Propositional Proof Systems and Unsatisfiable CNF Formulas

Transforming Tautologies to Unsatlsflable CNF Formulas

Any propositional logic formula F' can be converted to formula F” in conjunctive normal
form (CNF) such that

e F’ only linearly larger than F
e F’ unsatisfiable if and only if (“iff") F' tautology
Approach by Tseitin [Tse68]:
o Introduce new variable ¢ for each subformula G = Hi 0 Hy in F, 0 € {A,V,—, <}

@ Translate G to set of disjunctive clauses CI(G) which enforces that truth value of z¢
is computed correctly given g, and z g,
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Propositional Proof Systems and Unsatisfiable CNF Formulas

Sketch of Transformation

Two examples for V and — (A and <> are analogous):

G=H;V Hs: ClUG):= (-z¢ V zm, V zm,)
A (ac(; Vv —mcHl)
A (xG Vv —|$H2)

G=H,— Hy: Cl(G) = (—OJG V -z, V ."L‘HQ)
AN (l‘G V le)
AN (l‘G \Y —WL‘HQ)

o Finally, add clause —z
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Tseitin Tr rmation
Refutational Proof Systems
Propositional Proof Systems and Unsatisfiable CNF Formulas Resolution and the nhole Principle

Proof Systems for Refuting Unsatisfiable CNFs

e Easy to verify that constructed CNF formula F’ is unsatisfiable iff F' is a tautology

@ So any sound and complete proof system which produces refutations of formulas in
CNF can be used as a propositional proof system

@ From now on and for the rest of this course, we will focus exclusively on proof
systems for refuting CNF formulas
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Proof Systems for Refuting Unsatisfiable CNFs

e Easy to verify that constructed CNF formula F’ is unsatisfiable iff F' is a tautology

@ So any sound and complete proof system which produces refutations of formulas in
CNF can be used as a propositional proof system

@ From now on and for the rest of this course, we will focus exclusively on proof
systems for refuting CNF formulas

Warning:
@ Because of this duality, proof complexity terminology is slightly schizophrenic
@ Unsatisfiable formulas sometimes referred to as “tautologies” in the literature
@ We won't go quite that far. ..

@ But throughout the course “proof” and “refutation” will be synonyms
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Sequential Proof Systems

Proof system could be any polynomial-time computable predicate. ..
But often natural to view proof as sequence of derivation steps
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Sequential Proof Systems

Proof system could be any polynomial-time computable predicate. ..
But often natural to view proof as sequence of derivation steps
More formally, a proof system P is sequential if a proof 7 in P is a
@ sequence of lines m = {Lq,...,L;}
@ of some prescribed syntactic form (depending on the proof system in question)

@ where each line is derived from previous lines by one of a finite set of allowed
inference rules
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Sequential Proof Systems

Proof system could be any polynomial-time computable predicate. ..
But often natural to view proof as sequence of derivation steps
More formally, a proof system P is sequential if a proof 7 in P is a
@ sequence of lines m = {Lq,...,L;}
@ of some prescribed syntactic form (depending on the proof system in question)

@ where each line is derived from previous lines by one of a finite set of allowed
inference rules

We will mostly study sequential proof systems in this course
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The Resolution Proof System

Resolution:

(]

Most well-studied proof system in all of proof complexity
Originally described by Blake [Bla37]

Used in the context of SAT solving [DP60, DLL62, Rob65]
Still the basis of state-of-the-art SAT solvers
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The Resolution Proof System

Resolution:

(]

Most well-studied proof system in all of proof complexity
@ Originally described by Blake [Bla37]

@ Used in the context of SAT solving [DP60, DLL62, Rob65]
@ Still the basis of state-of-the-art SAT solvers

Lines in refutation are disjunctive clauses
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The Resolution Proof System

Resolution:
@ Most well-studied proof system in all of proof complexity
@ Originally described by Blake [Bla37]
@ Used in the context of SAT solving [DP60, DLL62, Rob65]
@ Still the basis of state-of-the-art SAT solvers

Lines in refutation are disjunctive clauses

Just one inference rule, the resolution rule:

Bvzy CVzT
BvC

BV C is the resolvent of BV and CVZT
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Soundness and Completeness of Resolution

Resolution derivation 7w from CNF formula F:
@ Start with clauses in F
@ Interatively derive new clauses by resolution rule and add
e Final clause in 7w is A < 7 is derivation of A (notation: 7 : F'F A)
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Soundness and Completeness of Resolution

Resolution derivation 7w from CNF formula F:
@ Start with clauses in F
@ Interatively derive new clauses by resolution rule and add
e Final clause in 7w is A < 7 is derivation of A (notation: 7 : F'F A)

Resolution is:
Sound If there is a resolution derivation 7w : FFF A then F'F A
(easy to show)
Complete If F'E A then there is a resolution derivation 7 : ' A’ for some A’ C A
(not hard to prove, but we will skip this)
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Soundness and Completeness of Resolution

Resolution derivation 7w from CNF formula F':
@ Start with clauses in F'
@ Interatively derive new clauses by resolution rule and add
e Final clause in 7w is A < 7 is derivation of A (notation: 7 : F'F A)
Resolution is:
Sound If there is a resolution derivation 7w : FFF A then F'F A
(easy to show)
Complete If F'E A then there is a resolution derivation 7 : ' A’ for some A’ C A
(not hard to prove, but we will skip this)

In particular:

F is unsatisfiable

)

3 resolution refutation of F' = derivation of unsatisfiable empty clause L
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Example Resolution Refutation

Recap of set-up:
o Goal: refute unsatisfiable CNF
e Start with clauses of formula (axioms)
@ Derive new clauses by resolution rule

CVzx DVzZ
CvD

@ Refutation/proof ends when empty clause L derived
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF _
] ] 2. rVyVz
e Start with clauses of formula (axioms)
@ Derive new clauses by resolution rule 3. TVz
CVxz DVE 4. yv=z
¢vD 5. TVE

@ Refutation/proof ends when empty clause L derived
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

Axiom

] ] 2. rVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom

CVz DVzZ 4. yvz Axiom

¢vD 5. TVZ Axiom
@ Refutation/proof ends when empty clause L derived 6. Vg Res(2, 4)

Can represent refutation as
n represen r-u ion 7 x Res(1,6)
@ annotated list or

e directed acyclic graph 8. z Res(3,5)
9. 1 Res(7,8)
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom
CVz Dvz 4. yvz Axiom
CvD 5. TVZ Axiom
@ Refutation/proof ends when empty clause L derived 6 Vg Res(2, 4)
Can represent refutation as
n represen r-u ion 7 x Res(1,6)
@ annotated list or
e directed acyclic graph 8 z Res(3,5)
(
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom

CVux DVzZT 4. yvz Axiom

¢vD 5. TVZ  Axiom
@ Refutation/proof ends when empty clause L derived 6. VY Res(2, 4)

Can represent refutation as
P _ 7 x Res(1, 6)
@ annotated list or
o directed acyclic graph 8 z Res(3,5)
(
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

Axiom

] ] 2. rVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom

CVzx DVvz® 4. yvz Axiom

cvD 5. TVZ Axiom
@ Refutation/proof ends when empty clause L derived 6 2V Res(2, 4)

Can represent refutation as
n represen r-u ion 7 x Res(1,6)
@ annotated list or

e directed acyclic graph 8. z Res(3,5)
9. 1 Res(7,8)
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Example Resolution Refutation

Recap of set-up: 1. zVy

@ Goal: refute unsatisfiable CNF _ .
] ] 2. rVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom

CVzx DVvz® 4. yvz Axiom

¢vD 5. TVZ  Axiom
@ Refutation/proof ends when empty clause L derived 6. VY Res(2, 4)

Can represent refutation as
P _ 7 x Res(1, 6)
@ annotated list or
o directed acyclic graph 8 z Res(3,5)
(
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

Axiom

] ] 2. rVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom

C\Vzx DVZE 4. yvz Axiom

¢vD 5. TVZ Axiom
@ Refutation/proof ends when empty clause L derived 6 2V Res(2, 4)

Can represent refutation as
n represen r-u ion 7. x Res(1,6)
@ annotated list or

e directed acyclic graph 8. z Res(3,5)
9. 1 Res(7,8)
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

Axiom

] ] 2. xrVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom

CVz DVzZ 4. yvz Axiom

¢vD 5. TVZ Axiom
@ Refutation/proof ends when empty clause L derived 6. Vg Res(2, 4)

Can represent refutation as
n represen r-u ion 7. x Res(1,6)
@ annotated list or

e directed acyclic graph 8. z Res(3,5)
9. 1 Res(7,8)

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 2 Nov 4, 2025 26/31



Tseitin Tr mation
Refutatior Systems
Propositional Proof Systems and Unsatisfiable CNF Formulas Resolution and the Pigeonhole Principle

Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

Axiom

] ] 2. rVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TV z Axiom

CVzx DVvz® 4. yvz Axiom

cvD 5.  TVEZ  Axiom
@ Refutation/proof ends when empty clause L derived 6 2V Res(2, 4)

Can represent refutation as
P _ 7 x Res(1, 6)
@ annotated list or
o directed acyclic graph 8 z Res(3,5)
(
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

Axiom

] ] 2. xrVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TV z Axiom

CVzx DVvz® 4. yvz Axiom

cvD 5.  TVEZ  Axiom
@ Refutation/proof ends when empty clause L derived 6 2V Res(2, 4)

Can represent refutation as
P _ 7 x Res(1, 6)
@ annotated list or
o directed acyclic graph 8 z Res(3,5)
(
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

Axiom

] ] 2. xrVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom

CVzx DVvz® 4. yvz Axiom

¢vD 5 TVZ Axiom
@ Refutation/proof ends when empty clause L derived 6 2V Res(2, 4)

Can represent refutation as
P _ 7. x Res(1, 6)
@ annotated list or

o directed acyclic graph 8. z Res(3,5)
9. 1 Res(7,8)
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

Axiom

] ] 2. xrVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom

CVzx DVvz® 4. yvz Axiom

¢vD 5. TVZ  Axiom
@ Refutation/proof ends when empty clause L derived 6. 2V Res(2, 4)

Can represent refutation as
i . 7. x Res(1,6)
@ annotated list or

o directed acyclic graph 8. z Res(3,5)
9. 1 Res(7,8)
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

Axiom

] ] 2. rVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom

CVzx DVvz® 4. yvz Axiom

¢vD 5. TVZ  Axiom
@ Refutation/proof ends when empty clause L derived 6. 2V Res(2, 4)

Can represent refutation as
i . 7. x Res(1,6)
@ annotated list or

o directed acyclic graph 8. z Res(3,5)
9. 1L Res(7,8)
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Example Resolution Refutation

Recap of set-up: 1. zVy
@ Goal: refute unsatisfiable CNF

Axiom

] ] 2. rVyVz  Axiom
e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule 3. TVz Axiom

CVzx DVvz® 4. yvz Axiom

¢vD 5 TVZ Axiom
@ Refutation/proof ends when empty clause L derived 6 2V Res(2, 4)

Can represent refutation as
P _ 7. x Res(1, 6)
@ annotated list or

o directed acyclic graph 8. z Res(3,5)
9. 1L Res(7,8)
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Example Resolution Refutation
Recap of set-up:

@ Goal: refute unsatisfiable CNF

e Start with clauses of formula (axioms)

@ Derive new clauses by resolution rule

CVzx DVzZ
CvD

@ Refutation/proof ends when empty clause L derived

Can represent refutation as
@ annotated list or

@ directed acyclic graph
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Example Resolution Refutation

Recap of set-up:
o Goal: refute unsatisfiable CNF
e Start with clauses of formula (axioms)
@ Derive new clauses by resolution rule

CVzx DVzZ
CvD

@ Refutation/proof ends when empty clause L derived

Can represent refutation as
@ annotated list or

@ directed acyclic graph

Tree-like resolution if DAG is tree
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Resolution Length and Size

Length = # clauses in resolution refutation (9 in our example)

Proof Complexity as a Computational Lens: Lecture 2



Refutational Proof Systems
Propositional Proof Systems and Unsatisfiable CNF Formulas Resolution and the Pigeonhole Principle

Resolution Length and Size

Length = # clauses in resolution refutation (9 in our example)

Size = total # literals in refutation, strictly speaking

Proof Complexity as a Computational Lens: Lecture 2
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Resolution Length and Size

Length = # clauses in resolution refutation (9 in our example)
Size = total # literals in refutation, strictly speaking

In practice, ignore linear factor and set size = length for resolution
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Resolution Length and Size

Length = # clauses in resolution refutation (9 in our example)
Size = total # literals in refutation, strictly speaking
In practice, ignore linear factor and set size = length for resolution

Proof size/length is the most fundamental measure in proof complexity
Main complexity measure of interest in this course
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Resolution Space

Space = amount of memory needed when performing

refutation 1. zVy Axiom

2. tVyVz Axiom

3. TVz Axiom

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 2



Tseitin Trans
Refutat Systems
Propositional Proof Systems and Unsatisfiable CNF Formulas Resolution and the Pigeonhole Principle

Resolution Space

Space = amount of memory needed when performing

refutation L. VY Axiom
Can be measured in different ways: 2. wVyVz  Axom
@ clause space 3. TVz Axiom
@ total space 4 TVZ Axiom
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Resolution Space

Space = amount of memory needed when performing

refutation 1. zVy Axiom

Can be measured in different ways: 2. TVyVz  Axiom

@ clause space 3. TVz Axiom
@ total space 4 TVZ Axiom
Clause space at step t: # clauses at steps < t used at 5. TVE Axiom
steps > t B
Total space at step t: Count also literals 6. VY Res(2,4)
7 x Res(1,6)
(3,5)
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Resolution Space

Space = amount of memory needed when performing

refutation 1. zVy Axiom

Can be measured in different ways: 2. TVyVz  Axiom

@ clause space 3. TVz Axiom
@ total space 4 TV E Axiom
Clause space at step ¢: # clauses at steps < ¢ used at 5. TVE Axiom
steps > t B
Total space at step ¢: Count also literals 6. VY Res(2,4)
Example: Line space at step 7 7 z Res(1,6)
(3,5)
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Resolution Space

Space = amount of memory needed when performing
refutation
Can be measured in different ways:

@ clause space

@ total space

Clause space at step ¢: # clauses at steps < ¢ used at
steps > t
Total space at step ¢: Count also literals

Example: Line space at step 7
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Resolution Space

Space = amount of memory needed when performing
refutation
Can be measured in different ways:

@ clause space

@ total space

Clause space at step ¢: # clauses at steps < ¢ used at
steps > t
Total space at step ¢: Count also literals

Example: Line space at step 7 is 5
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Resolution Space

Space = amount of memory needed when performing
refutation
Can be measured in different ways:

@ clause space

@ total space

Clause space at step ¢: # clauses at steps < ¢ used at
steps > t
Total space at step ¢: Count also literals

Example: Line space at step 7 is 5
Total space at step 7is 9
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Resolution Space

Space = amount of memory needed when performing
refutation
Can be measured in different ways:

@ clause space

@ total space

Clause space at step ¢: # clauses at steps < ¢ used at
steps > t
Total space at step ¢: Count also literals

Example: Line space at step 7 is 5
Total space at step 7is 9

Space of refutation: Max over all steps
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Refutation Size and Space

For any unsatisfiable CNF formula F' and any proof system P:

Size of refuting F = size of smallest P-refutation of F'

Clause space of refuting F' = max # lines in memory in most
space-efficient P-refutation of F'

Total space of refuting ' = max # literals in memory in most
space-efficient P-refutation of F'
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Refutation Size and Space

For any unsatisfiable CNF formula F' and any proof system P:

Size of refuting I = size of smallest P-refutation of F'

Clause space of refuting F' = max # lines in memory in most
space-efficient P-refutation of F'

Total space of refuting ' = max # literals in memory in most
space-efficient P-refutation of F'

Interesting to study:
@ size bounds (= SAT solver running time)
@ space bounds (= SAT solver memory usage)

@ size-space trade-offs (because solvers aggressively minimize both)
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How to Prove Size/Length Lower Bounds

@ Find suitable family of unsatisfiable CNF formulas with size scaling polynomially

@ Show that smallest possible refutations in proof system P of these formulas scale
superpolynomially or even exponentially

@ How to prove this? Have to establish that no short proofs exist, even totally crazy
ones!

@ In order to do so, need to understand formulas really well

@ So the formulas we know how to prove lower bounds for are mostly formulas that
look very easy to humans

A bit of a paradox...Let's now turn to the most famous formula family
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Pigeonhole Principle (PHP) Formulas

“n + 1 pigeons don't fit into n holes”

Variables p; ; = “pigeon i goes into hole j", i € [n+ 1], j € [n]
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Pigeonhole Principle (PHP) Formulas

“n + 1 pigeons don't fit into n holes”

Variables p; ; = “pigeon i goes into hole j", i € [n + 1], j € [n]
PiiVpi2V--Vpin [every pigeon i gets a hole]
Pij Vi [no hole j gets two pigeons i # i’

Can also add “functionality” and/or “onto” axioms

Di; VD [no pigeon i gets two holes j # ;']
P1,; Vp2,; VoV Pngi,; [every hole j gets a pigeon]
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Pigeonhole Principle (PHP) Formulas

“n + 1 pigeons don't fit into n holes”

Variables p; ; = “pigeon i goes into hole j", i € [n + 1], j € [n]
PiiVpi2V--Vpin [every pigeon i gets a hole]
Pij Vi [no hole j gets two pigeons i # i’

Can also add “functionality” and/or “onto” axioms

Di; VD [no pigeon i gets two holes j # ;']
P1,; Vp2,; VoV Pngi,; [every hole j gets a pigeon]

All versions are hard for resolution [Hak85]
We will give a proof for the simplest PHP version following the exposition in [Pud00]
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