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Proof Complexity Preliminaries

Recap: Configuration-Style Proofs

@ Proof system operates with formulas of some syntactic form

@ Proof/refutation is “presented on blackboard"

Derivation steps:
o Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
e Infer new lines by deductive rules of proof system
o Erase lines not currently needed (to save space on blackboard)

Refutation ends when (explicit) contradiction is derived
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Proof Complexity Preliminaries

Cutting Planes (CP)

Clauses interpreted as linear inequalities
Eg,zVyvz ~ z24+y+(1—-2)>21 ~ z+y—22>0

Proof system also works for any system of 0—1 linear inequalities with integer coefficients
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Proof Complexity Preliminaries
Previous Work
o s Lecture

Cutting Planes (CP)

Clauses interpreted as linear inequalities
Eg,zVyvz ~ z24+y+(1—-2)>21 ~ z+y—22>0

Proof system also works for any system of 0—1 linear inequalities with integer coefficients

. . . x> A
Variable axioms ————— Multiplication % ce Nt
0<z<l1 2 cag; > cA
Addition 2=2%%i 2 A_ 3 bizi > B Seaiz; > A
> (a;+b;)z; > A+B Division —= ceNF

>ax; > [Afc]

Goal: Derive 0 > 1 < formula/system of inequalities unsatisfiable
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Proof Complexity

Example: Cutting planes Refutation of Pigeonhole Principle

1. T11V T1,2
2. 121V Pigeonhole principle (PHP)
3. x31 Va3, “n 4 1 pigeons don't fit into n holes”
4, 11 VT . . . . o
bl 21 Variables x; ; = “pigeon % goes into hole j
5. f171 \/53,1
6. To1 V Tsa TitVxiaV---VTin every pigeon i gets a hole
7. TiaVTos Tij V Tir no hole j gets two pigeons i # i’
8. T1,2 V T3,2
9. T2,2V T3,2
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Proof Complexity Preliminaries
Previ
Tod ture

Example: Cutting planes Refutation of Pigeonhole Principle

1. zii4+x122>1
2. a1+ a22>1
3. x31+m32 21
4. —x11 — 21 > —1
5 —m11 —x31 > —1
6. —w21 — w31 > —1
7. —T12 —x22 > —1
8. —T12—x32 > —1
9. —xz22 —x32 > —1

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 4/25



1. zia+z122>1 History of derivation steps

2. x21+x22>1 Write down axiom 4: —x11 — 22,1 > —1
3. w31 +mT322>1

4. —x11 —x21 > —1

5 —x11 —x31 > —1

6. —x2,1 —x3,1 > —1

7. —T12 —T22 > —1

8. —x12 —x32 > —1

9. —x22 — 3,2 > —1

—x1,1 — 2,1 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1
3. w31 +wT32>1 Write down axiom 5: —x11 — 23,1 > —1
4 —x11 —x21 > —1
5. —x11 —x31 > —1
6. —x2,1 —x3,1 > —1
7. —T12 —T22 > —1
8. —x12 —x32 > —1
9. —x22 — 32 > —1
—Z1,1 — X2,1 > -1
—T1,1 —T31 > —1
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1. zia+z122>1 History of derivation steps

2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1
3. w31 +wT32>1 Write down axiom 5: —z1,3 — 23,1 > —1
4 —x1q —a21 > —1 Add to get —2x11 — 22,1 — x3,1 > —2
5 —x11 —x31 > —1

6. —x2,1 —x3,1 > —1

7. —T12 —T22 > —1

8. —x12 —x32 > —1

9. —x22 — 3,2 > —1

-1
-1

—T1,1 — T2,1

(VA

—T1,1 — 3,1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps

2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1
3. w31 +wT32>1 Write down axiom 5: —z1,3 — 23,1 > —1
4 —x1q —a21 > —1 Add to get —2x11 — 22,1 — x3,1 > —2
5 —x11 —x31 > —1

6. —x2,1 —x3,1 > —1

7. —T12 —T22 > —1

8. —x12 —x32 > —1

9. —x22 — 3,2 > —1

—Z1,1 — X2,1 > -1
—zi1 —x3,1 > —1
—2x1,1 — X210 —T3,1 > —2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps

2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1

3. 231 +mw302 >1 Write down axiom 5: —x11 —x3,1 > —1

4 —x1q —a21 > —1 Add to get. —2T1,1 — 221 —X3,1 > —2
Erase the line —z11 —z31 > —1

5 —x11 —x31 > —1

6. —x21 — 31 > —1

7. —T1,2 — T2,2 > -1

8. —x12 —x32 > —1

9. —x22 — 3,2 > —1

—Z1,1 — X2,1 > -1
—z11 —x3,1 > —1
—2x11 — T2,1 — X3,1 > —2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps

2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1

3. 231 +mw302 >1 Write down axiom 5: —x11 —x3,1 > —1

4 —x1q —a21 > —1 Add to get. —2T1,1 — 221 —X3,1 > —2
Erase the line —z11 —z31 > —1

5 —x11 —x31 > —1

6. —x21 — 31 > —1

7. —T1,2 — T2,2 > -1

8. —x12 —x32 > —1

9. —x22 — 3,2 > —1

—Z1,1 — X2,1 > -1
—2x1,1 — T2, — T3 > —2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps

2. @21 +we2 21 Write down axiom 4: —x11 — w21 > —1

3. 231 +mw302 >1 Write down axiom 5: —z1,3 — 23,1 > —1

4 —x1q —a21 > —1 Add to get. —2T1,1 — 221 —X3,1 > —2

5 - Erase the line —2x1,1 — 23,1 > —1
ST T 331 2 Erase the line —z1,1 — @21 > —1

6. —x21 — 31 > —1

7. —T1,2 — T2,2 > -1

8. —x12 —x32 > —1

9. —T2,2 — I3,2 2 -1

-z —x2,1 > —1
—2x1,1 — T2, — T3 > —2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps

2. @21 +we2 21 Write down axiom 4: —x11 — w21 > —1

3. 231 +mw302 >1 Write down axiom 5: —z1,3 — 23,1 > —1

4 —x1q —a21 > —1 Add to get. —2T1,1 — 221 —X3,1 > —2

5 - Erase the line —2x1,1 — 23,1 > —1
ST T 331 2 Erase the line —z1,1 — @21 > —1

6. —x21 — 31 > —1

7. —T1,2 — T2,2 > -1

8. —x12 —x32 > —1

9. —T2,2 — I3,2 2 -1

—21,1 — 21 — X301 > —2

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 4/25



Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps

2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1

3. 231 +mw302 >1 Write down axiom 5: —x11 —x3,1 > —1

4 —x1q —a21 > —1 Add to get. —2T1,1 — 221 —X3,1 > —2

5 - Erase the line —2x1,1 — 23,1 > —1
ST T 331 2 Erase the line —z1,1 — @21 > —1

6. —x21 —x3,1 > —1 Write down axiom 6: —x21 — @31 > —1

7. —x12 —T22 > —1

8. —x12 —x32 > —1

9. —x22 —x32 > —1

—21,1 — 21 — X301 > —2
—T21 — T31 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1
3. 231 +mw302 >1 Write down axiom 5: —x11 —x3,1 > —1
P | Add to get —2x11 — 22,1 — x3,1 > —2
5 ’ ’ ; ) Erase the line —z1,1 — @31 > —1

ST T 331 2 Erase the line —z1,1 — @21 > —1
6. —r21 — 231 > —1 Write down axiom 6: —xz21 — 23,1 > —1
7. —Z10 —Ta0 > —1 Add to get —2x1,1 — 22,1 — 2231 > —3
8. —x12 —x32 > —1
9. —x22 — 3,2 > —1

—2x11 — T2,1 —X3,1 > —2
—T21 — T31 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1
3. 231 +mw302 >1 Write down axiom 5: —x11 —x3,1 > —1
P | Add to get —2x11 — 22,1 — x3,1 > —2
5 ’ ’ ; ) Erase the line —z1,1 — @31 > —1

ST T 331 2 Erase the line —z1,1 — @21 > —1
6. —r21 — 231 > —1 Write down axiom 6: —xz21 — 23,1 > —1
7. —Z10 —Ta0 > —1 Add to get —2x1,1 — 22,1 — 2231 > —3
8. —x12 —x32 > —1
9. —x22 — 3,2 > —1

2211 — 2,10 — X310 > —2
—T21 —x3,1 > —1
—2x1,1 — 2x2,1 — 2w3,1 > —3
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Proof Complexity Preliminaries

1. zii4+x122>1
2. a1+ a22>1
3. x31+m32 21
4. —x11 — 21 > —1
5 —m11 —x31 > —1
6. —w21 — w31 > —1
7. —T12 —x22 > —1
8. —T12—x32 > —1
9. —xz22 —x32 > —1

History of derivation steps

Write down axiom 4: —x1 1 — 2,1 > —1
Write down axiom 5: —x11 —x3,1 > —1
Add to get —2x1,1 — w21 — T3,1 > —2
Erase the line —z11 —z31 > —1
Erase the line —x1,1 — 221 > —1
Write down axiom 6: —z21 — 23,1 > —1
Add to get —2x1,1 — 2221 — 223,1 > —3
Erase the line —z21 —z3,1 > —1

Jakob Nordstrom (UCPH & LU)

—21,1 — 21 — X301 > —2
—To1 —x3,1 > —1
—2x11 — 2221 — 223,1 > —3
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Proof Complexity Preliminaries

1. zia+z122>1 History of derivation steps
2. @21 +we2 21 Write down axiom 4: —x11 — w21 > —1
3. 231 +mw302 >1 Write down axiom 5: —x11 —x3,1 > —1
P | Add to get —2x11 — 22,1 — x3,1 > —2
5 ’ ’ ; ) Erase the line —z1,1 — @31 > —1

ST T 331 2 Erase the line —z1,1 — @21 > —1
6. —r21 — 231 > —1 Write down axiom 6: —xz21 — 23,1 > —1
7. —x12 — X220 > —1 Add to get —2x1,1 — 2221 — 223,1 > —3
8. —212 — a2 > —1 Erase the line —z21 —z3,1 > —1
9. —T2,2 — I3,2 2 -1

—21,1 — 21 — X301 > —2
—2x11 — 2221 — 2231 > —3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1
3. m31+w3>1 Write down axiom 5: —z1,3 — 23,1 > —1
R S | Add to get —2x11 — 22,1 — x3,1 > —2
Erase the line —z11 —z31 > —1

5. —m1—ws1 2~ Erase the line —x1,1 — 221 > —1
6. —x21 — 231 > —1 Write down axiom 6: —z21 — 23,1 > —1
7. —T12 — w22 > —1 Add to get —2x1,1 — 2221 — 223,1 > —3
8. w15 wan > 1 Erase the I!ne —T21 —x3,1 > —1

’ ’ Erase the line —2x11 — z21 — z3,1 > —2
9. —x22 — 3,2 > —1

—2w11 — T2,1 — X3,1 > —2
—2x11 — 2221 — 2231 > —3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1
3. m31+w3>1 Write down axiom 5: —z1,3 — 23,1 > —1
R S | Add to get —2x11 — 22,1 — x3,1 > —2
Erase the line —z11 —z31 > —1

5. —m1—ws1 2~ Erase the line —x1,1 — 221 > —1
6. —x21 — 231 > —1 Write down axiom 6: —z21 — 23,1 > —1
7. —T12 — w22 > —1 Add to get —2x1,1 — 2221 — 223,1 > —3
8. w15 wan > 1 Erase the I!ne —T21 —x3,1 > —1

’ ’ Erase the line —2x11 — z21 — z3,1 > —2
9. —x22 — 3,2 > —1

—2.’1}1,1 — 2:13’2,1 — 2I371 2 -3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1
3. m31+w3>1 Write down axiom 5: —z1,3 — 23,1 > —1
R S | Add to get —2x11 — 22,1 — x3,1 > —2
Erase the line —z11 —z31 > —1

5. —m1—ws1 2~ Erase the line —x1,1 — 221 > —1
6. —x21 — 231 > —1 Write down axiom 6: —z21 — 23,1 > —1
7. —T12 — w22 > —1 Add to get —2x1,1 — 2221 — 223,1 > —3
8. w15 wan > 1 Erase the I!ne —T21 —x3,1 > —1

’ ’ Erase the line —2x11 — z21 — z3,1 > —2
9. —x22 — 3,2 > —1

Divide to get —x1,1 — 22,1 — r3,1 > —1

*2.’1)1.1 — 2.’1}2’1 — 2.’1}3,1 2 *3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 4: —x11 — w21 > —1
3. m31+w3>1 Write down axiom 5: —z1,3 — 23,1 > —1
R S | Add to get —2x11 — 22,1 — x3,1 > —2
Erase the line —z11 —z31 > —1

5. —m1—ws1 2~ Erase the line —x1,1 — 221 > —1
6. —x21 — 231 > —1 Write down axiom 6: —z21 — 23,1 > —1
7. —T12 — w22 > —1 Add to get —2x1,1 — 2221 — 223,1 > —3
8. w15 wan > 1 Erase the I!ne —T21 —x3,1 > —1

’ ’ Erase the line —2x11 — z21 — z3,1 > —2
9. —x22 — 3,2 > —1

Divide to get —x1,1 — 22,1 — r3,1 > —1

—2x1,1 — 22,1 — 2231 > —3
—T1,1 — w20 — T30 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 5: —x11 —x3,1 > —1
3. x31+aze>1 Add to get —2x1,1 — w21 — 3,1 > —2
R S | Erase the line —z1,1 — 23,1 > —1
Erase the line —z11 — 221 > —1

5 —@11 — 331 2 —1 Write down axiom 6: —z21 —x3,1 > —1
6. —r21 — 231 > —1 Add to get —2x1,1 — 2z2,1 — 2231 > —3
7. —%12—Ta2 > —1 Erase the line —x21 — 231 > —1
8. 19— d3a > 1 Er.a.se the line =211 — 21 — 3,1 > —2

’ ’ Divide to get —x1,1 — 22,1 — 23,1 > —1
9. —x22 — 3,2 > —1

Erase the line —2x1,1 — 2221 — 223,17 > —3

—2x11 — 2221 — 231 > —3
—x11 —x2,1 —x3,1 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 5: —x11 —x3,1 > —1
3. x31+aze>1 Add to get —2x1,1 — w21 — 3,1 > —2
R S | Erase the line —z1,1 — 23,1 > —1
Erase the line —z11 — 221 > —1

5 —@11 — 331 2 —1 Write down axiom 6: —z21 —x3,1 > —1
6. —r21 — 231 > —1 Add to get —2x1,1 — 2z2,1 — 2231 > —3
7. —%12—Ta2 > —1 Erase the line —x21 — 231 > —1
8. 19— d3a > 1 Er.a.se the line =211 — 21 — 3,1 > —2

’ ’ Divide to get —x1,1 — 22,1 — 23,1 > —1
9. —x22 — 3,2 > —1

Erase the line —2x1,1 — 2221 — 223,17 > —3

—x1,1 — X210 —x3,1 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

L zatae 21 History of derivation steps
2. T2,1 + 2,2 21 Add to get —2T1,1 — T2 —X3,1 > —2
3. z31+x32>1 Erase the line —z1,1 —z3,1 > —1
4. —zyq —maq > —1 Era'se the line .fxlyl — 221 > —1
Write down axiom 6: —x21 — 3,1 > —1
5 —x11 —x31 > —1
. J Add to get —2x1,1 — 2221 — 23,1 > —3
6. —x21 — w31 = —1 Erase the line —z2,1 — 23,1 > —1
7. —x12 — 22 > —1 Erase the line —21‘1,1 — 2,1 — 3,1 > =2
8. —x10— x50 > —1 Divide to get —Z1,1 —X2,1 — 3,1 > —1
Erase the line —2x11 — 2221 — 223,17 > —3
9. —T2,2 — I3,2 2 -1

Write down axiom 7: —x19 — x2,2 > —1

—x1,1 — X210 —x3,1 > —1
—T12—T22 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Erase the line —z11 —z31 > —1
3. xsi+ase>1 Erase the line —x11 — 221 > —1
R S | Write down axiom 6: —x21 — 23,1 > —1
Add to get —2x11 — 2221 — 2231 > —3
5. —m1—ws1 2~ Erase the line —z5.1 — 31 > —1
2,1 3,1 =

6. —x21 —x3,1 > —1 Erase the line —2x11 — x21 — x3,1 > —2
7. —T12 — w22 > —1 Divide to get —x1,1 — 2,1 — 23,1 > —1
8 21— T3a > 1 Erase the line —2x11 — 2221 — 223,17 > —3

’ o Write down axiom 7: —x12 — 22,2 > —1
9. —22 —x32 2 —1 Write down axiom 8: —x19 —x32 > —1

—x1,1 — X210 —x3,1 > —1
—T12 —X22 > —1
—Z1,0 —x3,2 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. m1+x122>1 History of derivation steps

2. x21+x22>1 Erase the line —z11 — 221 > —1

3. m31+w3>1 Write down axiom 6: —x21 —x3,1 > —1

R S | Add to get. —2x11 — 2221 — 223,1 > —3

5 - Erase the line —x21 — 23,1 > —1
R Erase the line —2x1,1 — 221 — 23,1 > —2

6. —r21 — 731 > —1 Divide to get —x1,1 — 22,1 — 23,1 > —1

7. —T12 — w22 > —1 Erase the line —2x11 — 2221 — 2231 > —3

8. —315 —was > —1 Wr!te down ax!om T —T12 — T2 > —1

Write down axiom 8: —z12 — 23,2 > —1
9. —T2,2 — I3,2 2 -1

Add to get —2w1,2 — w22 — X302 > —2

—x1,1 — X210 —x3,1 > —1
—T12 —T22 > —1
—T1,2 — I3,2 2 —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. m1+x122>1 History of derivation steps

2. x21+x22>1 Erase the line —z11 — 221 > —1

3. m31+w3>1 Write down axiom 6: —x21 —x3,1 > —1

R S | Add to get. —2x11 — 2221 — 223,1 > —3

5 - Erase the line —x21 — 23,1 > —1
R Erase the line —2x1,1 — 221 — 23,1 > —2

6. —r21 — 731 > —1 Divide to get —x1,1 — 22,1 — 23,1 > —1

7. —T12 — w22 > —1 Erase the line —2x11 — 2221 — 2231 > —3

8. —315 —was > —1 Wr!te down ax!om T —T12 — T2 > —1

Write down axiom 8: —z12 — 23,2 > —1
9. —T2,2 — I3,2 2 -1

Add to get —2w1,2 — w22 — X302 > —2

—x1,1 — X210 —x3,1 > —1
—T12 —X22 > —1
—Z1,2 — 32 > —1

—2x12 — T22 — X32 > —2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps

2. x21+x22>1 Write down axiom 6: —x21 — x3,1 > —1

3. x31+x322>1 Add to get —2x1,1 — 22,1 — 223,71 > —3

4 —x1q —a21 > —1 Erase the Iine —x21 —x3,1 > —1

5 > 1 Erase the line —2x11 — z2,1 — 23,1 > —2
ST T 331 2 Divide to get —z1,1 — 21 — x3,1 > —1

6. —w21 —x31 > —1 Erase the line —2z1,1 — 2221 — 2231 > —3

7. —x12 —x22 > —1 Write down axiom 7: —z12 — 222 > —1

8. —212 — a2 > —1 Write down axiom 8: —x12 —x32 > —1

Add to get —2z12 — T22 — T30 > —2
9. —x22 — 3,2 > —1

Erase the line —z12 — x32 > —1

—x1,1 — X210 —x3,1 > —1
—T12 —X22 > —1
—Z1,2 — %32 > —1

—2w1,2 — T2,2 — Tz2 > —2

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 4/25



Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps

2. x21+x22>1 Write down axiom 6: —x21 — x3,1 > —1

3. x31+x322>1 Add to get —2x1,1 — 22,1 — 223,71 > —3

4 —x1q —a21 > —1 Erase the Iine —x21 —x3,1 > —1

5 > 1 Erase the line —2x11 — z2,1 — 23,1 > —2
ST T 331 2 Divide to get —z1,1 — 21 — x3,1 > —1

6. —w21 —x31 > —1 Erase the line —2z1,1 — 2221 — 2231 > —3

7. —x12 —x22 > —1 Write down axiom 7: —z12 — 222 > —1

8. —212 — a2 > —1 Write down axiom 8: —x12 —x32 > —1

Add to get —2z12 — T22 — T30 > —2
9. —x22 — 3,2 > —1

Erase the line —z12 — x32 > —1

—x1,1 — X210 —x3,1 > —1
—T12 —X22 > —1
—2x12 — T22 — X3,2 > —2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. 1421221 History of derivation steps

2. @21 +we2 21 Add to get —2x1,1 — 2221 — 2231 > —3

3. 231 +mw302 >1 Erase the line —z2,; — 23,1 > —1

R S | Er.a:qe the line =211 — 22,1 — 23,1 > —2
Divide to get —z1,1 — @21 — 23,1 > —1

5 —x11 —x31 > —1 ;

g , Erase the line —2x11 — 2221 — 223,17 > —3

6. —w21 —x31 > —1 Write down axiom 7: —x1,2 — 22 > —1

7. —%12—Ta2 > —1 Write down axiom 8: —x1 2 — 232 > —1

8 —w1s— 232 > —1 Add to get —2T12 — T22 —T32 > —2
Erase the line —z1 2 —x32 > —1

9. —T2,2 — I3,2 2 -1

Erase the line —z12 — 222 > —1

—x1,1 — X210 —x3,1 > —1
—T12 —X22 > —1
—2x12 — T22 — X3,2 > —2

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 4/25



Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. 1421221 History of derivation steps

2. @21 +we2 21 Add to get —2x1,1 — 2221 — 2231 > —3

3. 231 +mw302 >1 Erase the line —z2,; — 23,1 > —1

R S | Er.a:qe the line =211 — 22,1 — 23,1 > —2
Divide to get —z1,1 — @21 — 23,1 > —1

5 —x11 —x31 > —1 ;

g , Erase the line —2x11 — 2221 — 223,17 > —3

6. —w21 —x31 > —1 Write down axiom 7: —x1,2 — 22 > —1

7. —%12—Ta2 > —1 Write down axiom 8: —x1 2 — 232 > —1

8 —w1s— 232 > —1 Add to get —2T12 — T22 —T32 > —2
Erase the line —z1 2 —x32 > —1

9. —T2,2 — I3,2 2 -1

Erase the line —z12 — 222 > —1

—x1,1 — X211 —x3,1 > —1
—2%1,2 — To2 — T3,2 > —2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. 1421221 History of derivation steps
2. x21+x22>1 Erase the line —z2 1 —z31 > —1
3. m1+mza>1 Erase the line —2x1,1 — 2,1 — 3,1 > —2
| Divide to get —z1,1 — 22,1 — x31 > —1
Erase the line —2x1,1 — 2221 — 2231 > —3
5 —x11—731 > —1 ; ; .
, , Write down axiom 7: —x12 — x22 > —1
6. —x21 — 231 > —1 Write down axiom 8: —x12 — 23,2 > —1
7. —T12 — w22 > —1 Add to get —2x12 — 22 —x32 > —2
8. —212 — a2 > —1 Erase the I!ne —x1,2 —x32 > —1
Erase the line —z1 2 —x22 > —1
9. —T2,2 — I3,2 Z —1

Write down axiom 9: —x2 9 —x32 > —1

—x1,1 — X210 —x3,1 > —1
—2%1,2 — To2 — T3,2 > —2
—T2,2 — T3,2 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. @21 +we2 21 Erase the line —2x11 — z2,1 — 231 > —2
3. x31+aze>1 Divide to get —x1,1 — x2,1 — 23,1 > —1
P | Erase the line —2x11 — 2221 — 2231 > —3
' T Write down axiom 7: —x19 — 222 > —1
5.—:1’11—1}312—1 . . X
, , Write down axiom 8: —x12 —x32 > —1
6. —r21 — 731 > —1 Add to get —2x1,2 — 222 — x3,2 > —2
7. —Z10 —Ta0 > —1 Erase the line —z12 — z32 > —1
8. —212 — a2 > —1 Era_se the line —T1,2 = T2 > -1
0 - Write down axiom 9: —z22 — 232 > —1
. —T22 —T32 = — .
’ T Add to get —2x1 2 — 2202 — 2232 > —3

—x1,1 — X210 —x3,1 > —1
—2T1,2 — T22 —X3,2 > —2
—T2,2 — I3,2 2 —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. @21 +we2 21 Erase the line —2x11 — z2,1 — 231 > —2
3. x31+aze>1 Divide to get —x1,1 — x2,1 — 23,1 > —1
P | Erase the line —2x11 — 2221 — 2231 > —3
' T Write down axiom 7: —x19 — 222 > —1
5.—:1’11—1}312—1 . . X
, , Write down axiom 8: —x12 —x32 > —1
6. —r21 — 731 > —1 Add to get —2x1,2 — 222 — x3,2 > —2
7. —Z10 —Ta0 > —1 Erase the line —z12 — z32 > —1
8. —212 — a2 > —1 Era_se the line —T1,2 = T2 > -1
0 - Write down axiom 9: —z22 — 232 > —1
. —T22 —T32 = — .
’ T Add to get —2x1 2 — 2202 — 2232 > —3

—x1,1 — X210 —x3,1 > —1
—2%1,2 — To2 — T3,2 > —2
—T22 — 32 > —1

—2x12 — 2222 — 2232 > —3
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Proof Complexity Preliminaries

1. zia+z122>1 History of derivation steps
2. maat w221 Divide to get —x1,1 — 2,1 — 23,1 > —1
3. 231 +mw302 >1 Erase the line —2x1,1 — 2221 — 223,17 > —3
P | Write down axiom 7: —x12 — 222 > —1
' T Write down axiom 8: —x19 — 232 > —1
5 —m11 —x31 > —1
. , Add to get —2x1 2 — w22 — 32 > —2
6. —x21 —x3,1 > —1 Erase the line —z12 — x32 > —1
7. —Z10 —Ta0 > —1 Erase the line —z12 — z22 > —1
8 —T1o— T30 > —1 Write down axiom 9: —x2 0 —x32 > —1
' ’ o Add to get —2x1,2 — 2222 — 2232 > —3
9. —x22 — 3,2 > —1

Erase the line —z22 — x32 > —1

—x1,1 — %21 — 3,1 > —1
—2%1,2 — To2 — T3,2 > —2
—Z22 —x32 > —1

—2x12 — 222 — 232 > —3
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Proof Complexity Preliminaries

1. zia+z122>1 History of derivation steps
2. maat w221 Divide to get —x1,1 — 2,1 — 23,1 > —1
3. 231 +mw302 >1 Erase the line —2x1,1 — 2221 — 223,17 > —3
P | Write down axiom 7: —x12 — 222 > —1
' T Write down axiom 8: —x19 — 232 > —1
5 —m11 —x31 > —1
. , Add to get —2x1 2 — w22 — 32 > —2
6. —x21 —x3,1 > —1 Erase the line —z12 — x32 > —1
7. —Z10 —Ta0 > —1 Erase the line —z12 — z22 > —1
8 —T1o— T30 > —1 Write down axiom 9: —x2 0 —x32 > —1
' ’ o Add to get —2x1,2 — 2222 — 2232 > —3
9. —x22 — 3,2 > —1

Erase the line —z22 — x32 > —1

—x1,1 — X210 —x3,1 > —1
—2%1,2 — To2 — T3,2 > —2
—2x12 — 2222 — 2232 > —3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. m1+x122>1 History of derivation steps

2. x21+x22>1 Erase the line —2x1,1 — 2221 — 2231 > —3

3. m31+w3>1 Write down axiom 7: —x12 — @22 > —1

4 —x1q —a21 > —1 Write down axiom 8: —x12 — 23,2 > —1

Add to get —2x1,2 — T22 — T32 > —2

5. —r11—a31 2 1 Erase the line —z1,2 — @32 > —1

6. —x21 —x3,1 > —1 Erase the line —z12 — 222 > —1

T.—z12 — 222 > —1 Write down axiom 9: —xo 9 —x39 > —1

8. — &9 — 50 > —1 Add to get —2x1,2 — 2222 — 2232 > —3
’ o Erase the line —z22 — z32 > —1

9. —x22 — 3,2 > —1

Erase the line —2x19 — x99 — z32 > —2

—x1,1 — X210 —x3,1 > —1
—2x1,9 — Too — T3z > —2
—2x12 — 2222 — 2232 > —3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. m1+x122>1 History of derivation steps

2. x21+x22>1 Erase the line —2x1,1 — 2221 — 2231 > —3

3. m31+w3>1 Write down axiom 7: —x12 — @22 > —1

4 —x1q —a21 > —1 Write down axiom 8: —x12 — 23,2 > —1

Add to get —2x1,2 — T22 — T32 > —2

5. —r11—a31 2 1 Erase the line —z1,2 — @32 > —1

6. —x21 —x3,1 > —1 Erase the line —z12 — 222 > —1

T.—z12 — 222 > —1 Write down axiom 9: —xo 9 —x39 > —1

8. — &9 — 50 > —1 Add to get —2x1,2 — 2222 — 2232 > —3
’ o Erase the line —z22 — z32 > —1

9. —x22 — 3,2 > —1

Erase the line —2x19 — x99 — z32 > —2

—x1,1 — X210 —x3,1 > —1
—2x12 — 2222 — 232 > —3

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 4/25



Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 7: —x12 — w22 > —1
3. m31+w3>1 Write down axiom 8: —z12 — 232 > —1
R S | Add to get —2x1,2 — 222 — x3,2 > —2
Erase the line —z1 2 — 232 > —1

5. —m1—ws1 2~ Erase the line —x12 — 222 > —1
6. —x21 — 231 > —1 Write down axiom 9: —z22 — 232 > —1
7. —T12 — w22 > —1 Add to get —2x1 2 — 2222 — 2232 > —3
8. w15 wan > 1 Erase the I!ne —To2 —x32 > —1

’ ’ Erase the line —2x1 2 — z22 — 32 > —2
9. —x22 — 3,2 > —1

Divide to get —x1,2 — 222 — r32 > —1

—x1,1 — X210 —x3,1 > —1
—2.7?112 — 2.’7}2,2 — 2.773)2 2 -3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 7: —x12 — w22 > —1
3. m31+w3>1 Write down axiom 8: —z12 — 232 > —1
R S | Add to get —2x1,2 — 222 — x3,2 > —2
Erase the line —z1 2 — 232 > —1

5. —m1—ws1 2~ Erase the line —x12 — 222 > —1
6. —x21 — 231 > —1 Write down axiom 9: —z22 — 232 > —1
7. —T12 — w22 > —1 Add to get —2x1 2 — 2222 — 2232 > —3
8. w15 wan > 1 Erase the I!ne —To2 —x32 > —1

’ ’ Erase the line —2x1 2 — z22 — 32 > —2
9. —x22 — 3,2 > —1

Divide to get —x1,2 — 222 — r32 > —1

—x1,1 — X211 —x3,1 > —1
—2x12 — 2222 — 232 > —3
—X1,2 — T2 — x3,2 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 8: —x12 —x32 > —1
3. x31+aze>1 Add to get —2x1,2 — w22 — 32 > —2
R S | Erase the line —z12 — z32 > —1
Erase the line —z1 2 — 222 > —1

5 —@11 — 331 2 —1 Write down axiom 9: —z2 2 — x32 > —1
6. —r21 — 231 > —1 Add to get —2x1,2 — 22220 — 2232 > —3
7. —%12—Ta2 > —1 Erase the line —x22 — 232 > —1
8. 19— d3a > 1 Er.a.se the line =212 — 22 — z32 > —2

’ ’ Divide to get —x1,2 — 22,2 — 232 > —1
9. —x22 — 3,2 > —1

Erase the line —2x1 2 — 2220 — 2232 > —3

—x1,1 — X211 —x3,1 > —1
—2]21’2 - 23?2,2 — 2:133,2 Z -3
—T12 — X222 —T32 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Write down axiom 8: —x12 —x32 > —1
3. w31tz >1 Add to get —2x1,2 — T2,2 — X322 > —2
4 —x1q —a21 > —1 Erase the Iine —x1,2 —x32 > —1
5 - Erase the line —x12 — 222 > —1
ST T 331 2 Write down axiom 9: —z2 2 —x32 > —1
6. —x21 — 231 > —1 Add to get —2x1,2 — 2z22 — 2232 > —3
7. —Z10 —Ta0 > —1 Erase the line —z22 — z32 > —1
8. —212 — a2 > —1 Er.a.se the line —2x12 —z22 — z32 > —2
o - Divide to get —z1,2 — Z2,2 — 3,2 > —1
L T2 —T32 = — .
' o Erase the line —2x1 2 — 2220 — 2232 > —3
—x1,1 — X210 —x3,1 > —1
—T1,2 — T2 —T3,2 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x222>1 Add to get —2x1 2 — w22 — 32 > —2
3. 231 +mw302 >1 Erase the line —z12 — 232 > —1
4 —x1q —a21 > —1 Era'se the line —T12 ~ T2 > -1
Write down axiom 9: —xo 0 — 232 > —1
5 —x11 —®31 > —1
. J Add to get —2x1,2 — 2222 — 2232 > —3
6. —x21 —x3,1 > —1 Erase the line —z22 — x32 > —1
7. —x12 — X220 > —1 Erase the line —2x12 — x22 — 232 > —2
8. 15— 230 > —1 Divide to get —w12 — 22 — T2 > -1
Erase the line —2x1 2 — 2222 — 2232 > —3
9. —x22 — 3,2 > —1

Add to get —x1,1 — X210 — 3,1 —T1,2 — T2 — Tz > —2

—1

—T1,1 — X210 — T3,1 >
—Z12 — X222 —x32 > —1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x222>1 Add to get —2x1 2 — w22 — 32 > —2
3. 231 +mw302 >1 Erase the line —z12 — 232 > —1
4 —x1q —a21 > —1 Era'se the line —T12 ~ T2 > -1
Write down axiom 9: —xo 0 — 232 > —1
5 —x11 —®31 > —1
. J Add to get —2x1,2 — 2222 — 2232 > —3
6. —x21 —x3,1 > —1 Erase the line —z22 — x32 > —1
7. —x12 — X220 > —1 Erase the line —2x12 — x22 — 232 > —2
8. 15— 230 > —1 Divide to get —w12 — 22 — T2 > -1
Erase the line —2x1 2 — 2222 — 2232 > —3
9. —x22 — 3,2 > —1

Add to get —x1,1 — X210 — 3,1 —T1,2 — T2 — Tz > —2

—x1,1 — X210 —x3,1 > —1
—Ti12 — X2 —x32 > —1
—x1,1 —X2,1 —X3,1 — 1,2 — 2,2 — T3,2 > =2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

i1+ 212 21 History of derivation steps

T21+T22 > 1 Erase the line —z12 — x32 > —1

Ts1 4 w32 > 1 Erase the line —z1,2 — 222 > —1
| Write down axiom 9: —z22 — 232 > —1

Add to get —2931,2 — 21‘2,2 — 2233,2 > -3

© O N O U A WD R

.—x11 —x31 > —1 .
11— %31 > Erase the line —z22 — x32 > —1
. —T21 —T31 > —1 Erase the line —2x1,2 — T22 — z32 > —2
o X1o —T2a > —1 Divide to get —z1,2 — 222 — 32 > —1
Erase the line —2x1 2 — 2222 — 2232 > —3
s — s > —1 1,2 2,2 3,2 2
Add to get —x1,1 — Z2,1 — T3,1 — T1,2 — T22 — XT32 > —2
. —T22 — T3,2 > -1

Erase the line —x12 — w22 —x32 > —1

—x1,1 — X210 —x3,1 > —1
—T12 —T22 — T332 > —1

—T1,1 — T2,1 — 3,1 — T1,2 — L2,2 — T3,2 > —2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

i1+ 212 21 History of derivation steps

T21+T22 > 1 Erase the line —z12 — x32 > —1

Ts1 4 w32 > 1 Erase the line —z1,2 — 222 > —1
| Write down axiom 9: —z22 — 232 > —1

Add to get —2931,2 — 21‘2,2 — 2233,2 > -3

© O N O U A WD R

.—x11 —x31 > —1 .
11— %31 > Erase the line —z22 — x32 > —1
. —T21 —T31 > —1 Erase the line —2x1,2 — T22 — z32 > —2
o X1o —T2a > —1 Divide to get —z1,2 — 222 — 32 > —1
Erase the line —2x1 2 — 2222 — 2232 > —3
s — s > —1 1,2 2,2 3,2 2
Add to get —x1,1 — Z2,1 — T3,1 — T1,2 — T22 — XT32 > —2
. —T22 — T3,2 > -1

Erase the line —x12 — w22 —x32 > —1

—x1,1 — X210 —x3,1 > —1
—x1,1 — 2,1 —T3,1 —T1,2 —T22 — T3,2 > -2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

T1,1+ w12 > 1 History of derivation steps

T2,1 + 2,2 > 1 Erase the line —z12 — 222 > —1

31+ 232 > 1 Write down axiom 9: —x2 0 —x32 > —1
C—x1a —@aq > —1 Add to get —2x1,2 — 2z22 — 2232 > —3

Erase the line —z2 2 — z32 > —1

© O N O U A WD R

ST — w31 2 1 Erase the line —2x1,2 — @22 — x32 > —2

. —T21 —T31 > —1 Divide to get —z1,2 — 2,2 —x32 > —1

. —T12— T2 > —1 Erase the line —2x1 2 — 2222 — 2232 > —3

e Tsa > 1 Add to get —z11 — T2,1 — T3,1 — T1,2 — T2,z — Tz2 > —2
’ o Erase the line —z12 — z22 — 32 > —1

. —T22 —T32 > —1

Erase the line —x1,1 — w21 —x31 > —1

—T1,1 — %21 — X310 > —1
—x1,1 — 2,1 —T3,1 —T1,2 —T22 — T3,2 > -2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

T1,1+ w12 > 1 History of derivation steps

T2,1 + 2,2 > 1 Erase the line —z12 — 222 > —1

31+ 232 > 1 Write down axiom 9: —x2 0 —x32 > —1
C—x1a —@aq > —1 Add to get —2x1,2 — 2z22 — 2232 > —3

Erase the line —z2 2 — z32 > —1

© O N O U A WD R

ST — w31 2 1 Erase the line —2x1,2 — @22 — x32 > —2

. —T21 —T31 > —1 Divide to get —z1,2 — 2,2 —x32 > —1

. —T12— T2 > —1 Erase the line —2x1 2 — 2222 — 2232 > —3

e Tsa > 1 Add to get —z11 — T2,1 — T3,1 — T1,2 — T2,z — Tz2 > —2
’ o Erase the line —z12 — z22 — 32 > —1

. —T22 —T32 > —1

Erase the line —x1,1 — w21 —x31 > —1

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
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Proof Complexity Preliminaries

1. ziatz2 21 History of derivation steps
2. x21+x22>1 Write down axiom 9: —x22 — w32 > —1
3. xsi+ase>1 Add to get —2x12 — 2w22 — 2232 > —3
R S | Erase the Iine —ZT22 —x32 > —1
Erase the line —2x12 — x22 — 232 > —2
5. —x1,1 — 23,1 > —1 . ’
, , Divide to get —x1,2 — 222 —®32 > —1
6. —r21 — 231 > —1 Erase the line =212 — 2222 — 2232 > —3
7. 210 — T20 > —1 Add to get —11 — 21 — T30 — T12 — T2 — T3z > —2
8 —w1s— 232 > —1 Erase the I!ne —T12 — X220 — T3,2 > —1
Erase the line —x1,1 — x2,1 — 231 > —1
9. —T2,2 — I3,2 2 -1

Write down axiom 1: 11 +x12 > 1

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
r11+ 212 > 1
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Proof Complexity Preliminaries

1. 1421221 History of derivation steps

2. x21+x22 > 1 Add to get —2331,2 — 2232,2 — 2233,2 > -3

3. 231 +mw302 >1 Erase the line —z22 — 232 > —1

R S | Er.a:qe the line —2z12 — 22,2 — 232 > —2
Divide to get —z12 — @22 — 232 > —1

5 —m11 —x31 > —1 ;

g , Erase the line —2x1 2 — 222,20 — 2232 > —3

6. —r21 — 731 > —1 Add to get —x1,1 — T2,1 — X301 — T1,2 — T2,2 — T3,2 > —2

7. —T12 — w22 > —1 Erase the line —x12 — 222 — 232 > —1

8. 15— 230 > —1 Era_se the line —T11 = T21 T3 > -1
Write down axiom 1: 11 + 212 > 1

9. —x22 — 3,2 > —1

Write down axiom 2: 21 + x22 > 1

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
1,1+ 212 2>1
To1 +x22 > 1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Erase the line —z22 — x32 > —1
3. z31+x32>1 Erase the line —2x19 — z292 — z32 > —2
P | Divide to get —x1,2 — 22,2 — 232 > —1

’ T Erase the line —2x1 2 — 22220 — 2232 > —3
5 —x11 —x31 > —1

’ ’ Add to get —x1,1 — T2,1 — T3,1 — T1,2 — T2,2 — T3,2 > —2
6. —w21 —x31 > —1 Erase the line —z12 — z22 — 232 > —1
7. —x12 — X220 > —1 Erase the line —x1,1 — 221 — 23,1 > —1

. . ) >
8. —w1o—wya > —1 Wr!te down axiom l:zii4+z122>1
Write down axiom 2: 221 + 222 > 1

9. —x22 — 3,2 > —1

Add to get 1,1 + 1,2 + 22,1 + 222 > 2

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
r1,1+ 212 > 1
To1 +x22 > 1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22>1 Erase the line —z22 — x32 > —1
3. z31+x32>1 Erase the line —2x19 — z292 — z32 > —2
P | Divide to get —x1,2 — 22,2 — 232 > —1

’ T Erase the line —2x1 2 — 22220 — 2232 > —3
5 —x11 —x31 > —1

’ ’ Add to get —x1,1 — T2,1 — T3,1 — T1,2 — T2,2 — T3,2 > —2
6. —w21 —x31 > —1 Erase the line —z12 — z22 — 232 > —1
7. —x12 — X220 > —1 Erase the line —x1,1 — 221 — 23,1 > —1

. . ) >
8. —w1o—wya > —1 Wr!te down axiom l:zii4+z122>1
Write down axiom 2: 221 + 222 > 1

9. —x22 — 3,2 > —1

Add to get 1,1 + 1,2 + 22,1 + 222 > 2

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
1,1+ 212 2>1

T2,1 +x22>1

Ti1+ X124+ 221 + 222> 2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. 1421221 History of derivation steps
2. w21+t x222>1 Erase the line —2x12 — T22 — T32 > —2
3. x31+aze>1 Divide to get —z1,2 — 22,2 — 23,2 > —1
P Erase the line —2z12 — 2222 — 2232 > —3

’ T Add to get —x1,1 — T2,1 — T3,1 — Ti,2 — To2 — Tz2 > —2
5 —m11 —x31 > —1 ;

. , Erase the line —x12 — w22 —x32 > —1
6. —x2,1 —x31 > —1 Erase the line —z11 — 221 — 231 > —1
7. —%12—Ta2 > —1 Write down axiom 1: 211 +x12 > 1
8. —212 — a2 > —1 Write down axiom 2: za 1 + 222 > 1

Add to get x1,1 + 1,2 + X201 + 222 > 2

9. —T2,2 — I3,2 2 -1

Erase the line z2,1 + @22 > 1

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
1,1+ 212 2>1

T2,1 +x22>1

1,1+ x1,2 +x2,1 + 22,2 > 2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. 1421221 History of derivation steps
2. w21+t x222>1 Erase the line —2x12 — T22 — T32 > —2
3. x31+aze>1 Divide to get —z1,2 — 22,2 — 23,2 > —1
P Erase the line —2z12 — 2222 — 2232 > —3

’ T Add to get —x1,1 — T2,1 — T3,1 — Ti,2 — To2 — Tz2 > —2
5 —m11 —x31 > —1 ;

. , Erase the line —x12 — w22 —x32 > —1
6. —x2,1 —x31 > —1 Erase the line —z11 — 221 — 231 > —1
7. —%12—Ta2 > —1 Write down axiom 1: 211 +x12 > 1
8. —212 — a2 > —1 Write down axiom 2: za 1 + 222 > 1

Add to get x1,1 + 1,2 + X201 + 222 > 2

9. —T2,2 — I3,2 2 -1

Erase the line z2,1 + @22 > 1

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
1,1+ 212 2>1
11+ x12+ 221+ 222 > 2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. m1+x122>1 History of derivation steps

2. maat w221 Divide to get —x1,2 — x2,2 — 232 > —1

3. 231 +mw302 >1 Erase the line —2x1 2 — 222,20 — 2232 > —3

4 —x1q —a21 > —1 Add to get —x1,1 — x2,1 — T3,1 — T1,2 — T22 — XT3,2 > —2
Erase the line —z12 — 222 — 232 > —1

5 —@11 — 331 2 —1 Erase the line —x1,1 — w21 —x31 > —1

6. —x21 —x3,1 > —1 Write down axiom 1: 11 + 212 > 1

7. —Z10 —Ta0 > —1 Write down axiom 2: z21 + 22 > 1

8 —T1o— T30 > —1 Add to get x1,1 + T1,2 + X210 + T22 > 2

' T Erase the line 221 +x22 > 1
9. —x22 — 3,2 > —1

Erase the line 1,1 + ©12 > 1

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
T1,1+ 212> 1
11+ x12+ 221+ 222 > 2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. m1+x122>1 History of derivation steps

2. maat w221 Divide to get —x1,2 — x2,2 — 232 > —1

3. 231 +mw302 >1 Erase the line —2x1 2 — 222,20 — 2232 > —3

4 —x1q —a21 > —1 Add to get —x1,1 — x2,1 — T3,1 — T1,2 — T22 — XT3,2 > —2
Erase the line —z12 — 222 — 232 > —1

5 —@11 — 331 2 —1 Erase the line —x1,1 — w21 —x31 > —1

6. —x21 —x3,1 > —1 Write down axiom 1: 11 + 212 > 1

7. —Z10 —Ta0 > —1 Write down axiom 2: z21 + 22 > 1

8 —T1o— T30 > —1 Add to get x1,1 + T1,2 + X210 + T22 > 2

' T Erase the line 221 +x22 > 1
9. —x22 — 3,2 > —1

Erase the line 1,1 + ©12 > 1

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
1,1+ 212+ 221 + 222 > 2
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. m1+x122>1 History of derivation steps
2. 21+ T2 2> 1 Erase the line —2x1,2 — 2222 — 2232 > —3
3. w31 +x3e>1 Add to get —x1,1 — z2,1 — ®3,1 — XT1,2 — T2,2 — T32 > —2
4 —21q — a0y > —1 Erase the line —x1,2 — 22,0 — 23,2 > —1

’ T Erase the line —z11 — 221 — 23,1 > —1
5.—:1’11—1}312—1 . . X

) , Write down axiom 1: 11 + 212 > 1
6. —x21 — 231 > —1 Write down axiom 2: 221 + 222 > 1
7. —Z10 —Ta0 > —1 Add to get 1,1 + 1,2 + 221 + T2,2 > 2
8. —315 —was > —1 Erase the Ifne To1 + X222 > 1

Erase the line z1,1 + 212 > 1

9. —T2,2 — I3,2 2 -1

Write down axiom 3: x3,1 + 232 > 1

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
1,1+ 212+ 221 + 222 > 2
3,1 +x32 > 1

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 4/25



Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. maat w221 Add to get —x11 — 2,1 — 3,1 — T1,2 — T2,2 — T32 > —2
3. m1+mza>1 Erase the line —x12 — w220 —x32 > —1
4 —wyq —wa1 > —1 Erase the line —w1,1 — 21 — 231 > —1
Write down axiom 1: 211 +x12 > 1
5 —x11 —x31 > —1 ; i .
. , Write down axiom 2: za1 + z22 > 1
6. —x21 —x3,1 > —1 Add to get z1,1 + z1,2 + z21 + T22 > 2
7. —%12—Ta2 > —1 Erase the line z21 + 222 > 1
8. —315 —was > —1 Era_se the line 21,1 +x122>1
Write down axiom 3: x31 + 232 > 1
9. —T2,2 — I3,2 2 -1

Add to get x1,1 + 12 +x21 +T22+ X310 +T32 >3

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
Ti,1 + X122+ 22,1 + 222 > 2
r31 +x32 > 1
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. maat w221 Add to get —x11 — 2,1 — 3,1 — T1,2 — T2,2 — T32 > —2
3. m1+mza>1 Erase the line —x12 — w220 —x32 > —1
4 —wyq —wa1 > —1 Erase the line —w1,1 — 21 — 231 > —1
Write down axiom 1: 211 +x12 > 1
5 —x11 —x31 > —1 ; i .
. , Write down axiom 2: za1 + z22 > 1
6. —x21 —x3,1 > —1 Add to get z1,1 + z1,2 + z21 + T22 > 2
7. —%12—Ta2 > —1 Erase the line z21 + 222 > 1
8. —315 —was > —1 Era_se the line 21,1 +x122>1
Write down axiom 3: x31 + 232 > 1
9. —T2,2 — I3,2 2 -1

Add to get x1,1 + 12 +x21 +T22+ X310 +T32 >3

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
1,1+ 212+ 221 + 222 > 2

r3,1 +x32>1

T1,1 + X122+ 22,1 + 222+ 231 + 232 >3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22 21 Erase the line —x12 — 222 — 32 > —1
3. z31+x32>1 Erase the line —z1,1 — z2,1 — 23,1 > —1
P | Write down axiom 1: 11 + 212 > 1

' T Write down axiom 2: x21 + 222 > 1
5 —x11 —x31 > —1

) ’ Add to get x1,1 + 1,2 + 2,1 + T2,2 > 2
6. —x21 —x3,1 > —1 Erase the line z21 + 222 > 1
7. —Z10 —Ta0 > —1 Erase the line 11 +x12 > 1
8. —w1o—wya > —1 Write down axiom 3: z31 + z32 > 1

Add to get x1,1 +®12 +T21 +T22 + 231 +X32 >3

9. —x22 — 3,2 > —1

Erase the line 31 +x32 > 1

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
1,1+ 212+ 221 + 222 > 2

r3,1 + 232 >1

1,1+ 212+ 2,1 + 222+ 231 + 232 >3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. x21+x22 21 Erase the line —x12 — 222 — 32 > —1
3. z31+x32>1 Erase the line —z1,1 — z2,1 — 23,1 > —1
P | Write down axiom 1: 11 + 212 > 1

' T Write down axiom 2: x21 + 222 > 1
5 —x11 —x31 > —1

) ’ Add to get x1,1 + 1,2 + 2,1 + T2,2 > 2
6. —x21 —x3,1 > —1 Erase the line z21 + 222 > 1
7. —Z10 —Ta0 > —1 Erase the line 11 +x12 > 1
8. —w1o—wya > —1 Write down axiom 3: z31 + z32 > 1

Add to get x1,1 +®12 +T21 +T22 + 231 +X32 >3

9. —x22 — 3,2 > —1

Erase the line 31 +x32 > 1

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
1,1+ 212+ 221 + 222 > 2
Ti1+ X124+ 221 + T2+ 231 +232 >3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. xa1+a222>1 Erase the line —x1,1 — w21 —x31 > —1
3. x31+aze>1 Write down axiom 1: z11 + 21,2 > 1
4 gy g — 29y > —1 Write down axiom 2: x2,1 + 222 > 1
’ T Add to get x11 + T1,2 + T2,1 + T2,2 > 2
5 —x11 —x31 > —1 i
, ) Erase the line z21 + x22 > 1
6. —x21 —x3,1 > —1 Erase the line z11 + 212 > 1
7. —x10—Ta0 > —1 Write down axiom 3: x31 + 232 > 1
8. 10— aa > —1 Add to get 1,1 + 21,2 + 2,1 + T2,2 + X31 + x3,2 > 3
’ = Erase the line z31 + 232 > 1
9. —x22 —x32 > —1

Erase the line 1,1 + 1,2 + 2,1 + 2,2 > 2

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
T1,1+ 212+ 221 +x22 > 2
Ti1+ X124+ 221 + T2+ 231 +232 >3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps
2. xa1+a222>1 Erase the line —x1,1 — w21 —x31 > —1
3. x31+aze>1 Write down axiom 1: z11 + 21,2 > 1
4 gy g — 29y > —1 Write down axiom 2: x2,1 + 222 > 1
’ T Add to get x11 + T1,2 + T2,1 + T2,2 > 2
5 —x11 —x31 > —1 i
, ) Erase the line z21 + x22 > 1
6. —x21 —x3,1 > —1 Erase the line z11 + 212 > 1
7. —x10—Ta0 > —1 Write down axiom 3: x31 + 232 > 1
8. 10— aa > —1 Add to get 1,1 + 21,2 + 2,1 + T2,2 + X31 + x3,2 > 3
’ = Erase the line z31 + 232 > 1
9. —x22 —x32 > —1

Erase the line 1,1 + 1,2 + 2,1 + 2,2 > 2

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
11+ 212+ 221 + 222+ 231 + 232 >3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zia+z122>1 History of derivation steps

2. xa1+a222>1 Write down axiom 1: z1,1 + 712 > 1

3. xsi+ase>1 Write down axiom 2: z2,1 + 22 > 1

4 —z11 —waq > —1 Add to get x1,1 + T1,2 + @21 + T2 > 2
Erase the line z21 + 222 > 1

5 —x1,1 — 3,1 2 —1 Erase the line 11 +x12 > 1

6. —x21 — 231 > —1 Write down axiom 3: x31 + 232 > 1

7. 210 — T20 > —1 Add to get x1,1 + 21,2 + T2,1 + 222 + X311 + 232 > 3

8. 10— w50 > —1 Erase the I!ne 3,1 +x32>1

’ ’ Erase the line 21,1 + z1,2 + 22,1 + T2,2 > 2
9. —x22 — 32 > —1

Add to get 0 > 1

—T1,1 = T2,1 —T3,1 — T12 — T22 — T32 > —2
T11 +x12 + 221 +T22+x3,1 +T32 >3
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Proof Complexity Preliminaries

Example: Cutting planes Refutation of Pigeonhole Principle

1. zii4+x122>1
2. a1+ a22>1
3. x31+m32 21
4. —x11 — 21 > —1
5 —m11 —x31 > —1
6. —w21 — w31 > —1
7. —T12 —x22 > —1
8. —T12—x32 > —1
9. —xz22 —x32 > —1

History of derivation steps

Write down axiom 1: 211 +x12 > 1

Write down axiom 2: x21 + 222 > 1

Add to get x1,1 + T1,2 + @21 + T2 > 2

Erase the line z2,1 + @22 > 1

Erase the line 11 + 12 > 1

Write down axiom 3: x31 + 232 > 1

Add to get x1,1 + T1,2 + 2,1 + T22 + xT3,1 + T3,2 > 3
Erase the line x31 + 232 > 1

Erase the line 1,1 + 1,2 + 2,1 + x2,2 > 2

Add to get 0 > 1

Jakob Nordstrom (UCPH & LU)

—T1,1 —X2,1 — 3,1 — T1,2 — L22 — T3,2 > -2
11+ 212+ 221 + 222+ 231 + 232 >3
0>1

Proof Complexity as a Computational Lens: Lecture 22
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Proof Complexity Preliminaries

Complexity Measures for Cutting Planes

Length = total # lines/inequalities in refutation
Size = sum also size of coefficients
Line space = max # lines in memory during refutation

Total space = max # bits in memory (sum also size of coefficients)
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Proof Complexity Preliminaries
us Work

Size Lower Bounds for Cutting Planes

Clique-colouring formulas

“A graph with an m-clique is not (m—1)-colourable”

Exponential lower bound via interpolation and circuit complexity [Pud97]
Technique very specifically tied to structure of formula
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Proof Complexity

Size Lower Bounds for Cutting Planes

Clique-colouring formulas

“A graph with an m-clique is not (m—1)-colourable”

Exponential lower bound via interpolation and circuit complexity [Pud97]
Technique very specifically tied to structure of formula

Random O(logn)-CNF formulas

“Large number of randomly sampled clauses can be satisfied”
Exponential lower bound via bottleneck counting argument [Sok24]
Very intriguing new technique! (Or circuit lower bound in disguise?)
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Pebbling formulas

“Possible to get from sources to sink in connected directed acyclic graph”

Short cutting planes refutations of (lifted) pebbling formulas on certain DAGs must have
large line space [HN12, GP18]

(and such short refutations do exist)
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Pebbling formulas

“Possible to get from sources to sink in connected directed acyclic graph”

Short cutting planes refutations of (lifted) pebbling formulas on certain DAGs must have
large line space [HN12, GP18]

(and such short refutations do exist)

Tseitin formulas

“Sum of degrees of vertices in graph is even”

Short refutations of (lifted) Tseitin formulas on expanders must have
large line space [GP18]

Not clear whether such short refutations exist. . .
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Proof Complexity

Size-Space Trade-offs for Cutting Planes?

@ Surprise: Cutting planes can refute any CNF in line space 5 (1) [GPT15]
(But coefficients will be exponentially large)
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@ Surprise: Cutting planes can refute any CNF in line space 5 (1) [GPT15]
(But coefficients will be exponentially large)

@ Plug into [HN12, GP18] = get trade-off of sorts
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@ Surprise: Cutting planes can refute any CNF in line space 5 (1) [GPT15]
(But coefficients will be exponentially large)

@ Plug into [HN12, GP18] = get trade-off of sorts

@ But “constant-space” proofs with exponential-size coefficients somehow doesn't feel
quite right. ..
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Proof Complexity

Size-Space Trade-offs for Cutting Planes?

@ Surprise: Cutting planes can refute any CNF in line space 5 (1) [GPT15]
(But coefficients will be exponentially large)

@ Plug into [HN12, GP18] = get trade-off of sorts

@ But “constant-space” proofs with exponential-size coefficients somehow doesn't feel
quite right. ..

What about “true’” trade-offs?

Are there trade-offs where the space-efficient cutting planes refutations have small
coefficients? (Say, of polynomial or even constant size)
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Proof Complexity

Focus of This Lecture (and Next Lecture)

Theorem (Informal sample)
There are families of 6-CNF formulas { Fx }3_, of size ©(N) such that:
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Proof Complexity

Focus of This Lecture (and Next Lecture)

Theorem (Informal sample)
There are families of 6-CNF formulas { Fx }3_, of size ©(N) such that:

@ Fy can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O(N2/5)

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 9/25



Proof Complexity

Focus of This Lecture (and Next Lecture)

Theorem (Informal sample)
There are families of 6-CNF formulas { Fx }3_, of size ©(N) such that:

@ Fy can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O(N2/5)

@ Fv can be refuted by cutting planes with constant-size coefficients in total space
O(N1/40) and size exp (O(N1/40))
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Proof Complexity

Focus of This Lecture (and Next Lecture)

Theorem (Informal sample)
There are families of 6-CNF formulas { Fx }3_, of size ©(N) such that:

@ Fy can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O(N2/5)

@ Fv can be refuted by cutting planes with constant-size coefficients in total space
O(N1/40) and size exp (O(N1/40))

© Any cutting planes refutation even with coefficients of unbounded size in line space
less than N'1/29=¢ requires length exp(Q(N1/40))
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Proof Complexity

Focus of This Lecture (and Next Lecture)

Theorem (Informal sample)
There are families of 6-CNF formulas { Fx }3_, of size ©(N) such that:

@ Fy can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O(N2/5)

@ Fv can be refuted by cutting planes with constant-size coefficients in total space
O(N1/40) and size exp (O(N1/40))

© Any cutting planes refutation even with coefficients of unbounded size in line space
less than N'1/29=¢ requires length exp(Q(N1/40))

@ Upper bounds for # bits; lower bounds for # lines/inequalities
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Proof Complexity

Focus of This Lecture (and Next Lecture)

Theorem (Informal sample)
There are families of 6-CNF formulas { Fx }3_, of size ©(N) such that:

@ Fy can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O(N2/5)

@ Fv can be refuted by cutting planes with constant-size coefficients in total space
O(N1/40) and size exp (O(N1/40))

© Any cutting planes refutation even with coefficients of unbounded size in line space
less than N'1/29=¢ requires length exp(Q(N1/40))

@ Upper bounds for # bits; lower bounds for # lines/inequalities
@ Hold uniformly for resolution, polynomial calculus, and cutting planes
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Proof Complexity
S ork
Today's Lecture

Focus of This Lecture (and Next Lecture)

Theorem (Informal sample)
There are families of 6-CNF formulas { Fx }3_, of size ©(N) such that:

@ Fy can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O(N2/5)

@ Fv can be refuted by cutting planes with constant-size coefficients in total space
O(N1/40) and size exp (O(N1/40))

© Any cutting planes refutation even with coefficients of unbounded size in line space
less than N'1/29=¢ requires length exp(Q(N1/40))

@ Upper bounds for # bits; lower bounds for # lines/inequalities
@ Hold uniformly for resolution, polynomial calculus, and cutting planes
@ Even for semantic proofs where anything implied by blackboard inferred in single step
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3 d the Falsified C se Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Outline of Proof

Proof is by carefully constructed chain of delicate reductions
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Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Outline of Proof

Proof is by carefully constructed chain of delicate reductions
(a.k.a. the kitchen sink)
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and the Falsified Clause Search Problem
Tools and Techniques
nd—Tompa Game

Outline of Proof

Proof is by carefully constructed chain of delicate reductions
(a.k.a. the kitchen sink)
@ Short, space-efficient proof = efficient communication protocol for
falsified clause search problem
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and the Falsified Clause Search Problem
Tools and Techniques
nd—Tompa Game

Outline of Proof

Proof is by carefully constructed chain of delicate reductions
(a.k.a. the kitchen sink)

@ Short, space-efficient proof = efficient communication protocol for
falsified clause search problem
@ Crucial twists:

e Study real communication model
e Consider round efficiency of protocols
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Tools and Techniques

Outline of Proof

h Problem

Proof is by carefully constructed chain of delicate reductions
(a.k.a. the kitchen sink)

@ Short, space-efficient proof = efficient communication protocol for
falsified clause search problem
@ Crucial twists:
e Study real communication model

e Consider round efficiency of protocols

© Protocol for composed search problem =- parallel decision tree
via simulation theorem
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h Problem
Tools and Techniques

Outline of Proof

Proof is by carefully constructed chain of delicate reductions
(a.k.a. the kitchen sink)
@ Short, space-efficient proof = efficient communication protocol for
falsified clause search problem
@ Crucial twists:
e Study real communication model

e Consider round efficiency of protocols

© Protocol for composed search problem =- parallel decision tree
via simulation theorem

@ Parallel decision tree for pebbling formulas Peb
= pebbling strategy for Dymond—Tompa game on graph G
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h Problem
Tools and Techniques

Outline of Proof

Proof is by carefully constructed chain of delicate reductions
(a.k.a. the kitchen sink)
@ Short, space-efficient proof = efficient communication protocol for
falsified clause search problem
@ Crucial twists:
e Study real communication model
e Consider round efficiency of protocols

© Protocol for composed search problem =- parallel decision tree
via simulation theorem

@ Parallel decision tree for pebbling formulas Peb
= pebbling strategy for Dymond—Tompa game on graph G

© Construct graphs G with strong round-cost trade-offs for Dymond—Tompa pebbling
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Falsified Clause Search Problem
Tools and Techniques
ompa Game

Outline of Proof

Proof is by carefully constructed chain of delicate reductions
(a.k.a. the kitchen sink)
@ Short, space-efficient proof = efficient communication protocol for
falsified clause search problem [HN12]
@ Crucial twists:
o Study real communication model [Kra98, BEGJ00]
e Consider round efficiency of protocols

@ Protocol for composed search problem = parallel decision tree [Val75]
via simulation theorem a la [RM99, GPW15]

© Parallel decision tree for pebbling formulas Peb, [BWO01]
= pebbling strategy for Dymond—Tompa game on graph G [DT85]

© Construct graphs G with strong round-cost trade-offs for Dymond—Tompa pebbling
inspired by [CS82, LT82, BN11, Norl2]
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Tools and Techniques

Deterministic Communication

@ Two players:
e Alice with private input x
e Bob with private input y
e Both deterministic but with unbounded computational powers

Jakob Nordstré Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 11/25



he Falsified Clause Search Problem
Tools and Techniques ¢ 0 oblems
nd—Tompa Game

Deterministic Communication

@ Two players:
e Alice with private input x
e Bob with private input y
e Both deterministic but with unbounded computational powers

e Task: Compute f(x,y) by communicating according to protocol (= tree)

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 11/25



Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Deterministic Communication

@ Two players:
e Alice with private input x
e Bob with private input y
e Both deterministic but with unbounded computational powers

e Task: Compute f(x,y) by communicating according to protocol (= tree)

@ Method: Each node v of protocol tree specifies:
o Either Alice sends a bit a,{0,1}
o Or Bob sends a bit b, € {0,1}
e A round starts when the sender changes
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of S Problems
Pebbling Formulas and the mond—Tompa Game

Deterministic Communication

@ Two players:
e Alice with private input x
e Bob with private input y
e Both deterministic but with unbounded computational powers

e Task: Compute f(x,y) by communicating according to protocol (= tree)

@ Method: Each node v of protocol tree specifies:
o Either Alice sends a bit a,{0,1}
o Or Bob sends a bit b, € {0,1}
e A round starts when the sender changes

@ When they reach any leaf, both Alice and Bob should have learned f(z,y)
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of S Problems
Pebbling Formulas and the mond—Tompa Game

Deterministic Communication

@ Two players:
e Alice with private input x
e Bob with private input y
e Both deterministic but with unbounded computational powers

e Task: Compute f(x,y) by communicating according to protocol (= tree)

@ Method: Each node v of protocol tree specifies:
o Either Alice sends a bit a,{0,1}
o Or Bob sends a bit b, € {0,1}
e A round starts when the sender changes

@ When they reach any leaf, both Alice and Bob should have learned f(z,y)

@ Function f solved by r-round deterministic communication in cost ¢
if 3 protocol tree such that along any path from root
e # rounds <r
e total # bits sent < ¢
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Real Communication [Kra98|

@ Same players Alice with private input 2 and Bob with private input y
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques ifting/Composition of oblems
Formulas and the Dymond—Tompa Game

Real Communication [Kra98|

@ Same players Alice with private input 2 and Bob with private input y

e Task: Compute f(x,y) by sending real numbers to referee
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he Falsified Clause Search Problem
Tools and Techniques ¢ 0 oblems
nd—Tompa Game

Real Communication [Kra98|

@ Same players Alice with private input 2 and Bob with private input y

e Task: Compute f(x,y) by sending real numbers to referee

@ Method: In each round v

o Alice sends a, 1(z),...,ayc,(x) € R
o Bob sends by 1(y),..., by, (y) € R
o Referee announces results of comparisons a, ;(x) < b, ;(y) for i € [¢,]
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Commumcatlon Complexnty and the Falsified Clause Search Problem
Tools and Techniques o 0

Real Communication [Kra98|

@ Same players Alice with private input 2 and Bob with private input y

e Task: Compute f(x,y) by sending real numbers to referee

@ Method: In each round v
o Alice sends a, 1(z),...,ayc,(x) € R
o Bob sends by 1(y),..., by, (y) € R
o Referee announces results of comparisons a, ;(x) < b, ;(y) for i € [¢,]

@ Function f solved by r-round real communication in cost ¢
if 3 protocol such that
e # rounds < r
e total # comparisons made by referee < ¢
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Real Communication [Kra98|

Same players Alice with private input = and Bob with private input y

Task: Compute f(z,y) by sending real numbers to referee

Method: In each round v

o Alice sends a, 1(z),...,ayc,(x) € R
o Bob sends by 1(y),..., by, (y) € R
o Referee announces results of comparisons a, ;(x) < b, ;(y) for i € [¢,]

Function f solved by r-round real communication in cost ¢
if 3 protocol such that

e # rounds < r

e total # comparisons made by referee < ¢

Strictly stronger than standard deterministic communication
(EQUALITY solved with real communication in 1 round with cost 2)
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting npc n of Se Problems
Pebbling Formul mond—Tompa Game

Falsified Clause Search Problem

Falsified clause search problem Search(F)
Set-up: Fixed (and unsatisfiable) CNF formula F’
Input: Assignment « to Vars(F)
Output: Clause C € F such that « falsifies C
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Falsified Clause Search Problem

Falsified clause search problem Search(F)
Set-up: Fixed (and unsatisfiable) CNF formula F’
Input: Assignment « to Vars(F)
Output: Clause C € F such that « falsifies C

For any standard proof system, refutation 7 : F'=- L (viewed as DAG) can be used to
solve Search(F'):

@ Start at sink (labelled by L)
@ Walk backwards along nodes falsified by «

@ Axiom clause C € F' labelling source node is valid answer
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Communication Complexity and the Falsified Clause Search Problem

Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Falsified Clause Search Problem (Communication Version)

Falsified clause search problem Search(F') for Alice and Bob

Set-up: Fixed (and unsatisfiable) CNF formula F’
And (devious) partition of Vars(F') between Alice and Bob

Input: Assignment « to Vars(F') split between Alice and Bob
Task: Alice and Bob should communicate to find clause C' € F such that
« falsifies C

Jan 30, 2026 14/25
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Communication Complexity and the Falsified Clause Search Problem

Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Falsified Clause Search Problem (Communication Version)

Falsified clause search problem Search(F') for Alice and Bob

Set-up: Fixed (and unsatisfiable) CNF formula F’
And (devious) partition of Vars(F') between Alice and Bob

Input: Assignment « to Vars(F') split between Alice and Bob
Task: Alice and Bob should communicate to find clause C' € F such that
« falsifies C

Actually, communication protocol should compute not function but relation — will mostly
ignore this distinction

Jan 30, 2026 14/25
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
g Formulas and the Dymond—Tompa Game

Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «
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Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «

Use binary search to find transition from true to false blackboard
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Tools and Techniques ¢ 0 oblems
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Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «

! |

Use binary search to find transition from true to false blackboard
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Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «

| |

Use binary search to find transition from true to false blackboard
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Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «

|

Use binary search to find transition from true to false blackboard
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Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «

|

Use binary search to find transition from true to false blackboard
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting npc n of Se Problems
Pebbling Formul mond—Tompa Game

Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «

|

Use binary search to find transition from true to false blackboard

Must happen when C' € F written down — answer to Search(F)
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting npc n of Se Problems
Pebbling Formul mond—Tompa Game

Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «

|

Use binary search to find transition from true to false blackboard
Must happen when C' € F written down — answer to Search(F)
Refutation length L = evaluate log L blackboards
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Communication Complexnty and the Falsified Clause Search Problem
Tools and Techniques Liftin o 0
Pebb

Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «

|

Use binary search to find transition from true to false blackboard
Must happen when C' € F written down — answer to Search(F)
Refutation length L = evaluate log L blackboards

Refutation line space s = max s bits of communication per blackboard
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «

|

Use binary search to find transition from true to false blackboard

Must happen when C' € F written down — answer to Search(F)
Refutation length L = evaluate log L blackboards

Refutation line space s = max s bits of communication per blackboard

Only one round per blackboard evaluation
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of S Problems
Pebbling Formulas and the mond—Tompa Game

Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F' under «

|

Use binary search to find transition from true to false blackboard

Must happen when C' € F written down — answer to Search(F)
Refutation length L = evaluate log L blackboards

Refutation line space s = max s bits of communication per blackboard
Only one round per blackboard evaluation

(Alice and Bob simply evaluate their parts of each inequality and ask referee to compare)
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Lifting of Functions

Construct hard communication problems by “hardness amplification”
using lifting or composition
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arch Problem
Tools and Techniques

Lifting of Functions

Construct hard communication problems by “hardness amplification”
using lifting or composition

Start with function f: {0,1}" — {0,1}
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Lifting of Functions

Construct hard communication problems by “hardness amplification”
using lifting or composition

BRI

Start with function f: {0,1}" — {0,1}

Construct new function on inputs
z € [(]™ and y € {0, 1}

| Y11 | Y1,2 | Y2,1 | Y2,2 | Y31 | Ys,2 |
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Lifting of Functions

Construct hard communication problems by “hardness amplification”
using lifting or composition

Start with function f: {0,1}" — {0,1}

Construct new function on inputs
z € [(]™ and y € {0, 1}

Alice’s x-variables determine. . .
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Lifting of Functions

Construct hard communication problems by “hardness amplification”
using lifting or composition

| x

Start with function f: {0,1}" — {0,1}
Construct new function on inputs / \

z € [(]™ and y € {0, 1}

Alice’s x-variables determine. . .
...which of Bob’s y-bits to feed to f

%
s
N}
S
w
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Lifting of Functions

Construct hard communication problems by “hardness amplification”
using lifting or composition

Start with function f: {0,1}" — {0,1}

Construct new function on inputs / \
z € [(]™ and y € {0, 1}
Alice's x-variables determine. ..

...which of Bob’s y-bits to feed to f

Length-£ lifting of f defined as f<|y1,$1 Y2,22 y3"'”3>
Llffl/(f) (51;7 2/) = f(yl,érlv cee aym,:rm)
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques L mposition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Lifting of Functions

Construct hard communication problems by “hardness amplification”
using lifting or composition

Start with function f: {0,1}" — {0,1}

Construct new function on inputs / \
z € [(]™ and y € {0, 1}
Alice's x-variables determine. ..

...which of Bob’s y-bits to feed to f \ \ /
Length-£ lifting of f defined as f<|y1,$1 Y2,z y3"'”3>

Lift,(f)(@,y) = f(Yrz0s- s Ymam)
Building on ideas from e.g. [She08, BHP10]
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Communication Complexity and the Falsified Clause Search Problem
Tools and Techniques Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V;
has 2Vt outgoing edges
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Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V;
has 2Vt outgoing edges
Parallel decision tree:
@ uses # queries =
max Y _|Vi| along any path
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Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V;
has 2Vt outgoing edges
Parallel decision tree:
@ uses # queries =
max Y _|Vi| along any path
@ has depth = length of longest path
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Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V;
has 2Vt outgoing edges
Parallel decision tree:
@ uses # queries =
max Y _|Vi| along any path
@ has depth = length of longest path
@ solves search problem S C {0,1}" x Q if V « € {0, 1} path defined by a ends in
leaf with ¢ s.t. (a,q) € S
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Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V;
has 2Vt outgoing edges
Parallel decision tree:
@ uses # queries =
max Y _|Vi| along any path
@ has depth = length of longest path
@ solves search problem S C {0,1}" x Q if V « € {0, 1} path defined by a ends in
leaf with ¢ s.t. (a,q) € S
@ Can be simulated by Alice & Bob to solve lifted problem (easy)
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Simulation of Protocols by Parallel Decision Trees [Val75]

Each node t in tree labelled by variables V;
has 2Vt outgoing edges
Parallel decision tree:
@ uses # queries =
max Y _|Vi| along any path
@ has depth = length of longest path
@ solves search problem S C {0,1}" x Q if V « € {0, 1} path defined by a ends in
leaf with ¢ s.t. (a,q) € S
@ Can be simulated by Alice & Bob to solve lifted problem (easy)

Simulation theorem of protocol by decision tree (hard direction)

Let S search problem with domain {0,1}™ and let £ = m3*¢, ¢ > 0. Then:
3 r-round real communication protocol in cost ¢ solving Lift,(.S)
= 3 depth-r parallel decision tree solving S with O(c/log¥) queries.
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Tools and Techniques Lifting/Comg on of Problems

Pebbling Formulas and ch Dymond—Tompa Game

Where to Get Formulas with Trade-off Properties?

Questions about time-space trade-offs fundamental in theoretical computer science

Well-studied (and well-understood) for pebble games modelling calculations described by
DAGs

In particular, for black-white pebble game investigated by [CS76] and many others
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Pebbling Contradictions

CNF formulas encoding black-white pebble game played on DAG G

1. Ul
Up

2. up @ sources are true
3.

33 _ Uy @ truth propagates
4. ui VuyVuy upwards
5. Uz VuzVus o
6. T4V TsV ug Uy U us3 @ but sink is false
7. ug
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Pebbling Contradictions

CNF formulas encoding black-white pebble game played on DAG G

1. Ul
Up

2. up @ sources are true
3.

33 _ Uy @ truth propagates
4. ui VuyVuy upwards
5. Uz VuzVus o
6. T4V TsV ug Uy U us3 @ but sink is false
7. ug

Appeared in various contexts in e.g. [RM99, BEGJ00, BWO01]

Used in [Nor06, NH08, BN08, BN11, BNT13] to study space and size-space trade-offs in
resolution and polynomial calculus

Formulas inherit some DAG properties, but not enough — make them harder by lifting!
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Lifted CNF Formulas

Given

@ CNF formula F over variables u, ..
o lift length £ € N
the lifted formula Lift,(F') has
e selector variables {; j }ic[n), el
e main variables {yi ; }icn),jel

o for every i € [n] an auxiliary clause

U

i1 Vxiag V- VTy
o forevery C'=u; V- Vu, VU, V-V, in Fand (ji,...,j:) € [{]
a main clause

Tiygr YV Yirgi VoV Tiggis V Yisigs ¥V Tigirgorr Y Vigyrgera VoY Tingge V Vi
Jakob Nordstrom (UCPH & LU)

Proof Complexity as a Computational Lens: Lecture 22
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Toy Example Lifted Pebbling Contradiction (Lift Length 2)

(1,1 VT 2) A (T, VT VT VT VoY)
A (@0 V @2,2) A (@an VT VT V T V us,)
A (Ta,1 V @y5) A (Ta,n VT VT, VT VoYs,)
A (@) VoTy0) A (T, VT, Vs, VTV ys)
A (25,1 V @55) A (T2 VT VT VT VoY)
A (Tg,1 V Tg,2) A (T2 VT VT, VT VoYs,o)
A @ Vo) A VT VT, VT Vo)
A (T, V oyi,2) A (T2 VT Vs VT Vo s,)
A (Za1 V Ya,1) A (Ts0 VT VTV TV Ye,n)

V Ya,2) A (Zap VT VsV Tge Vo

V Ya,1) A (Ta,n VT VT VT VoY)
V Ya,2) A (Ts0 VT Vs, VT V Ye,2)
VYLV Ty VT, VTV Ya) A (Ty,n VT VYV T,V Ye,n)
VUi VT Vo, V Tae V Ya) A (T2 VB0 VT VT VoY)
VIV Topn VT, VT VoY) A (Zy,2 VT VT, VT Vo Ye,n)
VT, VT VT, VTae VoY) A (Ty,2 VT, Vs, V V Ys,2)
VUi VT Vo, VY Tan VoY) A (T,0

VT VT VT, VT VoY) A (T2

VY, V Y1)

SV T VT, VT,
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Lifted Pebbling Contradictions and the Simulation Theorem

Plug in the simulation theorem:
@ From r-round real communication protocol in cost ¢ solving Search(Liftf(PebG))

o Get depth-r parallel decision tree solving Search(PebG) with O(c/log /) queries
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Lifted Pebbling Contradictions and the Simulation Theorem

Plug in the simulation theorem:
@ From r-round real communication protocol in cost ¢ solving Search(Liftf(PebG))

o Get depth-r parallel decision tree solving Search(PebG) with O(c/log /) queries

So now we need to understand decision trees for pebbling formulas Peb!
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Lifted Pebbling Contradictions and the Simulation Theorem

Plug in the simulation theorem:
@ From r-round real communication protocol in cost ¢ solving Search(Liftf(PebG))
o Get depth-r parallel decision tree solving Search(PebG) with O(c/log /) queries

So now we need to understand decision trees for pebbling formulas Peb!

Study pebble game on graph G, but other game than black-white pebbling
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From Parallel Decision Trees to Dymond—Tompa Games

e From [DT85]; more recently studied in [Chal3, CLNV15]
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From Parallel Decision Trees to Dymond—Tompa Games

e From [DT85]; more recently studied in [Chal3, CLNV15]
@ Two players Pebbler and Challenger
@ In each round

e Pebbler places pebbles on subset of vertices
(including sink in 1st round)

o Challenger either jumps to newly pebbled
vertex (always in 1st round) or stays
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@ In each round
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From Parallel Decision Trees to Dymond—Tompa Games

e From [DT85]; more recently studied in [Chal3, CLNV15]
@ Two players Pebbler and Challenger
@ In each round

e Pebbler places pebbles on subset of vertices
(including sink in 1st round)

o Challenger either jumps to newly pebbled
vertex (always in 1st round) or stays

@ Pebbler wins at end of round when Challenger on vertex with all predecessors
pebbled (or on source vertex)

3 depth-r parallel decision tree for Search(Peb) with < ¢ queries
= Pebbler wins r-round Dymond—Tompa game on G in cost < ¢+ 1
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Putting the Pieces Together

Prove round-cost trade-offs for Dymond—-Tompa games on graphs GG
(hacking graph constructions from [CS82, LT82, Nor12])
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Putting the Pieces Together

Prove round-cost trade-offs for Dymond—-Tompa games on graphs GG
(hacking graph constructions from [CS82, LT82, Nor12])

4

Depth-query trade-offs for parallel decision trees for Search(PebG)

Jakob Nordstrom (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 24/25



h Problem
Tools and Techniques Lifting/Comg on of Search Problems
Pebbling Formulas and the Dymond—Tompa Game

Putting the Pieces Together

Prove round-cost trade-offs for Dymond—-Tompa games on graphs GG
(hacking graph constructions from [CS82, LT82, Nor12])

4

Depth-query trade-offs for parallel decision trees for Search(PebG)

4

Real communication round-cost trade-offs for Lift (Search(Pebg))
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Putting the Pieces Together

Prove round-cost trade-offs for Dymond—-Tompa games on graphs GG
(hacking graph constructions from [CS82, LT82, Nor12])

4

Depth-query trade-offs for parallel decision trees for Search(PebG)

4

Real communication round-cost trade-offs for Lift (Search(Pebg))

4

Same communication lower bounds hold for Search(Lift (Pebg)),
i.e., search problem for lifted formulas in [BHP10]
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Putting the Pieces Together

Prove round-cost trade-offs for Dymond—-Tompa games on graphs GG
(hacking graph constructions from [CS82, LT82, Nor12])

4

Depth-query trade-offs for parallel decision trees for Search(PebG)

4

Real communication round-cost trade-offs for Lift (Search(Pebg))

4

Same communication lower bounds hold for Search(Lift (Pebg)),
i.e., search problem for lifted formulas in [BHP10]

4
Cutting planes length-space trade-off for Lift (PebG)
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Open Problems

Some Interesting Questions

Communication complexity
@ Smaller length of lift?

@ Simulation theorems for stronger communication models (in particular, for so-called
DAG-like communication)
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Open Problems

Some Interesting Questions

Communication complexity
@ Smaller length of lift?
@ Simulation theorems for stronger communication models (in particular, for so-called
DAG-like communication)
Proof complexity
@ Better Dymond—Tompa trade-offs?
@ Reduction to black-white pebbling instead of Dymond—Tompa?
@ Supercritical size-space trade-offs for Tseitin formulas a la [BNT13, BBI16]?
@ Line space lower bounds for CP with bounded coefficients (strengthening [GPT15])
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Open Problems

Some Interesting Questions

Communication complexity
@ Smaller length of lift?
@ Simulation theorems for stronger communication models (in particular, for so-called
DAG-like communication)
Proof complexity
@ Better Dymond—Tompa trade-offs?
@ Reduction to black-white pebbling instead of Dymond—Tompa?
@ Supercritical size-space trade-offs for Tseitin formulas a la [BNT13, BBI16]?
@ Line space lower bounds for CP with bounded coefficients (strengthening [GPT15])

And more to come in future lectures. ..

@ But now it is time to switch to the board and do some proper proofs!
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