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Recap: Configuration-Style Proofs

Proof system operates with formulas of some syntactic form

Proof/refutation is “presented on blackboard”

Derivation steps:

Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
Infer new lines by deductive rules of proof system
Erase lines not currently needed (to save space on blackboard)

Refutation ends when (explicit) contradiction is derived
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Cutting Planes (CP)

Clauses interpreted as linear inequalities
E.g., x ∨ y ∨ z ⇝ x+ y + (1− z) ≥ 1 ⇝ x+ y − z ≥ 0

Proof system also works for any system of 0–1 linear inequalities with integer coefficients

Variable axioms
0 ≤ x ≤ 1

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai+bi)xi ≥ A+B

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

c ∈ N+

Division

∑
caixi ≥ A∑

aixi ≥ ⌈A/c⌉
c ∈ N+

Goal: Derive 0 ≥ 1 ⇔ formula/system of inequalities unsatisfiable
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Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 ∨ x1,2

2. x2,1 ∨ x2,2

3. x3,1 ∨ x3,2

4. x1,1 ∨ x2,1

5. x1,1 ∨ x3,1

6. x2,1 ∨ x3,1

7. x1,2 ∨ x2,2

8. x1,2 ∨ x3,2

9. x2,2 ∨ x3,2

Pigeonhole principle (PHP)
“n+ 1 pigeons don’t fit into n holes”

Variables xi,j = “pigeon i goes into hole j”

xi,1 ∨ xi,2 ∨ · · · ∨ xi,n every pigeon i gets a hole

xi,j ∨ xi′,j no hole j gets two pigeons i ̸= i′

History of derivation steps
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Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1
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3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps
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History of derivation steps

Write down axiom 4: −x1,1 − x2,1 ≥ −1

−x1,1 − x2,1 ≥ −1
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Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −2x1,1 − 2x2,1 − 2x3,1 ≥ −3
Write down axiom 7: −x1,2 − x2,2 ≥ −1
Write down axiom 8: −x1,2 − x3,2 ≥ −1
Add to get −2x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x3,2 ≥ −1
Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1

Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2

−x1,1 − x2,1 − x3,1 ≥ −1

−2x1,2 − 2x2,2 − 2x3,2 ≥ −3
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
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Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Write down axiom 7: −x1,2 − x2,2 ≥ −1
Write down axiom 8: −x1,2 − x3,2 ≥ −1
Add to get −2x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x3,2 ≥ −1
Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2

Divide to get −x1,2 − x2,2 − x3,2 ≥ −1

−x1,1 − x2,1 − x3,1 ≥ −1

−2x1,2 − 2x2,2 − 2x3,2 ≥ −3
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Write down axiom 7: −x1,2 − x2,2 ≥ −1
Write down axiom 8: −x1,2 − x3,2 ≥ −1
Add to get −2x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x3,2 ≥ −1
Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2

Divide to get −x1,2 − x2,2 − x3,2 ≥ −1

−x1,1 − x2,1 − x3,1 ≥ −1

−2x1,2 − 2x2,2 − 2x3,2 ≥ −3

−x1,2 − x2,2 − x3,2 ≥ −1
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Write down axiom 8: −x1,2 − x3,2 ≥ −1
Add to get −2x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x3,2 ≥ −1
Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1

Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3

−x1,1 − x2,1 − x3,1 ≥ −1

−2x1,2 − 2x2,2 − 2x3,2 ≥ −3

−x1,2 − x2,2 − x3,2 ≥ −1
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Previous Work
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Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Write down axiom 8: −x1,2 − x3,2 ≥ −1
Add to get −2x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x3,2 ≥ −1
Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1

Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3

−x1,1 − x2,1 − x3,1 ≥ −1

−x1,2 − x2,2 − x3,2 ≥ −1
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Add to get −2x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x3,2 ≥ −1
Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3

Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

−x1,1 − x2,1 − x3,1 ≥ −1

−x1,2 − x2,2 − x3,2 ≥ −1
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Add to get −2x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x3,2 ≥ −1
Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3

Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

−x1,1 − x2,1 − x3,1 ≥ −1

−x1,2 − x2,2 − x3,2 ≥ −1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −x1,2 − x3,2 ≥ −1
Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

Erase the line −x1,2 − x2,2 − x3,2 ≥ −1

−x1,1 − x2,1 − x3,1 ≥ −1

−x1,2 − x2,2 − x3,2 ≥ −1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −x1,2 − x3,2 ≥ −1
Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

Erase the line −x1,2 − x2,2 − x3,2 ≥ −1

−x1,1 − x2,1 − x3,1 ≥ −1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1

Erase the line −x1,1 − x2,1 − x3,1 ≥ −1

−x1,1 − x2,1 − x3,1 ≥ −1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −x1,2 − x2,2 ≥ −1
Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1

Erase the line −x1,1 − x2,1 − x3,1 ≥ −1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Write down axiom 9: −x2,2 − x3,2 ≥ −1
Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1

Write down axiom 1: x1,1 + x1,2 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 ≥ 1
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Add to get −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1

Write down axiom 2: x2,1 + x2,2 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 ≥ 1

x2,1 + x2,2 ≥ 1
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1

Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 ≥ 1

x2,1 + x2,2 ≥ 1
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1

Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 ≥ 1

x2,1 + x2,2 ≥ 1

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
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Tools and Techniques
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Previous Work
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Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

Erase the line x2,1 + x2,2 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 ≥ 1

x2,1 + x2,2 ≥ 1

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −2x1,2 − x2,2 − x3,2 ≥ −2
Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

Erase the line x2,1 + x2,2 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 ≥ 1

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1

Erase the line x1,1 + x1,2 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 ≥ 1

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
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Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Divide to get −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1

Erase the line x1,1 + x1,2 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
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Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −2x1,2 − 2x2,2 − 2x3,2 ≥ −3
Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1
Erase the line x1,1 + x1,2 ≥ 1

Write down axiom 3: x3,1 + x3,2 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

x3,1 + x3,2 ≥ 1
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Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1
Erase the line x1,1 + x1,2 ≥ 1
Write down axiom 3: x3,1 + x3,2 ≥ 1

Add to get x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

x3,1 + x3,2 ≥ 1
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Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Add to get −x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2
Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1
Erase the line x1,1 + x1,2 ≥ 1
Write down axiom 3: x3,1 + x3,2 ≥ 1

Add to get x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

x3,1 + x3,2 ≥ 1

x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1
Erase the line x1,1 + x1,2 ≥ 1
Write down axiom 3: x3,1 + x3,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3

Erase the line x3,1 + x3,2 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

x3,1 + x3,2 ≥ 1

x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −x1,2 − x2,2 − x3,2 ≥ −1
Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1
Erase the line x1,1 + x1,2 ≥ 1
Write down axiom 3: x3,1 + x3,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3

Erase the line x3,1 + x3,2 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1
Erase the line x1,1 + x1,2 ≥ 1
Write down axiom 3: x3,1 + x3,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3
Erase the line x3,1 + x3,2 ≥ 1

Erase the line x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Erase the line −x1,1 − x2,1 − x3,1 ≥ −1
Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1
Erase the line x1,1 + x1,2 ≥ 1
Write down axiom 3: x3,1 + x3,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3
Erase the line x3,1 + x3,2 ≥ 1

Erase the line x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1
Erase the line x1,1 + x1,2 ≥ 1
Write down axiom 3: x3,1 + x3,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3
Erase the line x3,1 + x3,2 ≥ 1
Erase the line x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

Add to get 0 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Example: Cutting planes Refutation of Pigeonhole Principle
1. x1,1 + x1,2 ≥ 1

2. x2,1 + x2,2 ≥ 1

3. x3,1 + x3,2 ≥ 1

4. −x1,1 − x2,1 ≥ −1

5. −x1,1 − x3,1 ≥ −1

6. −x2,1 − x3,1 ≥ −1

7. −x1,2 − x2,2 ≥ −1

8. −x1,2 − x3,2 ≥ −1

9. −x2,2 − x3,2 ≥ −1

History of derivation steps

Write down axiom 1: x1,1 + x1,2 ≥ 1
Write down axiom 2: x2,1 + x2,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 ≥ 2
Erase the line x2,1 + x2,2 ≥ 1
Erase the line x1,1 + x1,2 ≥ 1
Write down axiom 3: x3,1 + x3,2 ≥ 1
Add to get x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3
Erase the line x3,1 + x3,2 ≥ 1
Erase the line x1,1 + x1,2 + x2,1 + x2,2 ≥ 2

Add to get 0 ≥ 1

−x1,1 − x2,1 − x3,1 − x1,2 − x2,2 − x3,2 ≥ −2

x1,1 + x1,2 + x2,1 + x2,2 + x3,1 + x3,2 ≥ 3

0 ≥ 1
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Proof Complexity
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Open Problems

Preliminaries
Previous Work
Today’s Lecture

Complexity Measures for Cutting Planes

Length = total # lines/inequalities in refutation

Size = sum also size of coefficients

Line space = max # lines in memory during refutation

Total space = max # bits in memory (sum also size of coefficients)
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

Size Lower Bounds for Cutting Planes

Clique-colouring formulas
“A graph with an m-clique is not (m−1)-colourable”
Exponential lower bound via interpolation and circuit complexity [Pud97]
Technique very specifically tied to structure of formula

Random O(log n)-CNF formulas
“Large number of randomly sampled clauses can be satisfied”
Exponential lower bound via bottleneck counting argument [Sok24]
Very intriguing new technique! (Or circuit lower bound in disguise?)
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Proof Complexity
Tools and Techniques

Open Problems

Preliminaries
Previous Work
Today’s Lecture

What About Line Space in Cutting Planes?

Pebbling formulas
“Possible to get from sources to sink in connected directed acyclic graph”
Short cutting planes refutations of (lifted) pebbling formulas on certain DAGs must have
large line space [HN12, GP18]
(and such short refutations do exist)

Tseitin formulas
“Sum of degrees of vertices in graph is even”
Short refutations of (lifted) Tseitin formulas on expanders must have
large line space [GP18]
Not clear whether such short refutations exist. . .
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Proof Complexity
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Preliminaries
Previous Work
Today’s Lecture

Size-Space Trade-offs for Cutting Planes?

Surprise: Cutting planes can refute any CNF in line space 5 (!) [GPT15]
(But coefficients will be exponentially large)

Plug into [HN12, GP18] ⇒ get trade-off of sorts

But “constant-space” proofs with exponential-size coefficients somehow doesn’t feel
quite right. . .

What about “true” trade-offs?

Are there trade-offs where the space-efficient cutting planes refutations have small
coefficients? (Say, of polynomial or even constant size)
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Theorem (Informal sample)

There are families of 6-CNF formulas {FN}∞N=1 of size Θ(N) such that:

1 FN can be refuted by cutting planes with constant-size coefficients in size O(N) and
total space O

(
N2/5

)
2 FN can be refuted by cutting planes with constant-size coefficients in total space

O
(
N1/40

)
and size exp

(
O(N1/40)

)
3 Any cutting planes refutation even with coefficients of unbounded size in line space

less than N1/20−ϵ requires length exp
(
Ω(N1/40)

)
Upper bounds for # bits; lower bounds for # lines/inequalities

Hold uniformly for resolution, polynomial calculus, and cutting planes

Even for semantic proofs where anything implied by blackboard inferred in single step
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Proof Complexity
Tools and Techniques

Open Problems

Communication Complexity and the Falsified Clause Search Problem
Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond–Tompa Game

Outline of Proof

Proof is by carefully constructed chain of delicate reductions
(a.k.a. the kitchen sink)

1 Short, space-efficient proof ⇒ efficient communication protocol for
falsified clause search problem

[HN12]

2 Crucial twists:

Study real communication model

[Kra98, BEGJ00]

Consider round efficiency of protocols

3 Protocol for composed search problem ⇒ parallel decision tree

[Val75]

via simulation theorem

à la [RM99, GPW15]

4 Parallel decision tree for pebbling formulas PebG

[BW01]

⇒ pebbling strategy for Dymond–Tompa game on graph G

[DT85]

5 Construct graphs G with strong round-cost trade-offs for Dymond–Tompa pebbling

inspired by [CS82, LT82, BN11, Nor12]
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à la [RM99, GPW15]

4 Parallel decision tree for pebbling formulas PebG

[BW01]

⇒ pebbling strategy for Dymond–Tompa game on graph G

[DT85]

5 Construct graphs G with strong round-cost trade-offs for Dymond–Tompa pebbling

inspired by [CS82, LT82, BN11, Nor12]

Jakob Nordström (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 10/25



Proof Complexity
Tools and Techniques

Open Problems

Communication Complexity and the Falsified Clause Search Problem
Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond–Tompa Game

Outline of Proof

Proof is by carefully constructed chain of delicate reductions
(a.k.a. the kitchen sink)

1 Short, space-efficient proof ⇒ efficient communication protocol for
falsified clause search problem

[HN12]

2 Crucial twists:

Study real communication model

[Kra98, BEGJ00]

Consider round efficiency of protocols

3 Protocol for composed search problem ⇒ parallel decision tree

[Val75]

via simulation theorem
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Proof Complexity
Tools and Techniques

Open Problems

Communication Complexity and the Falsified Clause Search Problem
Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond–Tompa Game

Deterministic Communication

Two players:
Alice with private input x
Bob with private input y
Both deterministic but with unbounded computational powers

Task: Compute f(x, y) by communicating according to protocol (= tree)

Method: Each node v of protocol tree specifies:
Either Alice sends a bit av{0, 1}
Or Bob sends a bit bv ∈ {0, 1}
A round starts when the sender changes

When they reach any leaf, both Alice and Bob should have learned f(x, y)

Function f solved by r-round deterministic communication in cost c
if ∃ protocol tree such that along any path from root

# rounds ≤ r
total # bits sent ≤ c
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Real Communication [Kra98]

Same players Alice with private input x and Bob with private input y

Task: Compute f(x, y) by sending real numbers to referee

Method: In each round v

Alice sends av,1(x), . . . , av,cv (x) ∈ Rcv

Bob sends bv,1(y), . . . , bv,cv (y) ∈ Rcv

Referee announces results of comparisons av,i(x) ≤ bv,i(y) for i ∈ [cv]

Function f solved by r-round real communication in cost c
if ∃ protocol such that

# rounds ≤ r
total # comparisons made by referee ≤ c

Strictly stronger than standard deterministic communication
(Equality solved with real communication in 1 round with cost 2)
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Falsified Clause Search Problem

Falsified clause search problem Search(F )

Set-up: Fixed (and unsatisfiable) CNF formula F

Input: Assignment α to Vars(F )

Output: Clause C ∈ F such that α falsifies C

For any standard proof system, refutation π : F ⊢⊥ (viewed as DAG) can be used to
solve Search(F ):

Start at sink (labelled by ⊥)

Walk backwards along nodes falsified by α

Axiom clause C ∈ F labelling source node is valid answer
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Falsified Clause Search Problem (Communication Version)

Falsified clause search problem Search(F ) for Alice and Bob

Set-up: Fixed (and unsatisfiable) CNF formula F
And (devious) partition of Vars(F ) between Alice and Bob

Input: Assignment α to Vars(F ) split between Alice and Bob

Task: Alice and Bob should communicate to find clause C ∈ F such that
α falsifies C

Actually, communication protocol should compute not function but relation — will mostly
ignore this distinction
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Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

∅ ⊥

Use binary search to find transition from true to false blackboard

Must happen when C ∈ F written down — answer to Search(F )

Refutation length L ⇒ evaluate logL blackboards

Refutation line space s ⇒ max s bits of communication per blackboard

Only one round per blackboard evaluation

(Alice and Bob simply evaluate their parts of each inequality and ask referee to compare)
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Lifting of Functions

Construct hard communication problems by “hardness amplification”
using lifting or composition

Start with function f : {0, 1}m → {0, 1}

Construct new function on inputs
x ∈ [ℓ]m and y ∈ {0, 1}ℓm

Alice’s x-variables determine. . .

. . . which of Bob’s y-bits to feed to f

Length-ℓ lifting of f defined as
Liftℓ(f)(x, y) := f(y1,x1 , . . . , ym,xm)

Building on ideas from e.g. [She08, BHP10]

y1,1 y1,2 y2,1 y2,2 y3,1 y3,2

x1 x2 x3

( )
f
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Simulation of Protocols by Parallel Decision Trees [Val75]

x

uy, z

v, yw, zuwwu

1 1 1 1 1 10 0 0 0 0 0 0 0 0 0

Each node t in tree labelled by variables Vt;
has 2|Vt| outgoing edges
Parallel decision tree:

uses # queries =
max

∑
|Vt| along any path

has depth = length of longest path
solves search problem S ⊆ {0, 1}m ×Q if ∀ α ∈ {0, 1}m path defined by α ends in
leaf with q s.t. (α, q) ∈ S
Can be simulated by Alice & Bob to solve lifted problem (easy)

Simulation theorem of protocol by decision tree (hard direction)

Let S search problem with domain {0, 1}m and let ℓ = m3+ϵ, ϵ > 0. Then:
∃ r-round real communication protocol in cost c solving Liftℓ(S)
⇒ ∃ depth-r parallel decision tree solving S with O(c/ log ℓ) queries.
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Where to Get Formulas with Trade-off Properties?

Questions about time-space trade-offs fundamental in theoretical computer science

Well-studied (and well-understood) for pebble games modelling calculations described by
DAGs

In particular, for black-white pebble game investigated by [CS76] and many others
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Pebbling Contradictions

CNF formulas encoding black-white pebble game played on DAG G

1. u1
2. u2
3. u3
4. u1 ∨ u2 ∨ u4
5. u2 ∨ u3 ∨ u5
6. u4 ∨ u5 ∨ u6
7. u6

u6

u4 u5

u1 u2 u3

sources are true

truth propagates
upwards

but sink is false

Appeared in various contexts in e.g. [RM99, BEGJ00, BW01]

Used in [Nor06, NH08, BN08, BN11, BNT13] to study space and size-space trade-offs in
resolution and polynomial calculus

Formulas inherit some DAG properties, but not enough — make them harder by lifting!
Jakob Nordström (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 19/25



Proof Complexity
Tools and Techniques

Open Problems

Communication Complexity and the Falsified Clause Search Problem
Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond–Tompa Game

Pebbling Contradictions

CNF formulas encoding black-white pebble game played on DAG G

1. u1
2. u2
3. u3
4. u1 ∨ u2 ∨ u4
5. u2 ∨ u3 ∨ u5
6. u4 ∨ u5 ∨ u6
7. u6

u6

u4 u5

u1 u2 u3

sources are true

truth propagates
upwards

but sink is false

Appeared in various contexts in e.g. [RM99, BEGJ00, BW01]

Used in [Nor06, NH08, BN08, BN11, BNT13] to study space and size-space trade-offs in
resolution and polynomial calculus

Formulas inherit some DAG properties, but not enough — make them harder by lifting!
Jakob Nordström (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 19/25



Proof Complexity
Tools and Techniques

Open Problems

Communication Complexity and the Falsified Clause Search Problem
Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond–Tompa Game

Pebbling Contradictions

CNF formulas encoding black-white pebble game played on DAG G

1. u1
2. u2
3. u3
4. u1 ∨ u2 ∨ u4
5. u2 ∨ u3 ∨ u5
6. u4 ∨ u5 ∨ u6
7. u6

u6

u4 u5

u1 u2 u3

sources are true

truth propagates
upwards

but sink is false

Appeared in various contexts in e.g. [RM99, BEGJ00, BW01]

Used in [Nor06, NH08, BN08, BN11, BNT13] to study space and size-space trade-offs in
resolution and polynomial calculus

Formulas inherit some DAG properties, but not enough — make them harder by lifting!
Jakob Nordström (UCPH & LU) Proof Complexity as a Computational Lens: Lecture 22 Jan 30, 2026 19/25



Proof Complexity
Tools and Techniques

Open Problems

Communication Complexity and the Falsified Clause Search Problem
Lifting/Composition of Search Problems
Pebbling Formulas and the Dymond–Tompa Game

Pebbling Contradictions

CNF formulas encoding black-white pebble game played on DAG G

1. u1
2. u2
3. u3
4. u1 ∨ u2 ∨ u4
5. u2 ∨ u3 ∨ u5
6. u4 ∨ u5 ∨ u6
7. u6

u6

u4 u5

u1 u2 u3

sources are true

truth propagates
upwards

but sink is false

Appeared in various contexts in e.g. [RM99, BEGJ00, BW01]

Used in [Nor06, NH08, BN08, BN11, BNT13] to study space and size-space trade-offs in
resolution and polynomial calculus

Formulas inherit some DAG properties, but not enough — make them harder by lifting!
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Lifted CNF Formulas

Given

CNF formula F over variables u1, . . . , un
lift length ℓ ∈ N+

the lifted formula Liftℓ(F ) has

selector variables {xi,j}i∈[n],j∈[ℓ]
main variables {yi,j}i∈[n],j∈[ℓ]
for every i ∈ [n] an auxiliary clause

xi,1 ∨ xi,2 ∨ · · · ∨ xi,ℓ

for every C = ui1 ∨ · · · ∨ uis ∨ uis+1 ∨ · · · ∨ uit in F and (j1, . . . , jt) ∈ [ℓ]t

a main clause

xi1,j1 ∨ yi1,j1 ∨ · · · ∨ xis,js ∨ yis,js ∨ xis+1,js+1 ∨ yis+1,js+1
∨ · · · ∨ xit,jt ∨ yit,jt
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Toy Example Lifted Pebbling Contradiction (Lift Length 2)
(x1,1 ∨ x1,2) ∧ (x2,1 ∨ y2,1 ∨ x3,1 ∨ y3,1 ∨ x5,1 ∨ y5,1)

∧ (x2,1 ∨ x2,2) ∧ (x2,1 ∨ y2,1 ∨ x3,1 ∨ y3,1 ∨ x5,2 ∨ y5,2)

∧ (x3,1 ∨ x3,2) ∧ (x2,1 ∨ y2,1 ∨ x3,2 ∨ y3,2 ∨ x5,1 ∨ y5,1)

∧ (x4,1 ∨ x4,2) ∧ (x2,1 ∨ y2,1 ∨ x3,2 ∨ y3,2 ∨ x5,2 ∨ y5,2)

∧ (x5,1 ∨ x5,2) ∧ (x2,2 ∨ y2,2 ∨ x3,1 ∨ y3,1 ∨ x5,1 ∨ y5,1)

∧ (x6,1 ∨ x6,2) ∧ (x2,2 ∨ y2,2 ∨ x3,1 ∨ y3,1 ∨ x5,2 ∨ y5,2)

∧ (x1,1 ∨ y1,1) ∧ (x2,2 ∨ y2,2 ∨ x3,2 ∨ y3,2 ∨ x5,1 ∨ y5,1)

∧ (x1,2 ∨ y1,2) ∧ (x2,2 ∨ y2,2 ∨ x3,2 ∨ y3,2 ∨ x5,2 ∨ y5,2)

∧ (x2,1 ∨ y2,1) ∧ (x4,1 ∨ y4,1 ∨ x5,1 ∨ y5,1 ∨ x6,1 ∨ y6,1)

∧ (x2,2 ∨ y2,2) ∧ (x4,1 ∨ y4,1 ∨ x5,1 ∨ y5,1 ∨ x6,2 ∨ y6,2)

∧ (x3,1 ∨ y3,1) ∧ (x4,1 ∨ y4,1 ∨ x5,2 ∨ y5,2 ∨ x6,1 ∨ y6,1)

∧ (x3,2 ∨ y3,2) ∧ (x4,1 ∨ y4,1 ∨ x5,2 ∨ y5,2 ∨ x6,2 ∨ y6,2)

∧ (x1,1 ∨ y1,1 ∨ x2,1 ∨ y2,1 ∨ x4,1 ∨ y4,1) ∧ (x4,2 ∨ y4,2 ∨ x5,1 ∨ y5,1 ∨ x6,1 ∨ y6,1)

∧ (x1,1 ∨ y1,1 ∨ x2,1 ∨ y2,1 ∨ x4,2 ∨ y4,2) ∧ (x4,2 ∨ y4,2 ∨ x5,1 ∨ y5,1 ∨ x6,2 ∨ y6,2)

∧ (x1,1 ∨ y1,1 ∨ x2,2 ∨ y2,2 ∨ x4,1 ∨ y4,1) ∧ (x4,2 ∨ y4,2 ∨ x5,2 ∨ y5,2 ∨ x6,1 ∨ y6,1)

∧ (x1,1 ∨ y1,1 ∨ x2,2 ∨ y2,2 ∨ x4,2 ∨ y4,2) ∧ (x4,2 ∨ y4,2 ∨ x5,2 ∨ y5,2 ∨ x6,2 ∨ y6,2)

∧ (x1,2 ∨ y1,2 ∨ x2,1 ∨ y2,1 ∨ x4,1 ∨ y4,1) ∧ (x6,1 ∨ y6,1)

∧ (x1,2 ∨ y1,2 ∨ x2,1 ∨ y2,1 ∨ x4,2 ∨ y4,2) ∧ (x6,2 ∨ y6,2)

∧ (x1,2 ∨ y1,2 ∨ x2,2 ∨ y2,2 ∨ x4,1 ∨ y4,1)
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Lifted Pebbling Contradictions and the Simulation Theorem

Plug in the simulation theorem:

From r-round real communication protocol in cost c solving Search
(
Liftℓ(PebG)

)
Get depth-r parallel decision tree solving Search

(
PebG

)
with O(c/ log ℓ) queries

So now we need to understand decision trees for pebbling formulas PebG!

Study pebble game on graph G, but other game than black-white pebbling
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From Parallel Decision Trees to Dymond–Tompa Games

From [DT85]; more recently studied in [Cha13, CLNV15]

Two players Pebbler and Challenger

In each round

Pebbler places pebbles on subset of vertices
(including sink in 1st round)
Challenger either jumps to newly pebbled
vertex (always in 1st round) or stays

Pebbler wins at end of round when Challenger on vertex with all predecessors
pebbled (or on source vertex)

Lemma

∃ depth-r parallel decision tree for Search
(
PebG

)
with ≤ c queries

⇒ Pebbler wins r-round Dymond–Tompa game on G in cost ≤ c+ 1
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Putting the Pieces Together

Prove round-cost trade-offs for Dymond–Tompa games on graphs G
(hacking graph constructions from [CS82, LT82, Nor12])

⇓
Depth-query trade-offs for parallel decision trees for Search

(
PebG

)
⇓

Real communication round-cost trade-offs for Lift
(
Search

(
PebG

))
⇓

Same communication lower bounds hold for Search
(
Lift

(
PebG

))
,

i.e., search problem for lifted formulas in [BHP10]

⇓
Cutting planes length-space trade-off for Lift

(
PebG

)
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(
Search

(
PebG

))
⇓

Same communication lower bounds hold for Search
(
Lift

(
PebG

))
,

i.e., search problem for lifted formulas in [BHP10]

⇓
Cutting planes length-space trade-off for Lift

(
PebG

)
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Proof Complexity
Tools and Techniques

Open Problems

Some Interesting Questions

Communication complexity

Smaller length of lift?

Simulation theorems for stronger communication models (in particular, for so-called
DAG-like communication)

Proof complexity

Better Dymond–Tompa trade-offs?

Reduction to black-white pebbling instead of Dymond–Tompa?

Supercritical size-space trade-offs for Tseitin formulas à la [BNT13, BBI16]?

Line space lower bounds for CP with bounded coefficients (strengthening [GPT15])

And more to come in future lectures. . .

But now it is time to switch to the board and do some proper proofs!
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